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Abstract. Solutions to the Navier-Stokes equations are cont inuous except 
for a closed set whose Hausdor f f  dimension does not  exceed two. 

1. Informal Statement of Results 

Let v :R 3 ~ R  3 be a divergence free, square integrable vector field on 3-space. We will 
show that there exists a function u :R 3 x R ~ ~ R  3 (R + = {t : t > 0 }  is time) which is a 
weak solution to the Navier-Stokes equat ions o f  incompressible fluid flow with 
viscosity = 1 and initial conditions v, and which satisfies the following: There exists 
a set S C R 3 x R ÷ such that  the two dimensional  Hausdor f f  measure o f  S is finite, 
(R 3 x R ÷) - S is an open set, and the restriction o f u  to (R 3 x R ÷) - S is a cont inuous 
function. 

The above will be derived as a consequence o f  a more  general theorem in which u 
satisfies a weak form of  the Navier-Stokes equations with an external force 
f :R3 x R ÷ ~ R  3 which is divergence free with the proper ty  f ( x ,  t). u(x, t )~0 .  

2. Notation and Complete Statement of Results 

Hausdor f f  measure is defined in [2, p. 171]. We set R +=  { tER: t>O}  and B(a,r) 
= {xe R 3 : [ x - a ]  < r} for all a E R 3 and r > 0. The no rm l [is always euclidean no rm 
and 11 [tp is the L p norm. Open and closed intervals are denoted (a ,b)and [a,b], 
respectively. I f f :X- -+R and A CX then sup(f,  A) is the supremum o f f  over A and 
spt ( f )  is the closure o f  {x :f(x) 0e 0}. I f f  and g are functions defined on a subset o f  
R 3 x R, h is a function on R 3, and k is a function on R, then we set 

( f  *g)(x, t) = ~.i f (Y, s)g(x - y, t --  s)dyds, 

(f*h)(x, t) = ~ f (y ,  t)h(x - y)dy, 

(f*k)(x, t) = ~ f (x ,  s ) k ( t - s )ds  

whenever the integrals make  sense. If X = R  3, X = R ,  or  X = R  3 x R +, we let C~°(X, R) 
be the set o f  infinitely differentiable functions f :X ->R .  In addition, C~(X, R) is the 
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set of all functions in C°°(X, R) which are zero outside of  some compact set. w e  also 
set Doo(R 3 x R+,R)= { f  ECOO(R 3 x R+,R):spt(f)C R 3 x [a,b] for some 0 < a < b  
< o0}. I f f  is a distribution defined on an open subset of R 3 x R then Dif, DiJ, etc. 
are the distribution partial derivatives (c~/~xy, (02/~xiOxj)f with respect to the 
variables x 1, x 2, x3 of  R 3, The partial derivative o f f  with respect to the R variable 0 f 
R a x R is denoted Dtf  We also set D f =  (D 1 f, D2f  D3f  ), A f =  Dii f (repeated indices 
are summed), and d iv ( f )=  D~f in case the range o f f  is R 3. Similar definitions are 
made for distributions defined on R 3 and R. 

An absolute constant is a positive constant that is independent of all the 
parameters in this paper. The letter C always denotes an absolute constant. The 
value of C changes from line to line (e.g. 2C__< C). When an absolute constant is 
denoted by a letter other than C, its value remains fixed. 

The statements below (Parts 1 and 2) are called Hypothesis I: 
Part. 1. We have a Lebesgue measurable function u : R 3 x R + ~ R  3 (a time 
dependent velocity vector field), a Lebesgue measurable and locally integrable 
function p :R 3 x R + ~ R  (pressure), and a constant 0 < L < oe such that 

div(u)=0,  (2.1) 

lu(x,l;)12dx~L for almost every t~R ~ , (2.2) 
R 3 

the distribution Du is a square integrable function satisfying 

~ IDu(x, t)[2dxdt<L, (2.3) 
0 R 3 

and for almost every t~R + we have 

p(x, t)A 4(x)dx = - ~ Diuj(x, t)Djui(x, t)4)(x)dx (2.4) 
R3 R3 

if d~COO(R3, R), ~ is bounded, Ix[ ID~b(x)l is bounded, and A~eC~(Ra, R). 
Part 2. We assume that the conditions 

d?~D~(RaxR+,R); O(x,t)~O for all (x,t); 

and c~,D~,d~+Dt~ are bounded (2.5) 

imply that (2.6) holds. Note that (2.2), (2.3), Lemma 3.2, and Lemma 3.6 can be used 
to show that the integrals in (2.6) exist. 

- 2-  l(y lul2(Dtq5 + A ~b)) + ~ ]Dul2fp ~ ~ui(2- llul2 + p)Di~p. (2.6) 

Hypothesis I I  is the following: In addition to Hypothesis I, we assume 

- ~u,(Ot~ + A4') = S~ju,Dj¢ + ~fPD,4 (2.7) 

for every i t  {1, 2, 3} and 4 e C~(R 3 x R +, R). 
Hypothesis I is a weak form of the classical Navier-Stokes equations 

Dtvi i = - -  ujD:iu i - D i p  q- A u i +fl,  div (u) = 0 (2.8) 

where the external force f satisties div(f)  = 0 and f (x,  t). u(x, t) < O. Hypothesis II is a 
weak form of (2.8) with f=O. We will prove 
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2.1. Theorem. I f  Hypothesis I holds then there exist a function u' :R  3 × R + --+ R 3 and a 
set SCR3 × R + satisfying the following: The functions u and u' are equal almost 
everywhere, the two dimensional Hausdorff measure o r s  is finite, S~{( x, t) :t > e} is 
compact for every e > O, and ]u'l is bounded on every compact set K C R 3 × R + which 
satisfies K n S = O .  

The proof of this theorem includes a priori estimates on the size of Iu'l. It is 
possible to show that the Hausdorff dimension of S is at most 7/4. We also have 

2,2. Theorem. I f  Hypothesis I1 holds and S is as in Theorem 2.1 then there exists a 
function u" :R 3 × R + -+R 3 such that u and u" are equal almost everywhere, and u" is 
continuous on (R 3 × R + ) - S .  

2.3. Theorem. I f  v :R3-~R 3 is a square integrable function satisfying div(v)=0 then 
there exists u satisfying Hypothesis I I  and 

- v , ( x ) ( o ( x , O ) d x -  
R 3 R 3 x R  + 

= ~ u)u,D/b+ ~ pOi(9 (2.9) 
R 3 x R  + R a x R  + 

if q5 :R a x R ~ R  is smooth with compact support and iE {1, 2, 3}. 
Here (2.9) states that v is the initial condition for the solution u. 
This type of partial regularity is similar to that obtained by Almgren for 

solutions to generalized variational problems [1]. The study of the relationship 
between Hausdorff measure and the geometry of turbulence was started by 
Mandelbrot [6]. 

The next three sections contain the proof of Theorems 2.1 and 2.2. The proof of 
Theorem 2.3 is outlined in Section 6. 

3. Preliminary Estimates 

Throughout this section we assume that Part I of Hypothesis I holds. 

3.1. Lemma. I f  f :R3- ,R,  f s L  2, and D f ~ L  2, then 

(1) ~lf]6<=C(~[Dfl2) 3 
(2) ~lfl 3 < Ce- 3(~tflz)3 + Ce(~lDf] 2) whenever 0<e  < ~ .  

Proof Part (1) is the first inequality in line 9, p. 127 of [9]. We use H6tder's 
inequality, part (1), and Young's inequality 

ab<(1/4)(6-1a)4+(3/4)(fb) 4/3 for a,b>O and 6=e 3/4 

to estimate 

~[fl 3 = f lf13/2[f[3/2 

< (~ (lfi3/2)4/3)3/'(~ (If13/2)a')t/4 
= (~[f]2)z/4(~lf[6)l/4 

C(Slft2)3/4(ItDft2)3/4 
C ~ -  3 ( I 1 f [ 2 ) 3  + Ce@Df[2). 
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T 

3.2. Lemma. I f  0 < T <  oo then j j ]u(x, t)13dxdt < CL3/2T 1/4. 
0 R 3 

Proof  Using Lemma 3.t with e=L*/2T  ~/4, (2.2), and (2.3), we obtain 

T 

~( lu(x,t)13dxdt 
0 R 3 

<= CL 3/2T1/4. 

3.3. Definition. We fix f oe  C~(R 3, R) and go e C~(R, R) such that spt(go) C [ -  1, 1], 
fo ~ O, go > O, fo(X) - - fo ( -  x), go(t) = 9 o ( -  t), and ~f0 = ~Oo = 1. For n = 1, 2, 3,... we set 
f~(x)=nafo(nx) and O,(t)=ngo(nt ). We let A consist of all t e R  + such that the 
function pt(x)=p(x, t) is locally integrable, (2.2) and (2.4) hold, the function dt(x ) 
=Du(x, t) is square integrable, the divergence of the function ut(x)= u(x, t) is zero, 

and lim([ul2,9,)(x,t)=lu(x,t)] 2 for almost every x e R  3. Part 1 of Hypothesis I, 
n 

Fubini's theorem, and [10, Theorem 1.25, p. 13] imply that A is almost all of  R +. 

3.4. Lemma. I f  t ~ A, ~ ~ C~ ( R 3, R ), fl = 1 - ~ ,  fl( x )= 0 for all x in a neighborhood of  0, 
c((x) = - (4NxD- lc~(x), and if(x) = - (4~lx[)- lfl(x), then 

p(x, t) = - (DiujD jui*o:')(x, t) - (ujui* Dijfl')(x, t) 

holds for  almost every x e R  3. 

Proof  Define k:R  3 -  {0}--+R by k(x)=-(4rclxl) -~. Recalling Definition 3.3, we 
have A ( k . f , ) = f ,  (see [9, p. 126]). Hence 3.3 and Part 1 of Hypothesis I yield the 
following for all x e R 3 :  

(p* f,)(x, t)= (p* A (k* f,))(x, t) 

= ( ( -  D~ujDjui)*(k*f))(x, t) 

= ( ( -  D~u~Djul)*(c(*f,))(x, t) + ( ( -  Diu~Diui)*(fl'*f,))(x, t) 

= (( - D¢ujDjui)*(~x'*f,))(x, t) + ( ( -  ujui)*(DiJ3'*f,))(x, t). 

Since e ' e L  l, c( , f ,  converges to ~' in the L ~ norm (see [10, Theorem 1.18, p. 10]). 
Hence the assumption tEA and [10, Theorem 1.3, p. 3] imply 

:tl " r ~  ! • lim j [((- DiujDiul) ((c~ f~) - c~ ))(x, t)ldx = 0 
n J 3 

Hence [3, (11.26)] implies that there exists a subsequence n k of the positive integers 
such that 

m , t lim ( ( -  Diu iD jui)*(o( * f.~))(x , t) - ( ( -  DiujD jui) ~ )(x, t) 
k 

t ,  holds for almost every x e R  a. Since t e A  and Dij fl f ,  converges uniformly to Dijfl', 
we have 

tlm ( ( -  ujui) (Di~B *L))(x, t) = ( ( -  uiui),D J~ )(x, t) 
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for all x e R  3. Finally, [10, Theorem 1.25, p. 13] yields 

lim(p.f,~)(x, t)=p(x, t) for almost every x e R  3 . 
k 

These statements yield the conclusion of the lemma. 

3.5. Lemma. I f  t e A  and 0 < r < o o  then 

Proof Given r, we fix ~ and/~ as in Lemma 3.4 such that/~(x)=0 for xeB(O,r), 
spt (00 C B(0, 2r), 0__<_ ~(x) < 1, IDo~(x)t <= Cr - t, and ]Dijo~(x)r =< Cr- z. Then we have 
IIc~'tI 2 <-Crl/2 and IIDi~fl'lI 2 < Cr-3/2 Hence Lemma 3.4 and [10, Theorem 1.3, p. 3] 
yield the conclusion. 

T 
3.6. Lemma. I f  0 < T < oo then ~ ~ lu(x, t)l lp(x, t)ldxdt < CL 3/2 r 1/*. 

0 R 3 

Proof Using the Schwarz inequality, Lemma 3.5 with r =  T 1/2, (2.2), and (2.3), we 
estimate 

T 

~ lu(x, OI Ip(x, t)]dxdt 
0 113 

T 

- -  \ 0  \ R  3 \ R  3 

< = C L 3 / 2 T 1 / 4 " "  

3.7. Lemma. I f  Hypothesis I holds, seA,  B = R  3 x [0,s], and ¢ satisfies (2.5) then 

2 -~ ~ lu(x, s)12¢(x, s )dx -  2 -1 y lul2(D,q5 + A~) + ~ IDulZ~ 
R 3 B B 

< S ui(2- llu[ 2 +P)Di¢" 
B 

Proof Let h, :R3x R-~R be the function that satisfies Dth,(x, t ) = - g . ( t - s )  (see 
Definition 3.3) and h,(x, t) = 1 for t < s -  n-  1 Then h.(x, t) = 0 for t > s + n-  1. We 
obtain the conclusion by substituting q~h, for 4~ in (2.6), taking the limit inferior over 
n, using Fatou's lemma, and observing that 

lim I [u(x, t)[2~b(x, t)g,( t -  s)dt = [u(x, s)[Z d~(x, s) 
n R + 

holds for almost every x e R  3 [this is a consequence of seA  and the relation g,(t) 
=o.(-t)]. 



102 V. Sche f f e r  

3.8. Lemma. I f  f:R3-+R, f ~ L  z, and DfEL z then for every aeR  3 and 0 < r <  go we 
have 

Proof, Let g ~ C~(R 3, R) satisfy spt (g)E B(a, 2r), g(x) = 1 / f xE  B(a, r), 0 < g(x) < 1, and 
IDg(x)l = Cr-  1. We apply the Schwarz inequality, Lemma 3.1 (1), Young's inequality 
[4, p. 11], and the estimate ID(fg)l < IDfl Igl + Ifl  IDgl to write 

r isi ~ jisgi ~ 
B(a,r) 

= fflfgl31fgl 
<(~Ifg16)l12( S l j g l 2 ) ~ / 2  

< C(~ IO(fg)12)312(~ Ifgl2) ~/2 

< Cr([. IO(fg)l 2)2 + Cr- 3(~ lfgl 2)2 

<-_Cr( ~ IDflZ)2+Cr-3( S Ifl2) 2. 
\ B(a, 2r) \B(a, 2r) 

4. The Basic Estimate 

In this section we assume that Hypothesis i (Parts 1 and 2) holds. The section is 
devoted to proving the following: 

4.1. Theorem. There exist absolute constants ~ and K satisfying the following: I f  
aeR  3, b~A (see Definition 3.3), 7>0, b - 7 2 > 0 ,  and 

b 
S ~ ]u(x, t)l(2- 21u(x, t)l 2 + lp(x, t)])(lx - at + 7) - 4dxdt < e~/- 2 (4.1) 

b - 7 2 R 3 

then 

[u(x,b)]2dx~Kz3y for 0 < z < t / 2 .  (4.2) 
B(a,zy) 

We fix a e R  3, bsA,  and 7 > 0  with b - 7 2 > 0 .  For integers k we set 

E k = {(x, t) :Ix - al < 72- k, b - min (722- 2k 72) < t • b}. (4.3) 

4.2. Lemma. There exist ~ ,e  D~(R 3 x R +, R) for n = 1, 2, 3,... such that O,(x, t)> O, 
the functions (o,, DO,, and A~, + D,(o, are bounded, 

qb,(x,t)=0 /f t<=b-y 2, 

sup (~b, + 72-"ID~b,I, E,) < C7- 323", 

sup (0, + 72- k]DO,], Ek -- Ek + 1) < C7 - 323k 

sup (qS, + 72-klD~b,I, Ek -- Ek + 1) < Cy- 324k 

sup (]O,4~, + A qS,I, E o) < C7- 5, 

sup(ID,~, + A4,[,Ek-- Ek + ~) < Cg- 524k if 

0 G k < n ,  

k < 0 ,  

k < 0 ,  

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 
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and 
([x-al+72-")-4<CT-12"4),(x,t)  if b-TZ2-Z"<_tGb. (4.10) 

Proof We fix n. Let  h , : R 3 ~ R  + be defined by h(x)=),2-"(IxJ "+ ' ) '2-n)  - 4 .  We define 
F:R 3 × {t:t<O}---,R + by 

F(x, t) = (2 V ~-) - 3(_ t)-  3/2 exp(lxl2/(4t)). 

The function F is the fundamental  solution to the heat equat ion with time reversed. 
We define ~p,:R 3 × ( -  oo, b + y 2 2 - 2 " ) ~ R  + by 

W,(x, t) = (V,h , ) (x -  a, t -  (b + 722- 2,)). 

We have Dr% + A t G = 0, and the properties (4.5), (4.6), (4.7), (4.10) are satis fied i f ~b, is 
replaced by ~p,. Let 9 :R-~[0 ,  1] be a C ~ function such that 9 ( 0 = 0  if t<=b-72 , 
9(0 = 1 if b - ] ;2/2 ~ t ~ b, g(t) = 0 if b + 722- 2, - 1 < t, and [Dd(t)[ < C7 - 2 if b - 72 =< t 
<=b-y2/2. Define ~ ,eD~(R  3 × R +, R) by q~,(x, t) = 9(t)h0,(x, t) if t < b  q-722 -2", and 
qS,(x, t )=  0 if t > b + 722 - 2n-1. Then  (4.4) is clear, and (4.5), (4.6), (4.7), (4.10) follow 
from the corresponding estimates on %. We have (D~¢, + A ¢,)(x, t) = Dd(t)~,(x, t) if 
t<b .  In particular,  we have (DrO,+AO,)(x, t ) = 0  if b-v2/2<<_t<<_b. Now (4.8) and 
(4.9) follow from the estimates on ~ , .  

4.3. Definition. For  k = 1 , 2 , 3  .... we fix C ~° functions r k on a ne ighborhood of  
R a × [ b - v Z ,  b] such that  rk(x,t)e[O, 1], rk(x,t)=l if  (x , t )eR3×(b-72,  b) and 
(X,  t )  ¢ E k  + l ,  r k ( x ,  t ) = O  if ( x ,  t ) ~  E k  + 2, and sup([Drk[, Ek + l -- Ek + 2) ~ C]~-12 k. For  
n = 1, 2, 3,... and 8 > 0 the inequalities (4.11), (4.12), (4.13) will be known as Proper ty  
P(n,6)" 

b 

S lu(x, t)t2(lx - al + ?)-4dxdt ~87 -~ (4.1t) 
b - 7 2 R 3 

b 

S u~(x, t)(2- %(x, t)[: +p(x, t))D~¢&, t)dx dt<cS7 -2 (4.12) 
b " ]~2 R 3 

b 

~ ui(x, t)(2- llu(x, t)[ 2 +p(x, t))Di(rnOq)(x, t)dx dt 
b - "e 2 R 3 

< @ - 2  if q>n.  (4.13) 

4.4. Lemma. There exists an absolute constant M with the following property: I f  
P(n, g)) holds (see Definition 4.3) then P(n + 1, 8 + Mc~3/22-') holds. 

Proof Suppose that P(n, 8) holds for some n and 8. Let  s ~A (see Definit ion 3.3) with 
b - 722- 2, < s <_ b and set B~ = R 3 × [0, s]. Using Lemma 3.7, Lemma 4.2, and P(n, 8) 
[Parts (4.12) and (4.11)] we obtain 

2 -1 .[ lu(x,s)lZ¢,(x,s)dx+ ~ IOul2¢, 
R 3 Bs 

<2 -~ ~ [ulZ(O,(G + A~,)+ ~ u,(2-alu[2 +P)O,(G 
Bs Bs 

<C7 -1 i ~ lu(x,t)IZ(lx-al+7)-4dxdt+8~ -2 
b - y 2 1{ 3 

< C67 - 2. (4.14) 
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Now (4.10) and (4.14) yield 

j" lu(x, s)l ~(Ix - al + 72-" ) -  4dx 
R3 

< C7-12" ~ lu(x, s)12~b,(x, s)dx 
R 3 

<C67-32" if seA and b-TZ2-Zn<_s<_b. 

Using (4.3), (4.10), and (4.14) (with s=b) we obtain 

(4.15) 

iDul2 < C732- 3, .( iDulZ~, ~ C672- 3, (4.16) 
En Bb 

For q = n+  1, n+  2, n + 3,... we define hq :R 3 x (b-72,  b)-+R by (see Definition 
4.3) 

h,+ ~=(1- r,)~,+ l, hq=(r,+l-r,)~q if q > n + l .  (4.17) 

From Definition 4.3 and Lemma 4.2 we obtain 

hq(x,t)=O if 

(x, t~E,+ ~, Ithql] ~ ~ C7-323n, IlOhq]l ~o <C7 - 424"- (4.18) 

Let se A such that b -  722-2,-  2 < s < b. Using (4.18), the Schwarz inequality, (4.15), 
Lemma 3.8, and (4.15) again, we obtain 

~3 ui(x' s)(2- l lu(x, s)l 2)Dihq(x, s)dx 

~ C T - 4 2 4 n (  ~ 

• ~ C'C51/27- 7/225"/2 ( j" lu(x,s)14dx) '/2 
\B(a,72 - ~ - 1) 

~C~WET-a22"( 5 [Du(x,s)lZdx ) 
- -  \B(a,2~2 n) 

~Ca'/2y-322n( ~ IDu(x,s)12dx) -{--C63/27-42 n. (4.19) 
\B(a,y 2 - ") 

Now we integrate (4.19) over s (recall Definition 3.3) and apply (4.16) and (4.3) to 
obtain 

b 

f .i Ui(X, s X  2 -  l l u ( x ,  s)l  2)Dihq(x,  s ) d x  ds  ( 4 . 2 0 )  
b - ~ 2 2  - 2 n - 2  R 3 I 

C(53/27-  2 2 - n  " 
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We choose e and fl as in Lemma 3.4 such that 0 ____ e(x) __< 1, e(x) = 0 for Ix[ > 72-  "-  1, 
fl(x) = 0 for txl < 72-  "-  2, IDfi(x)l < Cy- 12", [Dijfi(x)[ ~= C 7- 222n, and 
IDijkfl(x)l < C';-a23". Then we have (see Lemma 3.4) 

N Ct'll 2 ~ C71/22- n/2, iO~jkfl,(x)[ < C([x[ + 22-" ) -  4 if x ~ R 3 . (4.21) 

Let seA such that b-o/z2-2"-2<s<b.  We set gs(X)=(DiujDjui)(x,s) for Ix-a[ 
< 72-", and gs(x) = 0 for Ix - a] > 72-". Then the property spt (~') C B(0, 72-  "-  1), [10, 
Theorem 1.3, p. 3], and (4.21) yield 

f 

<trg~ *~'ltN <llgslll[l~'llN <C (~B<a,,2I -°~ tDu(x,s)lZdx)(Tt/22-"/2) • (4.22) 

Using (4.18), the Schwarz inequality, (4.15), and (4.22) we obtain 

R~3 Uk(X, S )  ((DiujD jul) * o;') (x, S)Dkhq(x , s)dx 

• ' s)ldx) _--< C7 - 424" (B(a,,~-"-1) lu(x' s)I I((DiujDjui) ~ )(x, 

<C61/27-32z" ~ IDu(x,s)[2dx . (4.23) 
B(a,  ~ 2 - n) 

If  [x-al<-72 -"-1 then (4.21) and (4.15) yield 

[((UjUl) * Dijkfl' ) (X, S)[ ~: C I lu(y, s)12(lx- y[ + 72-") -  4dy 
R 3 

< C ~ lu(y, s)12([y- a[ + 72-" ) -  4dy < C @ -  32". (4.24) 
R 3 

Hence Definition 3.3, integration by parts, (4.24), (4.18), the Schwarz inequality, and 
(4.15) yield 

~3uk(x, s)((ujui)* Dijfl' ) (x, s)D~h~(x, s)dx I 

= ~3 uk(x' s) ((ujui)* Dijkfl' ) (X, s)hq(x, s)dx 

< C(67 - 32") (7- 323,) ~ lu(x, s)l dx 
B ( a & 2  - ~ -  1) 

< Ca7-  624"( S lu(x, s)12dx)1/2(measure(B(a, 72-"- 1)))1/2 
\ B ( a &  2 - n  - 1) 

<-- C¢~3/27-"2n . (4.25) 

N o w  (4.23), (4.25), and Lemma 3.4 yield 

~g Uk(X, s)p(x, s)Okhq(x , s)dx 

Zf (~ l /27-322n(  l [OlA(x,s)12dx)+ft~3/27-42n " (4.26) 
\ B ( a , ~ 2  - n) 
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Integration of (4.26) with respect to s, Definition 3.3, (4.t6), (4.3), and (4.20) yield 
b 
~[ j" ui(x, s) (2 - l lu(x , s)lZ + p(x, s))Dihq(x , s)dx ds 

b - y 2 2 - 2 n - 2  1/3 

< M63/27- 22 -" ,  (4.27) 

where M is an absolute constant. 
Setting q = n + 1 in (4.13) and (4.27), and using (4.17), (4.18), and (4.3), we obtain 

b 

[. [. p(x, s))Di¢.+ l(X, b - ~ 2 . 3  ui(x,  s) (2-11 u(x ,  s)l 2 + s )dx  ds 

< (3 + M63/22 -")7- 2. (4.28) 

Using (4.13) and (4.27) with q > n + 1, and using (4.17), (4.18), and (4.3) once again, we 
obtain 

b 
~ th(x, s) (2-11 u(x, s)[ 2 + p(x, s))Di(r . + 1 ~q) (x, s)dx ds 

b - y  2 R 3 

<=(64-M63/22-n)y-2 if q > n + l .  (4.29) 

Now (4.28), (4.29), and property P(n,6) imply that P(n+l,6+M63/22 -") holds. 
Lemma 4.4 has been proved. 

Now we can prove Theorem 4.1. Choose an absolute constant go such that 
M(26o) a/; <6o (see Lemma 4.4). We have 

(3o( 2 _  2 - ,+  1)) + M(6o (2_  2- ,+  1))3/22-, 

<230 _ 2- ,+  130 + M(26o)3/22- , < 6 o ( 2 _  2-(,+ 1)+ t) .  

Hence Lemma 4.4 and the definition of P(n, 3) yield that P(n, 6o(2-  2 -"+ 1)) implies 
P ( n + l ,  6o(2-2-("+1)+1)). Hence induction yields that P(1,6o) implies 
p(n,6o(2_ 2- ,+  1)) for all n. Now the definition of P(n, 3) yields 

P(1,6o) implies P(n,26o) for all n .  (4.30) 

There is an absolute constant t/satisfying 
b 

rl [ [, (Ix-al+?,)-4dxdt<=7. 
b - v e R 3  

Young's inequality (see [4, p. 11]) yields 

lul 2 __< (2/3) ((6 or/?- a)- 1/3 lul 2)3/2 _~ (1 /3 )  ((3 or/7 - 2)1/3)3 . 

Hence we have 
b 
[. ~ ]u(x,t)12(lx-al+ y)-4dxdt 

b - - y  2 R 3 

b - - 7  2 R 3 

Now the estimates [Di(ol(x, t)l < C(Ix- a[ +7) -4 and [Di(rlOq)(x, 0[ < C([x- a[ 
+ 7)- 4 for b - 72 -< t-< b and q > 1 (see Lemma 4.2 and Definition 4.3), and (4.31) 
yield the existence of  an absolute constant e such that (4.1) implies P(1, g0). Hence 
(4.30) yields 

Inequality (4.1) implies P(n, 2rio) for all n .  (4.32) 
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The assumption be A, (4.32), and the argument that yielded (4.15) can be used to 
show that (4.1) implies 

lu(x, b)12(Ix- a[ + 72-")-4dx < C(2bo) 7- 32". 
R 3 

Hence we have that (4.1) implies 

lu(x, b)12 dx < C6o72- 3,.  (4.33) 
B(a, ']2 n )  

For 0 < ~ <  1/2 we choose n such that 2 - " > z > 2 - " - 1 .  Then (4.33) yields 

lu(x,b)12dx <- _ ~ lu(x,b)12dx 
B(a,z' i)  B ( a , y 2  - n) 

< C6o72- 3, < C~o7(2z)3 = K~37 

where K is an absolute constant. Theorem 4.1 has been proved. 

5. The Connection with Hausdorff Measure 

Throughout this section we assume that Hypothesis I holds. 

5.1. Definition. We define V :R 3 × R + ~ R  by V= lul (2-11•ll2 + lPt)" For every integer 
n we define Q , : R 3 x R ~ R  by Q,(x,t)=(Ix1+2-") -4 if - 2 - 2 " _ < t < 2  -z", and 
Q,(x, t)= 0 otherwise. For t > 2-2, we set 

V,(x, t) = ~ .[ V(y, s )Q, (x -  y, t -  sldyds.  
0 R 3 

We define B(n, pl,p2,P3,p4 ) to be the set of all(x,t)ER 3 x R satisfying pi2-"< xi 
_-<(Pi+ 1)2-" for i~{1,2,3}, and p42-2"_<t_<(p~+ 1)2 -2". We set B(n)={B(n, pD 
P2,P3,P4):Pl is an integer for all i, and p4__> 1}. 

From Lemma 3.2 and Lemma 3.6 we obtain 

T 

~ V(x,t)dxdt<-CL3/2T 1/4 if 0 < T < ~ .  (5.1) 
0 R 3 

If 2 - 2 " < a < b ,  [10, Theorem 1.3, p. 3] yields 

b b + 2  -2n 

~ V,(x,t)dxdt<=C2-" ~ ~ V(x,t)dxdt.  (5.2) 
a R 3 a - - 2  - 2 n  R 3 

5.2. Lemma. There exists an absolute constant 0 such that the conditions B~ B(n) and 

S I/~ <-<-02-3, imply that lul is essentially bounded on a neighborhood of B. 
B 

Proof. Let B=B(n, pl,p2,p3,p4 ) and 7=2  -"-2.  We set 

U={(x , t )~R 3 x R : ( p i - 1 ) 2 - " < x i < ( p i + 2 ) 2  -~" for ie{1,2,3} , 

and p 4 2 - 2 " - 2 - 2 " - 4 < t < ~ 4 + l ) 2 - 2 " + 2 - 2 " - 4 } ,  

D = {(x, t)e R 3 x R :p~2-" <= x~ <= (Pi + 1)2-" for ic { 1, 2, 3} , 
and p 4 2 - 2 n + 2 - 2 n - 2 ~ t < - - ( p 4 +  1 ) 2 - 2 n - - 2  - ' 2 " - 2 }  . 



t08 V. Schef~r 

Now let (a, b)s U. For every (y, s)6D we have (see Definition 5.1) 

b 

i V(x,t)(Ix-al+ )- dxdt<=CV.(y,s) • 
b -  72 R3 

Averaging over D and using the fact D £ B, we obtain 

b 

J ~. V(x,t)(lx-al+?)-4dxdt 
b -  ~2 R 3 

<C(measure(D))- l (~V,)<CT-s!V, .  

Since 2-3n=2673, there exists an absolute constant 0 such that the property 

V,<02 -3" implies that (4.1) holds for (a,b)s U. Then we can use Theorem 4.1, 
B 

Definition 3.3, and [9, Corollary 1, p. 5] to conclude that ]u(a, b)] 2 =< K(47t/3)- 17- 2 
holds for almost every (a, b)~ U. 

5.3. Definition. The 2 dimensional Hausdorff measure of a set S C R 3 x R is denoted 
by ~¢f2(S). For the definition of Hausdorff measure, see [2, p. 171] (where X 
= R 3 x R and the metric on X is the usual metric on R4). 

5.4. Lemma. For each inte#er k there exists a compact set S k contained in 
R 3 x [2-k, 2 -k+l]  such that 

2 - k + 2  

~2(Sk)NC ~ j V(x,t)dxdt (5.3) 
2 - u - 1  R 3 

and for every (x, t)~ (R 3 x [2-k, 2-k + *])_ Sk there exists a neighborhood U of (x, t) 
such that lul is essentially bounded on U. 

Proof Let k be given. For each integer n satisfying n>k+ 1 and n > 0  we set (see 

Lemma 5.2)D(n)= {BeB(n):BCRax [a-k, 2 -k+ *] and ! V,>02-3" 1 . We then set 

Sk=c~{(w{B:B~D(n)}):n>=k+l and ng0} . 

For each n, (5.2) yields 
2 - k + 2  

Z I V,~C2-" ~ I V(x,t)dxdt. 
BED(n) B 2 -  k -  1 R 3 

Hence the number of elements in D(n) is at most 
2 - k +  2 

C22" 5 5 V(x,t)dxdt. 
2-k---  i R 3 

Hence (5.1) implies that Sk is compact, and we also have (using n>0)  

Z (diameter(B)) z < • C2- 2, 
B~D(n) BED(n) 

2 - k + 2  

<=C ~ ~ V(x,t)dxdt. 
2 - k - I  R 3 
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Since the diameter of the sets in D(n) can be made arbitrarily small by taking n 
sufficiently large, and S k is contained in w {B:B6 D(n)} for sufficiently large n, [2, p. 
171] yields (5.3). 

Now take (x, t) ~ (R 3 x [2- k, 2- k + 1]) _ Sk. There exists n ~ max (k + 1, 0) such 
that (x,t)¢B for every BeD(n). However, there exists BeB(n) such that 
B C R 3 x [2-k, 2-k + 1] and (x, t)~ B. Hence Lemma 5.2 implies that ]u] is essentially 
bounded on a neighborhood of B, and hence on a neighborhood of (x, t). 

Now we can prove Theorem 2.1. For any integer n, (5.2) and (5.1) yield 
2-2n+2 2-2n+3 

~ V,(x,t)dxdt<C2-" ~ ~ V(x,t)dxdt 
2 gn R 3 0 R 3 

< W L  3/22- 3,/2 (5.4) 

where W is an absolute constant. Let m be the integer that satisfies 
W L  3/2 =< 02- 3m/2 < 23/2  WL3/2 (see Lemma 5.2). If  n, Pl, P2, P3 are integers such that 
n < m then, setting B~ = B(n, p~, p2, P3, i) for i t  { 1, 2, 3}, we obtain that (5.4) yields 

V,<=WL3/g2-an/2<=02-3~/22-3"/2~02 -3" for i=1,2 ,3  . 
Bf 

Hence Lemma 5.2 yields that lu[ is essentially bounded on B~, B2, and B 3. By varying 
n and p j, j =  1, 2, 3, we obtain that lu[ is locally essentially bounded on the set 
{(x,t):x6R 3 and t>__2-2"}. Actually, the proof of Lemma 5.2 shows that Iul is 
essentially bounded on that set. We define S=W{Sk : k > 2 m +  1}. The above and 
Lemma 5.4 yield that [uj is locally essentially bounded outside of S. Finally, the 
countable subadditivity of yf2, (5.3), (5.1), and the definition of m yield 

2-2m+1 

Yg2(S)N ~, Yt~z(Sk)N3C ~ J V(x,t)dxdtNCL 2 • 
k_->2m+l 0 R 3 

Theorem 2.1 has been proved. 
We can prove Theorem 2.2 as follows: First, use Hypothesis II to imitate the 

proof of [7, Lemma 1.1] and derive identity (1.8) of [7] for almost every x, tl, and t 2. 
Then use Theorem 2.1 to adapt the proof in the last paragraph of [7, Section 2] to 
our case. 

6. Outline of Proof of Theorem 2.3 

Let v be given as in Theorem 2.3. From [5] we obtain that there exist 0 < L < ~ and 
(u, n)6 C a (R 3 × R +, R 3) for n = 1, 2, 3 .... such that (see Definition 3.3) 

div (u, n ) = 0 ,  (6.1) 

~l(u,n)(x,t)[Zdx<L for all tER + , (6.2) 
R3 
o9 

S ~ tD(u,n)(x,t)ladxdt<L, (6.3) 
0 R 3 

- O)dx -  (u, n) (D,4,i + A i) 
R 3 R3xR + 

= ~ ((u,n)j*f,)(u,n)iDj4)i (6.4) 
R3×R + 

whenever ~b e C~ (R 3 x R, R 3) satis ties div (q5) = 0. We also obtain from [ 5] that there 
exists an increasing sequence hi, n2, n 3 .... of positive integers and a Lebesgue 
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measurable function u :R 3 x R ÷ -'-~R 3 such that (2.1), (2.2), and (2.3) are satisfied, and 
we have 

lim ~ [u(x, t ) -  (u, nk) (X, t)12dx = 0 (6.5) 
k R3 

for almost every t~R 3, and 

D(u, nk) converges weakly in L 2 to Du.  (6.6) 

If 0 <  T <  oe then the Lebesgue dominated convergence theorem, (2.2), (6.2), and 
(6.5) yield 

T 

lira ! ( ;  lu(x, t)-(u,  nk)(X,t)12dx)Sdt=O. (6.7) 

From Lemma 3.1, (6.2), (2.2), (6.3), and (2.3) we obtain 
T 

o[ lu(x, t)--(u, nk)(x, t)13 dxdt 
0 R 3 

T 

< C e - 3  ! ( ;  ]u(x,t)-(u, nk)(x,t)12dx)3dt +CEL (6.8) 

for every 0 <e  < oo. Combining (6.7) and (6.8) (with varying e) we obtain 
T 

lim S ~ l u(x, t ) -  (u, nk)(X, t)l 3 dxdt = 0 .  (6.9) 
k 0 R 3 

Let c~, c(, fl, fl' be as in Lemma 3.4. Define (p, n):R 3 x R + ~ R  and p :R3×R+--}R by 

(p, n) (x, t) = - (Di((u, n)j* f,)Dg(u, n), * ~') (x, t) 

- (((u, n)j* f~) (u, n)i, Doff' ) (x, t) (6.10) 

p(x, t) = - (DiujD ju i* c() (x, t ) -  (uju i * Dijfl' ) (x, t) 

for almost all (x, t). The argument in Lemma 3.5, the Schwarz inequality, (2.2), (6.2), 
(2.3), (6.3), Young's inequality, and [10, Theorem 1.3, p. 3] yield 

( ;  [(p, nk)(x, t)-- P(x, t)12 dx ) 1/2 

< C?/2 ~ [(D(u, nk)*f.~)(X, 012 + [D(u, nk)(x, t)l 2 + IDu(x, t)i2dx 
R 3 

+ Cr -  3/5 S I((u, nk).Lg(x, t) - u(x, t)l I(u, nk)(x, t)ldx 
R 3 

+ Cr- 3/5 j lu(x, t)l I(u, nk)(x, t ) -  u(x, t)ldx 
R 3 

<= Cr 1/2 ~ [D(u, nk)(x, t)[ 2 + ]Du(x, t)12dx 
Ra 

+ Or- S/2L1/2( f I((u, nk)*f..)(x, t ) -  u(x, t)12dx)1/2 
\ R  s 

+ Cr- 3/2L1/2( S I(u, nk)(x, t ) -  u(x, t)12dx )1/2 
\ R  s 

(6.11) 
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for almost all t~ R +. The Schwarz inequality, the argument in Lemma 3.5, (2.2), (2.3), 
(6.2), (6.3), (6.11), Young's inequality, and [10, Theorem 1.3, p. 33 yield 
T 

~ I(u, nk)i(x, t)(p, nk)(x, t ) -  ui(x, t)p(x, t)Jdxdt 
0 R 3 

T 

jr S J(ld, rlk)(X , t) -- n(x, t)l [(p, nk)(X, Ojdxdt 
0 R 3 

T 

+ ~ ~ ju(x, t)l I(P, nk)(x, t)-- p(x, t)Jdxdt 
0 R 3 

T 

T 

+ ! (~ lu(x,t)jZdx)1/2 ( ;  j(p, nk)(X,t)_ p(x,t)j2dx)1/Zdt 

T 

0 \ R  3 

T 

T 

T 

T 

T 

+ Cr-3/2L!(; j(u, nk)(X, 1)--U(X, t)[2dx)l/2dt (6.12) 

for 0 <  T <  oo. Now we make r small and use (6.12), (2.2), (2.3), (6.2), (6.3), (6.5), the 
fact 

lim ~ [((u, nk)*J~)(x, 0 -  u(x, t)12dx = 0  
k R 3 

for almost every t~R + [see (6.5)], and the Lebesgue dominated convergence 
theorem to conclude 

T 

lim .[ ~ I(u, nk)i(x, t)(p, nk)(x, t ) -  ui(x, t)p(x, t)ldxdt = 0 (6.13) 
k 0 R 3 

Let q~ satisfy (2.5). From (6.1), (6.2), (6.3), (6.4), (6.10), and the usual arguments we 
conclude 

- 2 -  lq  l(u, n)l 2(o,~ + A ~)) + ~ ID(u, n)f ~9 
= 2-1 ~((u, n)i*f,)l(u, n)[2D~4 + ~ (u, n)jp, n)D/p. (6.14) 
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N o w  (2.2), (6.2), a n d  (6.5) yield 

l im S [(u, nk)t2(D,~ + A~b) = Stu[2(D,~b + A~b). 

P rope r t i e s  (2.3), (6.3), a n d  (6.6) yield (recall  q~>0)  

l im inf~ ]D(u, nk)lzq5 > ~ IDul2d?. 
k 

F r o m  (6.9) a n d  (6.13) we o b t a i n  

l im 2 - 1  ~ ((u, nk)i*f,~)J(U, nk)lZDic~ = ~ui(2-  t[uJZ)Dic/), 
k 

l im S (u, nk)i(p, nk)DiO = [. uipD,4). 

H e n c e  (6.14) yields (2.6). P roper t i e s  (2.7) a n d  (2.9) a re  
consequence  o f  (6.1), (6.4), (6.10), a n d  the  usua l  est imates.  

v. Schef~r 

a m o r e  i m m e d i a t e  
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