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ROTATIONALLY SYMMETRIC HARMONIC MAPS 

FROM A BALL INTO A WARPED PRODUCT MANIFOLD 

Atsushi TACHIKAWA 

This paper deals with the existence problem for 
rotationally symmetric harmonic maps from an Euclidean 
unit ball Bc~n or ~n into a warped product manifold 
Nf = [0,r0)• 

1.Introduction 

Let S n-1 = {@6 n: lel = I} (n ~ 3), where I 1 
n n n 

denotes the Euclidean norm of IR . We always use the 

n-dimensional representation e = (@I ,...,@ n ) with l@[n 

=I for e s S n-1 . For r0 ~ ~+u {+~} let f be a 

C1([0,r0),~+) with f(0) = 0 , f' (0) = I function of class 

and N a product manifold [0,r0) x S n-1 with 

projection zl and ~2 to [0,r0) and S n-1 respec- 

tively. We consider a manifold N = Nf furnished with 

the Riemannian structure such that 

f 2 I( ~2(X ) 2 (1.1) llXl I = i~l(x)i1 + f2(~ P))'I { n 

for every X e TpN . A product manifold of this type is 

called as a warped product manifold (see [2]). 

For Nf we use the "polar" coordinate P = (r,e) 

where r = ~1(p) and e = ~2(p) We call the point P 

with ~1(p) = 0 the origin of Nf. 

We can introduce the normal coordinate system P = u = 
i i 

(u I ,...,u n) by putting u = r-e . The relation between 

the original "polar" coordinate (r,@) and this normal 
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coordinate can be represented by 

( r , 0 )  : (lul ,u/lul ) .  n n 

Using this normal coordinate we can identify Nf with 

B c ~n, where we denote 
r 0 

B = [ {x ~ n ~+ < r } for r e , : Ixln = 
r [ ~n for r = +~ 

Therefore the Sobolev spaces H I'2(B R,Nf) and H~'2(BR,Nf) 

(R < +~) can be defined as in [4]. Furtheremore we can 
HI, 2"~n U {+~} define loc(~ , Nf). We denote for R E R+ 

n n( [ HI,2 
50 =~ BR,N f) = (BR,N f) if R ~ ~+ , 

1,2 
Hloc(Rn,Nf) if R = +~ . 

For u ~ ~n(BR,N f) and a bounded open domain Q c B R , 

we define the energy of u on ~ by 

(1 . 2 )  I I n 2 E(u,el =2 llD uJJf dx 

where 

and 

= 21 I (IDurl2n + f2(ur) lDue122 )dx.  
n 

r I % 2 r 2 = n ~ur/ 
u = z on , u = ~.ou , IDu In e~11 ~x~l 2 

2 ~ l~u81/~x~12 IDU01n2 = 1~,i~n 

We are going to study the critical point of E . The 

term "critical" is defined as follows. Denote the space 

of vector fields along u E ~n(BR,N f) by 

6uSOn(B R ) = H I '2 (BR,~n) {v~ :(n2u,v) =0} if RG ~+, 
n 

I , 2 _n _n, 
{vE Hloc(~< ,~< /:(~2u,V)n=0} if R=+~. 
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, ~n. 
where (" ")n is the Euclidean scalar product on 

n 
Then every v �9 6 u~ (B R) is a tangential vector field 

along u. Set 

~on n I , 2 (BR,~n) 
6u 0 = 6u~~ (BR)r~ H0 

For v E 6u~(B R) we put 

ut, v =( ~1ou + tlv I (~2ou +tve)/ l~2ou + tVSln ) 
n ' 

0 v/I denoting v = v I n , 

variation of E by 

and define the first and second 

(1.3) 6uE(V) - dtd E(ut, v , spt v)it=0 

and 

(1.4) 62E(v) d2 u ~t2 E( , spt v) , 
= ut, v ]t=0 

where spt v is the support of v. 

u is a "critical" point of E iff 

n 
6uE(V) = 0 for v E 6u~0(BR) 

and u is stable iff 

62uE(V) > 0 for v E 6u~~ R) 

A critical point u E ~ ~ is called a weakly harmonic map. 

Moreover if a weakly harmonic map is of class C 2 we call 

it a harmonic map. 

We consider the following 

Problem I (Dirichlet problem) Given a boundary value ~ : 

~B I § Nf of class C 2, find a harmonic map u : B I § Nf 

= satisfying the boundary condition ui~B1 ~. 
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Problem 2 In case of r 0 = +~, find a harmonic map u 

from ~n onto Nf. 

In this paper we treat only the case that u is 

"rotationally ' " symmetric . 

We call a map u : B R § N rotationally symmetric 

iff 

1ou(x ) 2 = q(p) and ~ ou(x) = 

where P = Ixl , ~ = x/IXln and ~ is some function 
n 

+ + 

About harmonic maps from B I into S n, some results 

on existence and the number of rotationally symmetric 

solutions for the Dirichlet problem have been proved by 

Jager and Kaul [5]. It is also shown in [5] that 

the equator map 

n ), 
u, = B I + S , x~ (Ixln,X/IXln 

provides an absolute minimum of the energy functional if 

n ~ 7 with respect to fixed boundary data, but is 

unstable if 3 < n < 6. 

In case that the target manifold is an ellipsoid 

N = {u = (u,z) E Rn+1: lui2+ z2/a2=1} 
n 

Baldes [I] 

stable iff 

is unstable. 

has shown that the equator map is strictly 

a 2 > 4(n-1)/(n-2) 2 ; if not the equator map 

In this paper we would like to show, how these 

results change for our case N = Nf . Moreover we will 

get an existence result for Problem 2 
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2. Rotationally symmetric harmonic maps 

ue ~n(BR,N f) be a rotationally symmetric map Let and 

write 

( 2 . 1 )  u ( x )  = ( q ( P ) , ~ )  , 

where P = JxJ n and ~ = x/Jxj n 

on BsC c B R becomes 

Then the energy of u 

I 2+ 2 
E(U,B s) = ~ f { JDrl(p) I n f2(q(x)) JDW(P) Jn2}dx 

B s 

1 [ { n ~P J2+f2 
= - z J n ' ( p )  - -  ( q )  z 

2 ~ ~=1 ~x a l ~ a , i ~ n  
s 

and using the equalities 

~p _ ~JXJn x ~ 

~x ~ ~x ~ IXJn 

i 
~ ~__t_ ] 2 }dx,  

J ~ x  a 

and 

we get 

(2.2) 

where 

ball. 

~i_ ~(xi/JXJn) 6 ilxl2nxix  
Ix]3 n 

s 
~n r )2 n-1 2 }pn-1 

E(U'Bs) =~!{(q'(P + 7 f (q(P)) dP 

denotes the volume of the n-dimensional unit 
n 

The first variation becomes 

6uE(V) 

I {(Dq,DV) + f.f'(q)vJD~I2~+ f2(q)(D{,D~)n2}dx , 
n n z 

spt v 
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n 
for v ~ 6u~ 0 where v = I v In , ~ = v/IVln and 

f.f,(n) = f(~) x f'(~). 

Using the fact that A~ = 0 for x ~ 0, we can see 

that the Euler equation reduces to the ordinary differ- 

ential equation 

( 2 . 3 )  q , , ( p )  + ( n - l )  r l ' (p )  - ( n - 1 ) f . f ' ( r ~ ( p ) )  =0 
p p2 

Setting 

(2.4) $(t) = ~(e t) , ~:(-~ ,inR ) § [0,r0) , 

we transform (2.3) into an autonomous equation 

(2.5) r + (n-2)r - (n-1)f-f'(r = 0. 

The energy is expressed in terms of ~ by 

in s 

mn I 2 (2.6) E(u,B s) =-~- {(,'(t)) + (n-1)f2(,(t))}e(n-2)tdt. 

Set 

(2.7) V(t) = (~'(t))2-(n-1)f2(r 

Then we get 

(2.8) V'(t) = -2(n-2)(%'(t)) 2 

for every solution of equation (2.5); therefore V is a 

Lyapunov function for that differential equation. 

(2.5) is essentially the damped pendulum equation. Put 

q(t) = ~(t), p(t) = q'(t). 
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Then (2.5) goes over into the plane system 

(2.9) 

q'(t) ( 

p' (t)! 

p(t) 

-(n-2)p(t) + (n-1)f.f'(q(t)) 

From now on we assume always that 

(2.10) f E C2+e((0,r0 ), ~+) , f(0) = 0, f'(0) > 0 

and 

( 2 . 1 1 )  f.f'(r) is at most of linear growth as 

r § +~. 

Under the condition (2.11) the right hand side of (2.9) 

is at most of linear growth; therefore the solution 

of (2.5) is extendable to a solution on R . 

From (2.8) and well known results for Lyapunov 

functions, ~- and u-limit sets (see [6]), we obtain 

Lemma 2.1. Let A = {a ~ ~+: f-f'(a) = 0}. For every 

solution ~ o__ff (2.5), (%(t),~'(t)) tends to infinity o_~r 

converges to one of the critical points (a,0) with a ~ A, 

as t § • 

We consider the following four cases separately for f. 

(i) There exists a number b 0 E (0,r 0) with f(b0) = 0 

and f(t) > 0 on (0,b0). Moreover there exists 

a unique a 0 6 (0,b 0) such that f'(a 0) = 0, 

(ii)f f > 0 on (0,r 0) and there exists exactly one 

a 0 E (0,r 0) with f'(a 0) = 0, and f' (t) < 0 

t 6 (a0,r0), 

for 
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(iii)f f > 0 and f' > 0 on (0,+~), 

(iv)f the remaining cases. 

In this paper we treat the cases (i)f, (~)f and (iii)f. 

Therefore there will be at most three critical points 

(0,0), (a0,0) and (b0,0). 

The behavior of the system (2.9) in the neighborhood 

of the critical points (0,0) and (a0,0) is determined by 

the linearized system 

( 2 . 1 2 )  fill (n-1)(f'(0)) 

for (0.0) and 

( 2 . 1 3 )  Ill 
0 I 

(n-1)f.f"(a 0) -(n-2 

IIzl 
for (a0,0). The eigenvalues of the matrix of the system 

(2.12) are 

( 2 . 1 4 )  A• = n-22 - + � 8 9  + 4 ( n - 1 ) ( f ' ( O ) ) 2  

and those of (2.13) are 

(2.15) I• = - n-2 • !/(n_2) 2 + 4(n_1)f.f,,(a0) 
2 2 

Since we are assuming that f'(0) ~ 0 (see (2.10)), A+ > 

0 and A_ < 0 for every n ~ 2 Therefore (0.0) is 

always a saddle point. But (a0,0) changes its character 

with n and f'f"(a 0) In case of 
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2 
(n-2) 

f'f"(a0) < 4(n-I) 

(a0,0) is a focus. In case of 

0 > f.f"(a 0) > 
(n-2) 2 
4(n-I ) ' 

(a0,0) is an improper node. 

Remark: It is easy to see that f.f"(a 0) ~ 0 for ou~ 

, because f' ~ C I , f'(t) > 0 for cases (i)f and (~)f 

t e [0,a0) and f'(a 0) = 0. 

By the well-known results about plane autonomous 

systems (see [3] Ch.V/]I), we obtain 

Lemma 2.2. There exists exactly one invariant curve Y 
0 

o_ff system (2.9) in the (q,p)-plane on which ever Z trajecto[r Z 

(q(t),p(t)) satisfies 

(2.16) lim (q(t),p(t)) = (0,0) , 

and, for some k E R , we have 

(2.17) q(t) > 0 and p(t) > 0 for all t ~ (0,k) , 

Moreover the argument of Y0 is arctan A+. 

Using the properties of a Lyapunov function, we can study 

the behavior of the solution (q(t),p(t)) of (2.9) on 

the invariant curve Y0" 

Lemma 2.3. Let f satisf z (i)f or (~)f. Then the 

solution (q(t),p(t)) o_~f (2.9) o__nn Y0 satisfies 
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(2.18) lim (q(t),p(t)) = (a0,0) 
t§247 

Proof For the case (i)f , the assertion can be shown 

as in [5]. 

For the case (~)f , by Lemma 2.1 , there are only 

three possiblities: 

(a) lim (q(t),p(t)) = (0,0) , 
t++~ 

(b) lim (q(t),p(t)) = (a0,0) , 

(c) (q(t),p(t)) tends to infinity as t § +~ 

First, suppose that (a) holds. Then lim V(t) = 0 
t§ 

But we get from (2.16) lim V(t) = 0 and from (2.8) 
t+-~ 

V'(t)~ 0. Therefore V(t) and V'(t) must be identically 

zero. This means (q(t),p(t)) H (0,0) and contradicts our 

choice of (q(t),p(t)). 

Now we are going to show that the case (c) also can not 

happen. 

Suppose that (q(t),p(t)) tends to infinity. We derive 

a contradiction as follows. 

Step I. We show that lim sup lq(t) I = ~. 

As mentioned above, lim V(t) = 0 and V~(t) ~ 0, and 

therefore V(t) ~ 0 for all t s R , i.e., 

( 2 . 1 9 )  p2(t) S (n-1)f2(q(t)). 

This means that if q(t) remains finite then also p(t) 

remains finite. Thus we see that (q(t),p(t)) 

can not tend to infinity without lim sup lq(t)l = ~. 
t§ 

Step 2. We show that p(t) < 0 for some t ~ ~. 

Suppose that p(t) a 0 for all t ~ ~. Then by the 

assertion of Step I and the fact that q'(t) = p(t), 
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we can take some t O ~ ~ with q(t 0) = a 0 

the equation 

Integrating 

p'(t) = -(n-2)p(t) + (n-1)f'f'(q(t)) 

from t O to t > to, we get 

(2.20) p(t) - p(t 0) 

t 

= -(n-2)(q(t) - q(t0)) + (n-l) I f.f'(q(s))ds 

s=t 0 

Since we are supposing that p(t) > 0 for all t e R, 

q(t) is monotone nondecreasing. On the other hand for 

the case (~)f , f'(q) ~ 0 for all q ~ a 0. Therefore 

f.f'(q(s)) ~ 0 for all s ~ t O , 

and we get 

(2.21) p(t) ~ p(t 0) + (n-2)q(t 0) (n-2)q(t). 

Since p(t 0) and q(t 0) are finite and lim q(t) = +~ , 

we see from (2.21) that p(t) < 0 for some t > t o . This 

is a contradiction. Thus the assertion of Step 2 is 

proved. 

Step 3. Using the assertions of Step I and Step 2 , we 

show that the case (c) can not occur. 

Because of the assertion of Step 2 , we can take tle 

with p(t I ) = 0 and p(t) < 0 for t s (t1,t1+6) for 

some 6 > 0. Let YI be the curve {(q(t),p(t)): -~ < t 

tl}' Y2 = {(q,0): q(tl) < q < q(t I) + s } for some s > 

0, and Y3 = {(q(tl)+e'P): p ~ 0 }. Then after t = t I , 

(q(t),p(t)) can not cross the the curve YI U Y2 ~ Y3" 

In fact, since the vector 
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X(q'P) =I P 1 

-(n-2)p + (n-1)f.f' (q) 

is directed downward on Y2 and leftward on y3 ' (q(t), 

p(t)) can not cross y2 U 73 after t I . Moreover, by the 

uniqueness of the solution, (q(t),p(t)) can not cross 71 . 

On the other hand, by the assertion of Step I., lim sup 
t§ 

lq(t)l = +~ . Therefore the curve (q(t),p(t)) must cross 

the half line {(0,p): p ~ 0}. This means that q(t) 

must be zero at some t = t 2 > t I Taking this t 2 > tl, 

we see that 

(2.22) V(t 2) = 0 

by (2.19) and (2.7). On the other hand lim V(t) = 0 
t~--~ 

(by(2.16)) and V'(s ~ 0 (by(2.8)). Therefore (2.22) 

implies V(t) E 0 for t 6 (-~,t 2] and contradicts our 

choice of (q(t),p(t)). Thus the case (c) can not happen. 

q.e.d. 

Lemma 2.4. For the case (iii)f, the solution (q(t),p(t)) 

of (2.9) o_n_n Y0 satisfies 

(2.23) p(t) ~ 0 for all t 6 R, 

and 

(2.24) 

Proof 

lim sup q(t = +~ 
t++~ 

Since (2.19) holds for this case, we obtain 

(2.25) lim sup q(t) I = ~. 

Furthermore, proceeding as in Step 3. of the proof of 

Lemma 2.3., we can see that p(t) can not become negative. 
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This proves (2.23) and that q(t) is monotone non- 

decreasing. Therefore, by (2.25), we get (2.24). q.e.d. 

on 

parameter t. 

on ~0 ' 

Since the system (2.9) is autonomous, the trajectories 

70 are determined up to a translation in the 

Moreover for every trajectory (q(t),p(t) 

-A+tp = 
e (t) c (2.26) lim 

t~--~ 

exists and c uniquely determines (q(t),p(t)) (see 

[3] Ch.VJlf. 3. ). We define (q0(t),P0(t)) by choosing 

c = I. 

For the cases (i)f and (~)f , using the stability 

theory, we will study (q0(t),P0(t)) for t § +~ in 

more detail as in [5] lemma (2.18). 

Lemma 2.5. Suppose that f satisfies (i)f o__rr (~)f. 

Then, writing the curve (q0(t),P0(t)) in the form 

(2.27) q0(t) + iP0(t) = s0(t)e i~(t), 

we obtain 

~t 
0 < s (t) < Ce for all t E 

0 

with a constant C = C(n,~,f) for every p > Re l+ 

Moreover, 

(i) i_n_n case f'f"(a 0) < -(n-2)2/4(n-1 ) the curve 

(q0(t)oP0(t)) is a spiral with center (a0,0) satisfyzng 

lim ~(t) = _ _I /_(n_2)2 -4(n-I )f.f"(a0) 
t § ~ t 2 

(ii) for 0 > f'f"(a 0) >- (n-2)2/4(n-1) 

+ arctan l+ < ~(t) < 
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and 

lim ~(t) = ~ + arctan ~+ 
t++~ 

Proof The assertions can be derived as [5] lemma (2.18) 

by a slight modification of the proof, q.e.d. 

These lemmas enable us to study the existence question 

for the following Dirichlet problem. 

Dir(~). Find a roationally symmetric harmonic map u 

: B I § Nf satisfying the boundary condition 

UI~B1 r : x § (~,x) E Nf 

In the cases (i)f and (~)f,Lemma 2.5 shows that 

q0(t) oscillates about a 0 for f.f"(a0)<-(n-2)2/4(n-1 ) 

whereas for 0 > f-f"(a 0) > -(n-2)2/4(n-1) it is monotone 

and tends to a 0 as t § +~ . In case f.f"(a 0) < 

-(n-2)2/4(n-1) we denote the maximum value of q0 by Z0 

and the smallest local minimum by o 0. 

Theorem 2.1. For the cases (i)f and (~)f , the number 

of solutions to Dir(~) covering the origin (r=0) of Nf 

is 

in case f.f"( a 0) < -(n-2)2/4(n-1): one for ~ 6 [0,~ 0) 

two for ~ = o0, an odd number in (o0,a0) , countably 

infinite for ~ = a 0 , an even number for ~ s (a0,~0) , 

one for ~ = Z0, zero for ~ > ~0 ' 

in case 0 > f'f"(a 0) > -(n-2)2/4(n-1) : one for ~ e 

[0,a0) , zero for ~ ~ a 0. 

Proof It is enough to check the proof of [5] lemma(2.13) 

and [5] Theorem I.. In fact we can constract the 

solutions of Dir(~) from q0(t) as follows. Take T e 

with q0(T) = ~ and let ~(P) = q0 ( T + in p). Then 
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u ( p , w )  = ( @ ( p ) , c o )  

is a solution of Dir(~). Since ~ is continuous, it 

follows from the general regularity theory of [4] that u is of 

class C 2+e. Moreover we can show that if u is a 

solution of Dir(~) covering the origin , then for its 

rescaled radius function r (~(t),r must be one 

of the trajectories on the invariant curve Y0 q.e.d. 

For case (iii)f, 

theorem. 

from Lemma 2.4 , we have the following 

Theorem 2.2. In case (iii)f , for every ~e ~ we have 

a C2+e-solution of Dir(~). Moreover there exist 

uncountably many rotationally symmetric harmonic 

maps from ~n t__oo Nf with locally finite energy. 

Proof For this case by Lemma 2.4 we see that 

lim q0(t) = ~ . 
t++= 

Therefore we can take T ~ R with q0(T) = ~ for any 

R, and u defined by 

(2.28) u(p,~) = (q0(T + inp),e) 

solves Dir(~). About regularity we can proceed as in 

Theorem 2.1 Thus the first part of Theorem 2.2 has 

been showm. 

Now we are going to prove the latter part of this 

theorem. Let ~(t) be a solution of (2.5). Then by (2.5) 

and (2.7) we get 

(n-2)t 
(V(t)e )' 

= -(n-2)((~'(t)) 2 + (n-1)f2(~(t))e (n-2)t 
I 
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and, writing the energy on BR(0 ) as ER(U), 

in R 
-~~ I e(n-2)t 

ER(U) - 2(n-2) (V(t) )'dt. 

Moreover if 

(2.29) lim V(t)e (n-2)t = 0 
t+--~ 

then 

(2.30) ~n [(n-1)f2(%(inR)) - (%'(inR)2)] ER(U) = 2(n-2) 

< oo. 

Now for any T& R let r = q0(t + T). Then, since 

lim q0(t) = 0 (2.29) is satisfied. Therefore we obtain 
t+-~ 
ER(U T) < ~ for 

UT(p,w) : (q0(t + T),~), 

for every T~ ~ and Rs . Thus we obtain a rotation- + 
ally symmetric harmonic map u T : R n § Nf with locally 

finite energy for every T s Moreover it is clear that 

u T ~ u T, if T ~ T', and therefore #{uT} = #~ . q.e.d. 

3. Stability properties of the equator maps 

For the cases (i)f and (~)f , the function ~(t) 

a 0 is a solution of (2.5) and therefore the map u~ 

defined by 

(3.1) u,(D,~) = (a0,~) 

is a singular weakly harmonic map. When f(t) = sin t, 

Nf is a sphere, a0= ~ and ~ is the equator map. From now 

on we call u~ the "equator map" also for any cases. 
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In this section we investigate the stability properties 

of the "equator map" ue for the cases (i)f and (~)f . 

(See [5] and [I] for the cases that the target manifold N 

is a sphere or an ellipsoid respectively.) 

Lemma 3.1. 

(3.2) 

For v = (~,v)e 6u~~ ~ w__e get 

62u, E(v) = I {IDq]2n + 7n-I f.f,,(a 0) 2}d x + 

BI 

+ I f2(a0){iDVl2n 2- _~.iVJn2n-1 2 }dx, 

BI 

where P = Ixln. 

Proof Writing mt = (m + tv)/l~ + tv In 

(a 0 + tq,mt), we get 

and u t = 

d E(ut ) = I {tlDnln + qf'f'(a0 + tq)ID~t j2 d--{ n 2+ 
B I 

2 d 
+ f (a 0 + t~)(D(~-~t),D~t)n2~dx, 

= Z iD v i for 0,~ : B + A n where (D@,DV)n2 iSe,l~nD 8 
From this we obtain 

2 
d E(ut)]t_ 0 = 

(3.3) dt2 

I{IDnl 2 = + ((f,(a0))2 2 + f-f"(a0))n21D~l 
n n 2+ 

B 
f2 2 f2 (D(~IvI~ ,DW)n2 + (a0) jD~Jn 2- (a 0) ) }dx . 

Since l~]n = I, we have 

(D(~lvl 2 n),D~)n2 

(3,4) = ]~ I Dc~ 2 +J=l~ (~176176 "2(~J'Dc~V)n 

n n 
= ]DoJl  2+ __Z 1 Dc~l~ln'(V,D~)n 
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2 
2FD~In2- = IVln 

Using (3.4) and remarking that f'(a 0) = 0, we obtain 

I 2 .f,, 2 2 
62u, E(v) = { {D~]n + f (a 0)ID~In2 }dx + 

(3.5) B I 

+ f2(a0) I { DVj2 - I D ~ j 2 ~ l v l 2 } d x  
n 2 n z n " 

B I 

On the other hand, 

i 
D 

and therefore 

6c~iJXln 2 - x x 
= 

IXrn 3 

ID~]~2_ n-1 
p2 

Thus, from (3.5) and the above equality we get (3.2).q.e.d. 

Lemma 3.1. corresponds lemma I in [I]. Proceeding 

as in [I], we arrive at 

equator map u~ E ~n(BI,N f) i__ss strictly Thorem 3.1. The 

stable if 0 > f.f"( a 0) > -(n-2)2/4(n-1). If f.f"(a 0) 

< -(n-2)2/4(n-1), u~ is unstable. 

Proof Since it is enough to check the proof of [I] 

theorem I , we will only give the outline of the proof. 

From [I] lemma 3 and 4 , we get 

(3.6) I { IDol2  n-1 ].,,)1 2 n 2 p2 n }dx > 0. 
B I 

From [I ] lemma 2, 

(3.7) ~gq I 2dx f q2p-2dx < 4(n-2)-2 fl~ 

B I B I 
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and therefore 

n-1 .f,, 2 13s) f {IDnl  + - j  f (a 0 ) }dx ~ 0 

B I 

for f.f"(a 0) > -(n-2)2/4(n-1). 

Combining (3.2), (3.6) and (3.8), we see that if 

f.f" (a0) > (n-2)2/4(n-1) , then 

62 E(v) ~ 0 , 
u, 

and as mentioned in [I], equality holds iff v E 0. 

In case f'f"(a 0) < -(n-2)2/4(n-1), we choose s >0 

small enough to ensure 

1 {(n_2)2 + 4(n-I )f.f"(a 0) } + s < 0 h :=~ 

and po E (0,1) 

Then we define 

n0(x) =I 
such that 

n-2 
2 

P 

//-h in PO is a multiple of 

sin(/---h in p ) P0 --< p --< I, 

P < PO ' 

so that ~ satisfies 
0 

Aq0 - (n-1)f.f"(a0)~0- s 
p2 ~0 

for PO _-< p_-<l. 

Consequently,for v 0 = (~0,~) 

62 E(v) = - u ~  { ~-21v 012dx < 0 n  

po_-<lx _-<I 

q.e.d. 
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