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ROTATIONALLY SYMMETRIC HARMONIC MAPS
FROM A BALL INTO A WARPED PRODUCT MANIFOLD

Atsushi TACHIKAWA

This paper deals with the existence problem for
rotationally symmetric harmonic maps from an Euclidean
unit ball B<cR® or R® into a warped product manifold
Nf = [O,ro)xfsn“1 .

1.Introduction
n-1

Let S = {fe R™: 6]n= 1} (n 2 3), where 1,
denotes the Euclidean norm of Rn . We always use the
n-dimensional representation 6 = (61,...,6n) with |8]
=1 for 8 e ™', For T, € R;’{+w} let f be a "

function of class C1([O,r0)gm+) with £(0) = 0 , £'(0) = 1
and N a product manifold [0,r;) x sn-1  with
projection 71 and T2 to [O,rO) and sn-1 respec-

tively. We consider a manifold N = N furnished with

f
the Riemannian structure such that

2 2 2 2
{(1.1) Hx]& = le(x)l1 + £ (w1(P))-|vf(x)ln

for every X e TPN . A product manifold of this type is

called as a warped product manifold (see [2]).

For N we use the "polar" coordinate P = (r,9)
where r = n1(P) and 0 = ﬂz(P) . We call the point P
with 71(P) = 0 the origin of N-

We can introduce the no;mal cogrdinate system P = u =

(u1,...,un) by putting u' = r+«8°. The relation between

the original "polar" coordinate (r,8) and this normal
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coordinate can be represented by
(r,0) = (Ju| ,u/lu] ).

Using this normal coordinate we can identify Nf with

Br < Rn, where we denote
0
n
B_ = {x e R : |x]|
"

<r} for re€R ,
n = +

for r = +» .,

Therefore the Sobolev spaces H1’2(BR,Nf) and HO’Z(BR,Nf)

(R < +») can be defined as in [4]. Furtheremore we can

. 1,2,.n . N
define Hloc(R ’ Nf). We denocte for R € R, {4}
n n 1,2 ]
P =F (ByiNg) = [ H " (Bg,Ng) if R eR,

1,2, n . B
HlOC(R ,Nf) if R = +o .

For ue ?nKBR,Nf) and a bounded open domain Q C BR'

we define the energy of u on § by

(1.2)  Ew@ =3[ 3 |Ipgulf ax
: ! 2 a=1 o f
Q
-3 (outI? v 20y Ipu®12, yax.
2 n n
Q
2 n
where u’ = 7 eu , w? - w%ou ' |Dur|n = 0LE‘]]'c)l.lr/'c):’cot|2
and |Due|2 = by |auel/3xu|2. h
n2 1 , 1<

We are going to study the critical point of E . The
term "critical”™ is defined as follows. Denote the space
of vector fields along u eb’n(BR,Nf) by

n 1,2 n._, 2 _ .
§,9 (Bp) = [ {veH (B_/R ya(m u,V)n—O} if ReR_,

2 .
{ve Hléi(Rn,Rn):(n u,vh1=0} if R=+4ow.
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where (',')n is the Euclidean scalar product on Rn.
Then every Vv € 6u§Pn(BR) is a tangential vector field
along u. Set

n

n 1,2 n
- r
§,F 0 = 0, (By) N Hy'“(B,R).

n
For Vv € GuéFO(BR) we put

2 9 2 6
Uy =(nlou + t|v|n ; (mu +tv )/ |m%u + tv ln)'

denoting ve = v/|v|n , and define the first and second

variation of E Dby

- _d
(1.3) GuE(V) ol E(ut,v , spt v)|t=0
and
2
2 d
. =—-= E t
(1.4) GUE(V) dt2 (ut,V y SP V)ItzO r

where spt v 1s the support of v.

u is a "critical" point of E iff
8§, E =0 £ n
LE(V) or Vv €& 6u§°O(BR)
and u 1is stable iff
§2B(v) 2 0 for veE 6§ PU(B) .
u = u- 0 R

A critical point wue EPn is called a weakly harmonic map.
Moreover if a weakly harmonic map is of class C2 we call

it a harmonic map.

We consider the following
Problem 1 (Dirichlet problem) Given a boundary value 1§ :
3B, - N of class C2, find a harmonic map u: B1 > Nf

1 f
satisfying the boundary condition u|aB = V.

1
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Problem 2 In case of ry = *o, find a harmonic map u
n
from R onto Nf.

In this paper we treat only the case that u is
"rotationally symmetric".

We call a map u : B_ + N rotationally symmetric

R
iff
1 2
m eu(x) = nip) and 7% u(x) = w ,
where p = |x|n ;W o= x/|x|n and n 1is some function
R - R, .
+ +

About harmonic maps from B1 into Sn, some results
on existence and the number of rotationally symmetric
solutions for the Dirichlet problem have been proved by
Jager and Kaul ([5]. It is also shown in [5] that
the equator map

u, @ B, - s, X v (lx]n,x/|x]n),

provides an absolute minimum of the energy functional if
n > 7 with respect to fixed boundary data, but is
unstable if 3 < n < 6.

In case that the target manifold is an ellipsoid

N = {u = (u,z) € RO ]u|i+ zz/a2=1} ,

Baldes [1] has shown that the equator map is strictly
stable iff a2 > 4(n—1)/(n—2)2 ; if not the equator map

is unstable.
In this paper we would like to show, how these

results change for our case N = Nf . Moreover we will

get an existence result for Problem 2 .
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2. Rotationally symmetric harmonic maps
Let ue ?n(BP,Nf) be a rotationally symmetric map and

write
(2.1) ul{x) = (n(p),w) ,
where 0 = len and w = x/|x]n. Then the energy of u

<
on Bsc BR becomes

1 2 2 2
E(u,Bg) = 3 i Clon(e) |5+ £5(n(x)) [Doto) |5 1ax
S

1 n 9P 12 .2 Bwi 2. -
== | {35 In"(p) —|%+£2(m) 3 | “}ax
2 é a=1| ax® 1§a,ién|8xa] '

S

and using the equalities

3Ip - BIX|n= xa
axY ax® %]
and
awi _ 8(Xi/|X]n) 5ai|xlﬁ—xixa
- I
ox% ax™ Ix[3
we get
g 2
Wn - -
(2.2)  E(w,B) == |{(n'(p)%s E;% £ (n(en o™ ae
0

where w, denotes the volume of the n-dimensional unit
ball. ’

The first variation becomes

duE(v)

2
= [ {Dn,Dv)_+ £-£' (m)v|Dw]%,e £2(n) (Dg,Dw) _,)dx,
n n n
spt v
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for v e 5u¥’g where y = |v|n P = v/|v|n and
£.£'(n) = £(n) x£'(n).

Using the fact that Aw = 0 for x # 0, we can see
that the Buler equation reduces to the ordinary differ-
ential equation

(n-1)E+£' (n(p))

" (1’1—1) 1

(2.3) n"(p) + N ni{p) - 52 =0
Setting

t
(2.4) $(t) = nle”) , ¢:(-= ,InR) > [0,ry )
we transform (2.3) into an autonomous equation
(2.5) o"(t) + (n=-2)¢'(t) - (n-1)E+F'(d(t)) = O,
The enefgy is expressed in terms of ¢ by

Ins
(2.6)  B(u,By) ==2[t(e' (N2 + (n-1)£2(6()))e PP Eqt.

Set
. 2 2

(2.7) V{t) = (' ()" -(n-1)E7(d(L)).

Then we get
] 1] 2
{2.8) vi(t) = -2(n-2)(¢" (L))

for every solution of equation (2.5); therefore V 1is a

Lyapunov function for that differential equation.

(2.5) is essentially the damped pendulum equation. Put

alt) = ¢(t), plt) = g'(t)-
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Then (2.5) goes over into the plane system
g'(t) p(t)
(2.9) =

p'(t) ~{n-2)p({t) + (n-1)f.£'(g(t)) .

From now on we assume always that

(2.10)  £e c®%((0,ry), R,) , £(0) = 0, £'(0) >0
and
(2.11) fef'(r) is at most of linear growth as

r > +o,

Under the condition (2.11) the right hand side of (2.9)
is at most of linear growth; therefore the solution ¢

of (2.5) is extendable to a solution on R .

From (2.8) and well known results for Lyapunov

functions, a- and w-limit sets (see [{6]), we obtain

Lemma 2.1. Let A = {ae€ R,: f-f'(a) = 0}. For every
solution ¢ of (2.5), (¢(t),d'(t)) tends to infinity or
converges to one of the critical points (a,0) with a € 3a,

as t » o,
We consider the following four cases separately for f.
(i) There exists a number b0 € (O,ro) with f(bo) = 0
and f(t) > 0 on (O,bo). Moreover there exists
a unique a, € (O,bo) such that f'(ao) = 0,
(i) £ >0 on (0,ry) and there exists exactly one

ag € (O,ro) with f'(ao) = 0, and f'(t) < 0 for
t € (ao,ro),
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(i), £ >0 and £'> 0 on (0,+=),
CW)f the remaining cases.

In this paper we treat the cases (i)f, (J'i)f and (ﬁi)f.
Therefore there will be at most three critical points
(0,0), (ag,0) and (bg,0).

The behavior of the system (2.9) in the neighborhood
of the critical points (0,0) and (ap,0) is determined by

the linearized system

Q
[an)
-

Q

(2.12) =
p' (n-1) (£'(0))? ~(n-2)

o]

for (0.0) and

Q
o
Q

(2.13) =
p' (n—1)f-f"(a0) -(n-2) p

for (aO,O). The eigenvalues of the matrix of the systen
(2.12) are

(2.14) 4, = - 22 2/ 2y 4 am-nE 02,

and those of (2.13) are

(2.15) Ay = - n;2 + %—/Qn~2)2 + 4(n—1)f'f"(a0) .

Since we are assuming that f£'(0) # 0 (see (2.10)), A, >
0 and A_ < 0 for every n z 2 . Therefore (0.0) 1is
always a saddle point. But (aO,O) changes its character

with n and f'f"(ao) . In case of
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(n-2)°

E-f%ag) <= —mIry -

(aO,O) is a focus. 1In case of

(n-2)°

0 >f£.£%ag) > - Ry v

(a.,0) is an improper node.

0’

Remark: It is easy to see that f.f"(a,) = 0 for our
cases (i) and (il); , because f' ecl, £'(t) > 0 for
t € [O,ao) and f'(ao) = 0.

By the well-known results about plane autonomous

systems (see [3] Ch.VII), we obtain

Lemma 2.2. There exists exactly one invariant curve Y

0
of system (2.9) in the (g,p)-plane on which every trajectory

{(g(t),p(t)) satisfies
(2.16) lim (g(t),p(t)) = (0,0) ,
ta-w
and, for some k € R , we have
(2.17) g(t) >0 and p(t) >0 or all te(0,k) ,

Moreover the argument of Yy, is arctan A, .

Using the properties of a Lyapunov function, we can study
the behavior of the solution (g(t),p(t)) of (2.9) on
the invariant curve YO.
Lemma 2.3. Let f satisfy (i)f or (ﬁJf .  Then the
solution (q(t),p(t)) of (2.9) on vy, satisfies
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ts+oo 0

Proof For the case (i)f , the assertion can be shown
as in [5].
For the case (ﬁJf , by Lemma 2.1 , there are only

three possiblities:

(a) lim (q(t)rp(t)) = (OIO) r
tr+ow
b 14 ’ = 1 ’
(b) piim {a{t),p(t)) (a0 0)
(c) (g({t),p(t)) tends to infinity as t > += .

First, suppose that (a) holds. Then lim v(t) = 0 .
tar+oo

But we get from (2.16) tiig v(t) = 0 and from (2.8)
V'(t)s 0. Therefore V(t) and V'(t) must be identically
zero. This means (g{(t),p(t)) = (0,0) and contradicts our
choice of (g(t),p(t)).

Now we are going to show that the case (c¢) also can not
happen.

Suppose that (qg(t),p(t)) tends to infinity. We derive
a contradiction as follows.
Step 1. We show that l%ﬂ+2up ]q(t)l = o,

As mentioned above,tifg V(t) = 0 and V'(t) < 0, and

therefore V(t) £ 0 for all t€ R, i.e.,
2 2
(2.19) pe(t) = (n-1)f%(g(t)).

This means that if g(t) remains finite then also p(t)
remains finite. Thus we see that (g(t),p(t))

can not tend to infinity without l%m sup |g(t)]| = w.
>+ o0

Step 2. We show that p(t) < 0 for some t € R.
Suppose that p(t) z 0 for all t € R. Then by the
assertion of Step 1 and the fact that gq'(t) = p(t),
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we can take some tO € R with q(to) = ag - Integrating

the equation

p'(t) = —(n-2)p(t) + (n-1)f°£'(g(t))
from t0 to t > tO’ we get
(2.20) p(t) - plty)
t
= -(n-2)(a(t) - q(ty)) + (n-1) J Fef'(q(s))ds .
s=t

0
Since we are supposing that p(t) > 0 for all t e R,

g(t) 1is monotone nondecreasing. On the other hand for
the case (ﬁjf , f£'(gq) £ 0 for all q z ag- Therefore

I\
o+

f+f'(g(s)) 20 for all s 2
and we get

(2.21) p(t) = plty) + (n-2)alty) - (n-2)q(t).

Since p(to) and q(to) are finite and 1lim g(t) = +o ,
we see from (2.21) that p(t) < 0 for sggém t > to. This
is a contradiction. Thus the assertion of Step 2 is
provad.

Step 3. Using the assertions of Step 1 and Step 2 , we

show that the case (c) can not occur.

Because of the assertion of Step 2 , we can take t1em
with p(t1) = 0 and p(t) <0 for t € (t1,t1+6) for
some & >0. Let Yq be the curve {(g(t),p(t)): -= < t
< t1}, Yy = {(q,0): q(ty) < g<alty) + € } for some ¢ >
0, and Yq {(q(t1)+€,p): p £ 0 1}. Then after t = ty

(g(t),p(t)) can not cross the the curve Y1L) Yz\) Y3~

In fact, since the vector
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X(q,p) =
-(n-2)p + (n-1)E.£'(q)

is directed downward on Y, and leftward on Y3 (g(t),
p(t)) can not cross YZU Y3 after t1. Moreover, by the
unigueness of the solution, (g(t),p(t)) can not cross Yq-
On the other hand, by the assertion of Step 1., 1lim sup
|q(t)| = +o . Therefore the curve (g(t),p(t)) mug£>$?oss
the half line {(0,p): p = 0}. This means that q(t)

must be zero at some t = t, > t, . Taking this t_ >t_,

2 1 2 1
we see that

(2.22) V(t,) =0

by (2.19) and (2.7).‘ On the other hand tiig v(t) =0
(by(2.16)) and V'(t) s 0 (by(2.8)). Therefore (2.22)
implies V(t) =z 0 for t € (—w,tz] and contradicts our
choice of (g(t),p(t)). Thus the case (c) can not happen.
g.e.d.

Lemma 2.4. For the case (ﬁi)f, the solution (g(t),p(t))
of (2.9) on YO satisfies

(2.23) p(t) 2 0O for all t € R,
and
(2.24) lim sup 4(t) = +o

tr+o

Proof Since (2.19) holds for this case, we obtain
(2.25) lim sup Jg{(t)]| = .
tr+o

Furthermore, proceeding as in Step 3. of the proof of

Lemma 2.3., we can see that p(t) can not become negative.
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This proves (2.23) and that g(t) is monotone non-

decreasing. Therefore, by (2.25), we get (2.24). qg.e.d.

Since the system (2.9) is autonomous, the trajectories

on YO are determined up to a translation in the

parameter t. Moreover for every trajectory (g(t),p(t))

on YO ’
-At
(2.26) lim e * P(t) = ¢
tr-w
exists and ¢ uniquely determines (qg(t),p(t)) (see

[3] Ch.VIII. 3. ). We define (qo(t),po(t)) by choosing
c = 1.

For the cases (i)f and (ﬁjf', using the stability
theory, we will study (qo(t),po(t)) for t + +o in
more detail as in [5] lemma (2.18).

Lemma 2.5. Suppose that f satisfies (i)f or (ﬁ)f.

Then, writing the curve (qo(t),po(t)) in the form

(2.27) qplt) + ipy(t) = so(t)elg(t),

we obtain

t
0 < s (t) < ce¥ for all t e R

with a constant C = C(n,H,f) for every u >Re A, .

Moreover,

(i) in case f'f"(ao) < —(n—2)2/4(n—1) the curve

(qo(t),po(t)) is a spiral with center (aO,O) satisfying

e &) _ T e e
trto 2 0

(i) for 0 > f+f"(a,) > - (n-2)%/4(n-1)

m + arctan A, < &(t) < 7
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lim &(t) = 7 + arctan Ay
tr 40 .

Proof The assertions can be derived as [5] lemma (2.18)

by a slight modification of the proof. g.e.d.

These lemmas enable us to study the existence question

for the following Dirichlet problem.

Dir(g). Find a roationally symmetric harmonic map u

By > Nf satisfying the boundary condition

u] Yoo x »(z,x) e N

9B, ¢ f

In the cases (i)f and (ii)f,Lemma 2.5 shows that
o for fef"(aj)<-(n-2)2/4(n-1)

whereas for 0 > f-f"(ao) > —(n-2) /4(n-1) it is monotone

qo(t) oscillates about a

and tends to a, as t >+ +o , In case f-f"(ao) <
_(n-2)2/4(n-1) we denote the maximum value of 9, by ZO
and the smallest local minimum by 00.

Theorem 2.1. For the cases (i)f and (ﬁJf , the number

of solutions to Dir(f)} covering the origin (r=0) of N

f
is

in case f+f"(a,) < -(n-2)%/4(n-1): one for ge [0,0,),
two for ¢ = Oy an odd number in (oo,ao) , countably
infinite for ¢ = a, , an even number for g e (aO,ZO),

one for ¢ = 3 zero for ¢ > %

0’ 0’

in case 0 > f-f"(ao) > —(n—2)2/4(n—1) : one for e
[0,a2y5), zero for ¢ z ag.
Proof It is enough to check the proof of [5] lemma(2.13)
and [5] Theorem 1.. 1In fact we can constract the
solutions of Dir(z) from dg{t) as follows. Take T € R
with qO(T) = ¢ and let d(p) = qo('r+ 1n p). Then
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U-(D'(U) = (d)(p):w)

is a solution of Dir(g). Since ¢ 1is continuous, it

follows from the general regularity theory of [4] that u is of
+Q

class 02 . Moreover we can show that if u 1is a

solution of Dir(%) covering the origin , then for its

rescaled radius function ¢, (¢{t),o¢'(t)) must be one

of the trajectories on the invariant curve Yo - g.e.d.
For case (iﬁ)f, from Lemma 2.4 , we have the following

theoremn.

Theorem 2.2. In case (iJ'i)f , for every r¢eR we have
Cz+a—solution of Dir(g). Moreover there exist

uncountably many rotationally symmetric harmonic

maps from Rn to Ng with locally finite energy.

Proof For this case by Lemma 2.4 we see that

lim g (t)
to+ o

1
8

Therefore we can take T € R with qO(T) = ¢ for any g
R, and u defined by

(2.28) u(p,w = (qO(T+lnp),w)

solves Dir(g). About regularity we can proceed as in
Theorem 2.1 . Thus the first part of Theorem 2.2 has
been shown.

Now we are going to prove the latter part of this
theorem. Let ¢(t) Dbe a solution of (2.5). Then by (2.5)
and (2.7) we get

(v(t)e (P72t

(n-2)t

14

= —(n-2)((¢'(£))2 + (n-1)E2(o(t))e
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and, writing the energy on BR(O) as ER(u),

InR
—w

Eglu) = 5_(—1113_2) f (vit)e P 2ty gy,
Moreover if
(2.29) lim v(t)e P20t _ g
t > -
then
® 2 ' 2
(2.30) Eplu) = 5759y [(r-ME7(6(1nR)) - (6" (InR)7))

Now for any teR let ¢(t) = qo(t + 7). Then, since

tiig qO(t) = 0, (2.29) is satisfied. Therefore we obtain
ER(uT) < « for
u (p,w) = (gt + 1),0),

for every 1€ R and R€IR+. Thus we obtain a rotation-
ally symmetric harmonic map u, : R™ > Ng with locally
finite energy for every <+t e€R. DMoreover it is clear that

u, Z u_ if 1 4 t', and therefore #lurl = #R . g.e.d.

3. Stability properties of the equator maps

For the cases (i)f and (J‘JL)]c , the function ¢(t) =

a is a solution of (2.5) and therefore the map u,

0
defined by

(3.1) ug(e,w) = (ay,w)

is a singular weakly harmonic map. When f(t) = sin t,
Ng is a sphere, a,= g— and u, is the equator map. From now
on we call u, the "equator map" also for any cases.
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In this section we investigate the stability properties
of the "equator map" wu, for the cases (i)f and (J'i)f .
(See [5] and [11 for the cases that the target manifold N

is a sphere or an ellipsoid respectively.)

Lemma 3.1. For v = (N,V) e 5u3°8 we get
N
2 _ 2 _ n-1 " 2
6u*E(V) = J {IDﬂ]n + p2 fof (ao)n }ax +
(3.2) B1
2 2 n-1 2
+ j £%(ag) L Dv] 7 )- 2 lvlnz}dx,
Bq
where p = |X|n'
Proof Writing W, = {0+ tv)/|w+ty] and u, =
— n

(ao + tn,wt), we get

d _ . 2
5t E(u,) = j {t|pn], + nf £'(a, + tn)|Dthn2+
Byq
£ d, g
+ (ao + tn)(D(aEwt)ert)nz} Xy
h (D6,DV) = . poepv £ 8,v : B » R"
where ’ n2 = 1sqrieno o or PRV .

From this we obtain

2
d
—— E(u )] =
2 € lt=0
(3.3) dt
= Jtlon|2 v (£ ag)? + g4 (ag)n? [Dul?
B

2 2 2 2
+ f (ao)!Dv]ﬁz— £ (ao)(D(w[v[n),Dw)nz }ax .
Since |w| = 1, we have
n

(D(w]v]%),Dw)

2 2 1 _
(3,4) ]\)Inle]n2+a£1(w,Daw)H 2(v,D V)

H

2 2 n 2
lvln ]Dw]nz +a£1 Do lw| #(v,Dgv),
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2 2
= vV Dw -
vl 2pu) 2,
Using (3.4) and remarking that f'(ao) = 0, we obtain

§% E(v) = J {IDn]2 + £2£"(a )]Dw[2 nz}dx +
u, n 0 n?
(3.5) B,
+ f2(a0) J {|Dv]2 —|Dw|22|v|2}dx .
B nl n n
1

On the other hand,

. Gailxlz I
Duwl = n 3 X X '
Ix[3
and therefore
2 n-1
Dw = .

Thus, from (3.5) and the above equality we get (3.2).qg.e.d.

Lemma 3.1. corresponds lemma 1 in [1]. Proceeding

as in [1], we arrive at

Thorem 3.1. The equator map us€ .y’n(B1,Nf) is strictly
stable if 0 > f-f"(ao) > —(n—2)2/4(n—1). If f-f"(ao)

< -(n-2)%/4(n-1), u, is unstable.

Proof Since it is enough to check the proof of [1]
theorem 1 , we will only give the outline of the proof.

From [1] lemma 3 and 4 , we get

v

2

(3.6) [ (lov|?,- n=llv| jax z o.
n p2

B4

From [1] lemma 2,

A

_ -2
(3.7) | n%07%ax s 4(n-2) Jl%%]zdx
B1 B1
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and therefore

(3.8) I {]Dn|i + Eé% f-f"(ao)nz}dx z 0

B,

for f.f"(ao) > —(n—2)2/4(n—1).
Combining (3.2), (3.6) and (3.8), we see that if
fof“(ao) > —(n—2)2/4(n—1) r then

62 E(v) 2 0
Ux

and as mentioned in [1], equality holds iff v = 0.
In case f'f"(ao) < —(n—2)2/4(n—1), we choose ¢>0
small enough to ensure

h :=<%{(n—2)2 + A(n-1)E+E"(a )} + & <0

and P € (0,1) such that V-h 1n 5 is a multiple of .
Then we define
n-2
> ) J—
nglx) ={0 sin(v-h 1n p) Py S0 = 1,
0 o =Py v
so that no satisfies
- -1)f.£" = = £ < psi.
Ano (n-1) (ao)nO 2 o or p, ps1
Consequently, for v0 = (no,w)
§2 E(v) = - J £ |v |2dx <0 .
1.1* 2 On
pO§|x|§1 P
g.e.d.
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