ROTATIONALLY SYMMETRIC HARMONIC MAPS FROM A BALL INTO A WARPED PRODUCT MANIFOLD

Atsushi TACHIKAWA

This paper deals with the existence problem for rotationally symmetric harmonic maps from an Euclidean unit ball $B\subseteq \mathbb{R}^n$ or \mathbb{R}^n into a warped product manifold $N_f = 10, r_0$) \times_f

1.Introduction

Let Sⁿ = { $\theta \in \mathbb{R}$: $|\theta|_n = 1$ } (n ≥ 3), where | \cdot |
denotes the Euclidean norm of \mathbb{R} . We always use the n-dimensional representation θ = (θ ,..., θ) with $\|\theta\|$ =1 for θ \in S $^{\prime\prime}$. For $r_{\alpha}\in\mathbb{R}$ \vee $\{+\infty\}$ let f be a function of class $C'([0,r_0),\mathbb{R}_+)$ with $f(0) = 0$, $f'(0) = 1$

and N a product manifold $[0,r_0) \times S^{n-1}$ with projection π^1 and π^2 to $[0,r_0)$ and S^{n-1} respectively. We consider a manifold $N = N_c$ furnished with the Riemannian structure such that

(1.1)
$$
||x||_{f}^{2} = |\pi_{*}^{1}(x)|_{1}^{2} + f^{2}(\pi^{1}(P)) \cdot |\pi_{*}^{2}(x)|_{n}^{2}
$$

for every $X \in T_{p}N$. A product manifold of this type is called as a warped product manifold (see [2]).

For N_f we use the "polar" coordinate P = (r,θ) where $r = \pi^1(P)$ and $\theta = \pi^2(P)$. We call the point P with $\pi^1(P) = 0$ the origin of N_f.

We can introduce the normal coordinate system P = u = $(u^{1},...,u^{n})$ by putting $u^{1} = r \cdot \theta^{1}$. The relation between the original "polar" coordinate (r,θ) and this normal

coordinate can be represented by

$$
(\mathbf{r},\theta) = (|u|_n, u/|u|_n).
$$

Using this normal coordinate we can identify N_f with $\mathbb{B}_{\text{r}}^{\text{c}}$ R , where we denote

$$
B_r = \begin{cases} \{x \in \mathbb{R}^n : |x|_n \leq r \} & \text{for } r \in \mathbb{R}_+, \\ \mathbb{R}^n & \text{for } r = +\infty. \end{cases}
$$

Therefore the Sobolev spaces $H^{1,2}(B_R,N_f)$ and $H_0^{1,2}(B_R,N_f)$ $(R < +\infty)$ can be defined as in [4]. Furtheremore we can define $H_{loc}^{1}, {}^{2}(\mathbb{R}^{n}, N_{f}).$ We denote for $R \in \mathbb{R}_{+}^{U}$ {+ ∞ }

$$
\varphi^{n} = \varphi^{n}(B_{R}, N_{f}) = \begin{cases} H^{1/2}(B_{R}, N_{f}) & \text{if } R \in \mathbb{R}_{+} , \\ H^{1/2}_{\text{loc}}(\mathbb{R}^{n}, N_{f}) & \text{if } R = +\infty . \end{cases}
$$

For $u \in \mathcal{P}^{\Pi}(B_{R,R}^N)$ and a bounded open domain $\Omega \subset B_{R}$, we define the energy of u on Ω by

(1.2)
$$
E(u,\Omega) = \frac{1}{2} \int_{\Omega} \frac{r}{\alpha=1} ||D_{\alpha}u||_{f}^{2} dx
$$

$$
= \frac{1}{2} \int_{\Omega} (|Du^{T}|_{n}^{2} + f^{2}(u^{T}) |Du^{\theta}|_{n}^{2}) dx.
$$
where
$$
u^{T} = \pi^{1} \circ u, \quad u^{\theta} = \pi^{2} \circ u, \quad |Du^{T}|_{n}^{2} = \frac{r}{\alpha=1} | \partial u^{T} / \partial x^{\alpha} |^{2}
$$
and
$$
|Du^{\theta}|_{n^{2}}^{2} = \sum_{1 \leq \alpha, i \leq n} | \partial u^{\theta}^{i} / \partial x^{\alpha} |^{2}.
$$

We are going to study the critical point of E . The term "critical" is defined as follows. Denote the space of vector fields along $u \in \mathcal{S}^{n}(B_{p},N_{f})$ by

$$
\delta_{\mathbf{u}} \mathcal{S}^{\mathbf{n}}(\mathbf{B}_{R}) = \begin{cases} \{ \mathbf{v} \in \mathbf{H}^{1/2}(\mathbf{B}_{R}, \mathbf{R}^{\mathbf{n}}) : (\pi^{2} \mathbf{u}, \mathbf{v})_{n} = 0 \} & \text{if } \mathbf{R} \in \mathbb{R}_{+}, \\ \{ \mathbf{v} \in \mathbf{H}^{1/2}_{\text{loc}}(\mathbf{R}^{\mathbf{n}}, \mathbf{R}^{\mathbf{n}}) : (\pi^{2} \mathbf{u}, \mathbf{v})_{n} = 0 \} & \text{if } \mathbf{R} = +\infty. \end{cases}
$$

where $(\,\boldsymbol{ \cdot}\, ,\boldsymbol{ \cdot}\,)$ is the Euclidean scalar product on $\, \mathbb{R}^{n}.$ Then every $\overline{v} \in \delta_{n} \mathcal{S}^{n}(B_{n})$ is a tangential vector field along u. Set

$$
\delta_{\mathbf{u}} \mathcal{S}_{0}^{n} = \delta_{\mathbf{u}} \mathcal{S}^{n} (\mathbf{B}_{R}) \cap \mathbf{H}_{0}^{1/2} (\mathbf{B}_{R} , \mathbf{R}^{n}).
$$

For $v \in \delta_n \mathcal{S}_0^n(B_p)$ we put

$$
u_{t,v} = (\pi^{1} \circ u + t |v|_{n}, (\pi^{2} \circ u + tv^{\theta}) / |\pi^{2} \circ u + tv^{\theta}|_{n}),
$$

denoting $v^{\triangledown} = v/|v|$, and define the first and second variation of E by

$$
(1.3) \t\t\t \delta_{\mathbf{u}} \mathbf{E}(\mathbf{v}) = \frac{\mathbf{d}}{\mathbf{d}\mathbf{t}} \mathbf{E}(\mathbf{u}_{\mathbf{t},\mathbf{v}}, \mathbf{s}\mathbf{p}\mathbf{t} \mathbf{v})|_{\mathbf{t}=\mathbf{0}}
$$

and

(1.4)
$$
\delta_{u}^{2} E(v) = \frac{d^{2}}{dt^{2}} E(u_{t,v} \text{, spt } v)|_{t=0}.
$$

where spt v is the support of v. u is a "critical" point of E iff

$$
\delta_{\mathbf{u}} \mathbf{E}(\mathbf{v}) = 0 \qquad \qquad \text{for} \quad \mathbf{v} \in \delta_{\mathbf{u}} \mathcal{G}_{0}^{n}(\mathbf{B}_{R})
$$

and u is stable iff

$$
\delta_u^2 E(v) \geq 0 \qquad \text{for } v \in \delta_u \mathcal{S}_0^n(B_R) .
$$

A critical point $u \in \mathcal{S}^n$ is called a weakly harmonic map. Moreover if a weakly harmonic map is of class c^2 we call it a harmonic map.

We consider the following Problem 1 (Dirichlet problem) - Given a boundary value \Downarrow : ∂B_1 \rightarrow N_f ot class C $\,$, find a harmonic map u: B₁ \rightarrow N_f satisfying the boundary condition $u|_{\partial B_1} = \Psi$.

<u>Problem 2</u> In case of r_0 = + ∞ , find a harmonic map u from \mathbb{R}^- onto N_τ .

In this paper we treat only the case that u is "rotationally symmetric".

We call a map $u : B_R \rightarrow N$ rotationally symmetric iff

 $\pi^1 \circ u(x) = \eta(\rho)$ and $\pi^2 \circ u(x) = \omega$,

where $p = |x|_n$, $\omega = x/|x|_n$ and η is some function R_{\perp} + R_{\perp} .

About harmonic maps from B_1 into S^n , some results on existence and the number of rotationally symmetric solutions for the Dirichlet problem have been proved by Jäger and Kaul [5]. It is also shown in [5] that the equator map

$$
\mathbf{u}_{*} : \mathbf{B}_{1} \to \mathbf{S}^{n}, \quad \mathbf{x} \mapsto (\left| \mathbf{x} \right|_{\mathbf{n}} \mathbf{x}/\left| \mathbf{x} \right|_{\mathbf{n}}),
$$

provides an absolute minimum of the energy functional if $n \geq 7$ with respect to fixed boundary data, but is unstable if $3 \le n \le 6$.

In case that the target manifold is an ellipsoid

$$
N = \{u = (u, z) \in \mathbb{R}^{n+1}: |u|_n^2 + z^2/a^2 = 1\}
$$

Baldes **[I]** has shown that the equator map is strictly stable iff $a^2 \geq 4(n-1)/(n-2)^2$; if not the equator map is unstable.

In this paper we would like to show, how these results change for our case $N = N_f$. Moreover we will get an existence result for Problem 2.

2. Rotationally symmetric harmonic maps

Let $u \in \mathcal{P}^n(B_R, N_f)$ be a rotationally symmetric map and write

$$
(2.1) \qquad u(x) = (\eta(\rho), \omega) ,
$$

where $\rho = |x|_p$ and $\omega = x/|x|_p$. Then the energy of u on $B_S \subset B_R$ becomes

$$
E(u, B_S) = \frac{1}{2} \int_{B_S} \{ |Dn(\rho)|_n^2 + f^2(n(x)) |D\omega(\rho)|_n^2 \} dx
$$

$$
= \frac{1}{2} \int_{B_S} \{ \sum_{\alpha=1}^n |n'(\rho)| \frac{\partial \rho}{\partial x^{\alpha}} |^2 + f^2(n) \Big|_{1 \leq \alpha, i \leq n} \Big| \frac{\partial \omega^i}{\partial x^{\alpha}} |^2 \} dx,
$$

and using the equalities

$$
\frac{\partial \rho}{\partial x^{\alpha}} = \frac{\partial |x|_{n}}{\partial x^{\alpha}} = \frac{x^{\alpha}}{|x|_{n}}
$$

and

$$
\frac{\partial \omega^{i}}{\partial x^{\alpha}} = \frac{\partial (x^{i}/|x|_{n})}{\partial x^{\alpha}} \frac{\delta^{\alpha i} |x|_{n}^{2} - x^{i} x^{\alpha}}{|x|_{n}^{3}}
$$

we get

$$
(2.2) \tE(u, B_{s}) = \frac{\omega_{n}}{2} \int_{0}^{s} \{(\eta^{*}(\rho))^{2} + \frac{n-1}{\rho^{2}} f^{2}(\eta(\rho))\} \rho^{n-1} d\rho ,
$$

where ball. denotes the volume of the n-dimensional unit n

The first variation becomes

$$
\delta_{\mathbf{u}}\mathbf{E}(\mathbf{v})
$$

$$
= \int_{\text{split}} \{ (D\eta, D\nu)_{n} + f \cdot f'(\eta) \nu |D\omega|_{n^2}^2 + f^2(\eta) (D\zeta, D\omega)_{n^2} \} \, \mathrm{d}x,
$$

for $v \in \delta_n \mathcal{S}_0^n$ where $v = |v|_n$, $\zeta = v/|v|_n$ and f.f,(n) = f(~) x f'(~).

Using the fact that $\Delta\omega = 0$ for $x \neq 0$, we can see that the Euler equation reduces to the ordinary differential equation

$$
(2.3) \t \eta''(\rho) + \frac{(n-1)}{\rho} \eta'(\rho) - \frac{(n-1) f \cdot f'(\eta(\rho))}{\rho^2} = 0.
$$

Setting

(2.4)
$$
\phi(t) = \eta(e^t)
$$
, $\phi: (-\infty, \ln R) \to [0, r_0)$,

we transform (2.3) into an autonomous equation

$$
(2.5) \t \phi''(t) + (n-2)\phi'(t) - (n-1)f \cdot f'(\phi(t)) = 0.
$$

The energy is expressed in terms of ϕ by

$$
(2.6) \qquad E(u, B_{S}) = \frac{\omega \ln S}{2} \int_{-\infty}^{\infty} \{(\phi'(t))^2 + (n-1)f^2(\phi(t))\} e^{(n-2)t} dt.
$$

Set

$$
(2.7) \tV(t) = (\phi'(t))^2 - (n-1)f^2(\phi(t)).
$$

Then we get

$$
(2.8) \tV'(t) = -2(n-2)(\phi'(t))^2
$$

for every solution of equation (2.5); therefore V is a Lyapunov function for that differential equation.

(2.5) is essentially the damped pendulum equation. Put

$$
q(t) = \phi(t), \qquad p(t) = q'(t).
$$

Then (2.5) goes over into the plane system

$$
(2.9) \begin{pmatrix} q'(t) \\ p'(t) \end{pmatrix} = \begin{pmatrix} p(t) \\ - (n-2)p(t) + (n-1)f \cdot f'(q(t)) \end{pmatrix}
$$

From now on we assume always that

$$
(2.10) \quad f \in C^{2+\alpha}((0,r_0), \mathbb{R}_+) \quad , \quad f(0) = 0, \quad f'(0) > 0
$$

and

 (2.11) f.f'(r) is at most of linear growth as $r \rightarrow +\infty$.

Under the condition (2.11) the right hand side of (2.9) is at most of linear growth; therefore the solution ϕ of (2.5) is extendable to a solution on R .

From (2.8) and well known results for Lyapunov functions, α - and ω -limit sets (see [6]), we obtain

Lemma 2.1. Let $A = \{a \in \mathbb{R}_+ : f \cdot f'(a) = 0\}$. For every solution ϕ of (2.5), ($\phi(t), \phi'(t)$) tends to infinity or converges to one of the critical points (a,0) with $a \in A$, as $t + \pm \infty$.

We consider the following four cases separately for f.

- (i)_f There exists a number $b_0 \in (0,r_0)$ with $f(b_0) = 0$ and $f(t) > 0$ on $(0,b_0)$. Moreover there exists a unique $a_0 \in (0, b_0)$ such that $f'(a_0) = 0$,
- (iii) _f f > 0 on (0, r_0) and there exists exactly one $a_0 \in (0,r_0)$ with $f'(a_0) = 0$, and $f'(t) < 0$ for $t \in (a_0, r_0)$,

(iii)_f f > 0 and f' > 0 on $(0, +\infty)$,

 $(i\pi)$ _f the remaining cases.

In this paper we treat the cases $(i)_{f}$, $(ii)_{f}$ and $(iii)_{f}$. Therefore there will be at most three critical points $(0,0)$, $(a_0,0)$ and $(b_0,0)$.

The behavior of the system (2.9) in the neighborhood of the critical points (0,0) and (a_0 ,0) is determined by the linearized system

$$
(2.12) \quad \begin{pmatrix} q' \\ p' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ (n-1)(f'(0))^2 & -(n-2) \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix}
$$

for (0.0) and

$$
(2.13) \quad \begin{pmatrix} q' \\ p' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ (n-1) f \cdot f''(a_0) & -(n-2) \end{pmatrix} \begin{pmatrix} q \\ p \end{pmatrix}
$$

for $(a_0,0)$. The eigenvalues of the matrix of the system (2.12) are

$$
(2.14) \qquad \Lambda_{\pm} = -\frac{n-2}{2} \pm \frac{1}{2} \sqrt{(n-2)^2 + 4(n-1)(f'(0))^2} ,
$$

and those of (2.13) are

$$
(2.15) \qquad \lambda_{\pm} = -\frac{n-2}{2} \pm \frac{1}{2} \sqrt{(n-2)^2 + 4(n-1) \mathbf{f} \cdot \mathbf{f}''(a_0)} \; .
$$

Since we are assuming that $f'(0) \neq 0$ (see (2.10)), Λ_{+} > 0 and Λ < 0 for every n \geq 2. Therefore (0.0) is always a saddle point. But $(a_0, 0)$ changes its character with n and $f^{\bullet}f''(a_{0})$. In case of

$$
f \cdot f''(a_0) \le -\frac{(n-2)^2}{4(n-1)},
$$

 $(a_0,0)$ is a focus. In case of

$$
0 > f \cdot f''(a_0) > - \frac{(n-2)^2}{4(n-1)},
$$

 $(a_0,0)$ is an improper node.

Remark: It is easy to see that $f \cdot f''(a_0) \le 0$ for our cases (i)_f and (ii)_f, because $f' \in \tilde{C}^1$, $f'(t) > 0$ for $t \in [0, a_0)$ and $f'(a_0) = 0$.

By the well-known results about plane autonomous systems (see $[3]$ Ch.VIII), we obtain

Lemma 2.2. There exists exactly one invariant curve Y_0 of system (2.9) in the (q,p)-plane on which every trajectory $(q(t),p(t))$ satisfies

(2.16) $\lim_{t \to \infty} (q(t), p(t)) = (0, 0)$,

and, for some $k \in R$, we have

(2.17) $q(t) > 0$ and $p(t) > 0$ for all $t \in (0, k)$,

Moreover the argument of γ_0 is arctan Λ_+ .

Using the properties of a Lyapunov function, we can study the behavior of the solution $(q(t),p(t))$ of (2.9) on the invariant curve γ_0 .

Lemma 2.3. Let f satisfy (i) _f or (ii) _f. Then the solution $(q(t),p(t))$ of (2.9) on γ_0 satisfies

(2.18)
$$
\lim_{t \to +\infty} (q(t), p(t)) = (a_0, 0).
$$

Proof For the case (i) _f, the assertion can be shown as in [5].

For the case $(\text{ii})_{f}$, by <u>Lemma 2.1</u>, there are only three possiblities:

(a)
$$
\lim_{t \to +\infty} (q(t), p(t)) = (0, 0)
$$
,
\n(b) $\lim_{t \to +\infty} (q(t), p(t)) = (a_0, 0)$,
\n(c) $(q(t), p(t))$ tends to infinity as $t \to +\infty$.

First, suppose that (a) holds. Then $\lim V(t) = 0$. $t\rightarrow +\infty$ But we get from (2.16) $\lim_{t\to -\infty} V(t) = 0$ and from (2.8) $V'(t) \leq 0$. Therefore $V(t)$ and $V'(t)$ must be identically zero. This means $(q(t),p(t)) \equiv (0,0)$ and contradicts our choice of $(q(t),p(t))$.

Now we are going to show that the case (c) also can not happen.

Suppose that $(q(t),p(t))$ tends to infinity. We derive a contradiction as follows.

Step 1. We show that $\lim_{t\to+\infty} \sup |q(t)| = \infty$.

As mentioned above, $\lim_{t\to-\infty} V(t) = 0$ and $V'(t) \leq 0$, and therefore $V(t) \leq 0$ for all $t \in R$, i.e.,

$$
(2.19) \t p2(t) \leq (n-1) f2(q(t)).
$$

This means that if $q(t)$ remains finite then also $p(t)$ remains finite. Thus we see that $(q(t),p(t))$ can not tend to infinity without lim sup $|q(t)| = \infty$. $t \rightarrow +\infty$ Step 2. We show that $p(t) < 0$ for some $t \in \mathbb{R}$.

Suppose that $p(t) \ge 0$ for all $t \in \mathbb{R}$. Then by the assertion of $Step 1$ and the fact that $q'(t) = p(t)$,

we can take some $t_0 \, \epsilon \,$ R with $\, {\rm q} (t_0) \,$ = $\, {\rm a}_0 \,$. Integrating the equation

$$
p'(t) = -(n-2)p(t) + (n-1) f \cdot f'(q(t))
$$

from t_0 to $t > t_0$, we get

$$
(2.20) \t p(t) - p(t_0)
$$

$$
= -(n-2)(q(t) - q(t0)) + (n-1)\int_{s=t_0}^{t} f \cdot f'(q(s))ds.
$$

Since we are supposing that $p(t) > 0$ for all t ϵ R, q(t) is monotone nondecreasing. On the other hand for the case $(\mathbf{ii})_f$, $f'(q) \le 0$ for all $q \ge a_0$. Therefore

$$
f \cdot f' (q(s)) \leq 0 \quad \text{for all} \quad s \geq t_0,
$$

and we get

$$
(2.21) \t p(t) \leq p(t_0) + (n-2)q(t_0) - (n-2)q(t).
$$

Since $p(t_0)$ and $q(t_0)$ are finite and $\lim_{n \to \infty} q(t) = +\infty$, we see from (2.21) that $p(t) < 0$ for some $t > t_0$. This is a contradiction. Thus the assertion of Step 2 is proved.

Step 3. Using the assertions of Step 1 and Step 2, we show that the case (c) can not occur.

Because of the assertion of Step 2 , we can take $t_1 \in \mathbb{R}$ with $p(t_1) = 0$ and $p(t) < 0$ for $t \in (t_1, t_1+\delta)$ for some $\delta > 0$. Let γ_1 be the curve $\{(q(t), p(t)) : -\infty < t$ $\leq t_1$, $\gamma_2 = \{(q,0): q(t_1) < q < q(t_1) + \epsilon \}$ for some $\epsilon >$ 0, and $\gamma_3 = \{ (q(t_1)+\varepsilon,p) : p \le 0 \}$. Then after $t = t_1$, $(q(t),p(t))$ can not cross the the curve $\gamma_1 \cup \gamma_2 \cup \gamma_3$. In fact, since the vector

$$
X(q,p) = \begin{pmatrix} p \\ p \\ -(n-2)p + (n-1)f \cdot f'(q) \end{pmatrix}
$$

is directed downward on γ_2 and leftward on γ_3 , (q(t), p(t)) can not cross $\gamma_2 \cup \gamma_3$ after t₁. Moreover, by the uniqueness of the solution, $(q(t),p(t))$ can not cross γ_1 . On the other hand, by the assertion of $Step 1.$, lim sup $|q(t)|$ = + ∞ . Therefore the curve $(q(t),p(t))$ must cross the half line $\{(0,p): p \le 0\}$. This means that $q(t)$ must be zero at some $t = t_2 > t_1$. Taking this $t_2 > t_1$, we see that

$$
(2.22) \tV(t2) = 0
$$

by (2.19) and (2.7). On the other hand $\lim_{t\to-\infty} V(t) = 0$ $(by(2.16))$ and $V'(t) \le 0$ (by(2.8)). Therefore (2.22) implies $V(t) \equiv 0$ for t ϵ (- ∞ , t₂] and contradicts our choice of $(q(t),p(t))$. Thus the case (c) can not happen. q.e.d.

Lemma 2.4. For the case (iii)_f, the solution (q(t), p(t)) of (2.9) on γ_0 satisfies

 (2.23) $p(t) \ge 0$ <u>for all</u> $t \in R$,

and

(2.24) lim sup q(t) = +∞
t→+∞

Proof Since (2.19) holds for this case, we obtain

(2.25) $\lim_{t \to \infty} \sup |q(t)| = \infty$.

Furthermore, proceeding as in Step 3. of the proof of Lemma $2.3.$, we can see that $p(t)$ can not become negative.

This proves (2.23) and that $q(t)$ is monotone nondecreasing. Therefore, by (2.25), we get (2.24). q.e.d.

on Y_{α} are determined up to a translation in the parameter t. Moreover for every trajectory (q(t),p(t) on Y_0 ' Since the system (2.9) is autonomous, the trajectories

$$
(2.26) \qquad \lim_{t \to -\infty} e^{-\Lambda_{+}t} P(t) = c
$$

exists and c uniquely determines $(q(t),p(t))$ (see [3] Ch.VIII. 3.). We define $(q_0(t),p_0(t))$ by choosing $c = 1.$

For the cases (i) _f and (ii) _f, using the stability theory, we will study $(q_0(t),p_0(t))$ for $t \rightarrow +\infty$ in more detail as in [5] lemma (2.18).

Lemma 2.5. Suppose that f satisfies (i)_f or (ii)_f. Then, writing the curve $(q_0(t),p_0(t))$ in the form

$$
(2.27) \tq_0(t) + i p_0(t) = s_0(t) e^{i \xi(t)},
$$

we obtain

$$
0 \lt s_0(t) \lt c e^{\mu t} \quad \text{for all } t \in \mathbb{R}
$$

with a constant $C = C(n,\mu,f)$ for every $\mu > Re \lambda_{+}$. Moreover, (i) in case $f^*f''(a_0) < -(n-2)^2/4(n-1)$ the curve $(q_0(t), p_0(t))$ is a spiral with center $(a_0, 0)$ satisfying $\lim_{n \to \infty}$ = $-\frac{1}{2}$ / $-$ (n-2)² -4(n-1)f.f"(a) t→+∞ ^t 2 (ii) <u>for</u> $0 > f \cdot f''(a_0) > - (n-2)^2/4(n-1)$

$$
\pi + \arctan \lambda_+ < \xi(t) < \pi
$$

and

$$
\lim_{t\to+\infty} \xi(t) = \pi + \arctan \lambda_{+}
$$

Proof The assertions can be derived as [5] lemma (2.18) by a slight modification of the proof. $q.e.d.$

These lemmas enable us to study the existence question for the following Dirichlet problem.

 $Dir(5)$. Find a roationally symmetric harmonic map u : B_1 \rightarrow N_f satisfying the boundary condition

$$
u\big|_{\partial B_1} = \psi_{\zeta} : x \to (\zeta, x) \in N_f
$$

In the cases (i) _f and (ii) _f, Lemma 2.5 shows that $q_0(t)$ oscillates about a for f.f"(a₀)<-(n-2)²/4(n-1) whereas for $0 > f \cdot f''(a_0) > -(n-2)^2/4(n-1)$ it is monotone and tends to a_0 as $t + +\infty$. In case $f \cdot f''(a_0)$ < $-(n-2)^2/4(n-1)$ we denote the maximum value of q_0 by Σ_0 and the smallest local minimum by σ_{0} .

Theorem 2.1. For the cases (i)_f and (ii)_f, the number of solutions to Dir(ζ) covering the origin (r=0) of N_f is

in case $f \cdot f''(a_0) < -(n-2)^2/4(n-1)$: one for $\zeta \in [0,\sigma_0)$, two for $\zeta = \sigma_0$, an odd number in (σ_0, a_0) , countably infinite for $\zeta = a_0$, an even number for $\zeta \in (a_0,\Sigma_0)$, one for $\zeta = \Sigma_0$, zero for $\zeta > \Sigma_0$,

<u>in case</u> $0 > f \cdot f''(a_0) > -(n-2)^2/4(n-1)$: <u>one for</u> $\zeta \in$ $[0,a_0)$, zero for $\zeta \geq a_0$. Proof It is enough to check the proof of [5] lemma(2.13) and [5] Theorem I.. In fact we can constract the solutions of $Dir(\zeta)$ from $q_0(t)$ as follows. Take $\tau \in \mathbb{R}$ with $q_0(\tau) = \zeta$ and let $\phi(\rho) = q_0 (\tau + \ln \rho)$. Then

$$
u(\rho, \omega) = (\phi(\rho), \omega)
$$

is a solution of $Dir(\zeta)$. Since ϕ is continuous, it follows from the general regularity theory of [4] that u is of class $c^{2+\alpha}$. Moreover we can show that if u is a solution of $Dir(\zeta)$ covering the origin, then for its rescaled radius function ϕ , ($\phi(t)$, $\phi'(t)$) must be one of the trajectories on the invariant curve γ_0 . q.e.d.

For case (iii) , from <u>Lemma 2.4</u> , we have the following theorem.

Theorem 2.2. In case (iii)_f, for every $\zeta \in \mathbb{R}$ we have $a \quad c^{2+\alpha}$ -solution of Dir(ζ). Moreover there exist uncountably many rotationally symmetric harmonic maps from R^n to N_f with locally finite energy. Proof For this case by Lemma 2.4 we see that

 $t \rightarrow +\infty$ 0
 0

Therefore we can take $\tau \in R$ with $q_0(\tau) = \zeta$ for any ζ R, and u defined by

$$
(2.28) \qquad \qquad u(\rho, \omega) = (q_0(\tau + \ln \rho), \omega)
$$

solves $Dir(\zeta)$. About regularity we can proceed as in Theorem 2.1 . Thus the first part of Theorem 2.2 has been showm.

Now we are going to prove the latter part of this theorem. Let $\phi(t)$ be a solution of (2.5). Then by (2.5) and (2.7) we get

$$
(v(t)e^{(n-2)t})'
$$

= -(n-2)(($\phi'(t)$)² + (n-1)f²($\phi(t)$)e^{(n-2)t}

I

and, writing the energy on $B_R(0)$ as $E_D(u)$,

$$
E_R(u) = \frac{-\omega_n}{2(n-2)} \int_{-\infty}^{\ln R} (v(t)e^{(n-2)t})^t dt
$$
.

Moreover if

(2.29)
$$
\lim_{t \to -\infty} V(t) e^{(n-2)t} = 0
$$

then

$$
\begin{array}{lll} \text{(2.30)} & \mathbb{E}_{R}(u) = \frac{\omega_{n}}{2(n-2)} \left[\left(n-1 \right) f^{2} \left(\phi(\ln R) \right) - \left(\phi^{\dagger} \left(\ln R \right)^{2} \right) \right] \\ & & < \infty. \end{array}
$$

Now for any $\tau \in \mathbb{R}$ let $\phi(t) = q_0(t + \tau)$. Then, since $\tau_{\rm{t}}$) (t) = 0, (2.29) is satisfied. Therefore we obtain $E_p(u_\tau)$ < ∞ for

$$
u_{\tau}(\rho, \omega) = (q_0(t + \tau), \omega),
$$

for every $\tau \in \mathbb{R}$ and $R \in \mathbb{R}_+$. Thus we obtain a rotationally symmetric harmonic map $u_{\tau} : \mathbb{R}^n \to \mathbb{N}_{\mathrm{f}}$ with locally finite energy for every $\tau \in \mathbb{R}$. Moreover it is clear that $u_{\tau} \neq u_{\tau}$, if $\tau \neq \tau'$, and therefore $\# \{u_{\tau}\} = \# \mathbb{R}$. q.e.d.

3. Stability properties of the equator maps

For the cases (i) _f and (ii) _f, the function $\phi(t)$ = a_0 is a solution of (2.5) and therefore the map u_* defined by

$$
(3.1) \t u_*(\rho,\omega) = (a_0,\omega)
$$

is a singular weakly harmonic map. When $f(t) = \sin t$, $N_{\bm{\epsilon}}$ is a sphere, $a_{\alpha} = \frac{1}{\alpha}$ and $u_{\bm{\epsilon}}$ is the equator map. From now on we call \mathbf{u}_{\bullet} the "equator map" also for any cases.

In this section we investigate the stability properties of the "equator map" u_* for the cases (i)_f and (ii)_f. (See [5] and [I] for the cases that the target manifold N is a sphere or an ellipsoid respectively.)

Lemma 3.1. For
$$
v = (n, v) \in \delta_{u_{*}}^{\mathcal{G}} \mathcal{G}_{u_{*}}^{n}
$$
 we get
\n
$$
\delta_{u_{*}}^{2} E(v) = \int_{B_{1}} \{ |Dn| \}^{2}_{n} + \frac{n-1}{\rho^{2}} f \cdot f''(a_{0}) n^{2} dx +
$$
\n(3.2)

$$
\frac{\text{where}}{\text{Proof}} \quad \rho = |x|_n.
$$
\n
$$
\frac{\text{Proof}}{\text{Writing } \omega_t} = (\omega + t\nu)/|\omega + t\nu|_n \quad \text{and} \quad u_t = (a_0 + t\nu, \omega_t), \text{ we get}
$$

$$
\frac{d}{dt} E(u_t) = \int_{B_1} \{t |D\eta|_n + n f \cdot f'(a_0 + t\eta) |D\omega_t|_{n^2}^2 +
$$

$$
+ f^2(a_0 + t\eta) (D(\frac{d}{dt}\omega_t), D\omega_t)_{n^2} dx,
$$

where $(D\theta, D\vee)_{n^2} = \frac{1}{160} \sum_{i\leq n} D^n \theta^T D^n_i \vee^T$ for $\theta, \vee : B \to \mathbb{R}^n$ From this we obtain

$$
\frac{d^{2}}{dt^{2}} E(u_{t})|_{t=0} =
$$
\n
$$
= \int { |Dn|}_{n}^{2} + ((f'(a_{0}))^{2} + f \cdot f''(a_{0}))_{n}^{2} |D\omega|_{n^{2}}^{2} +
$$
\n
$$
+ f^{2}(a_{0}) |D\omega|_{n^{2}}^{2} - f^{2}(a_{0}) (D(\omega|\nu|_{n}^{2}), D\omega)_{n^{2}}) dx .
$$

Since $|\omega|_n = 1$, we have

$$
(D(\omega|\nu|^2_n),D\omega)_{n^2}
$$

$$
(3,4) = |\nu|_n^2 |\mathbf{D}\omega|_n^2 + \sum_{\alpha=1}^n (\omega, \mathbf{D}_{\alpha}\omega)_n \cdot 2(\nu, \mathbf{D}_{\alpha}\nu)_n
$$

$$
= |\nu|_n^2 |\mathbf{D}\omega|_n^2 + \sum_{\alpha=1}^n |\mathbf{D}_{\alpha}|\omega|_n^2 \cdot (\nu, \mathbf{D}_{\alpha}\nu)_n
$$

$$
= |\nu|_n^2 |D\omega|_{n^2}^2.
$$

Using (3.4) and remarking that $f'(a_0) = 0$, we obtain

(3.5)
$$
\delta_{u_{*}}^{2} E(v) = \int_{B_{1}} \{ |Dn|_{n}^{2} + f \cdot f''(a_{0}) |D\omega|_{n^{2}}^{2} n^{2} \} dx + \int_{B_{1}}^{B_{1}} f^{2}(a_{0}) \int_{B_{1}} \{ |Dv|_{n^{2}}^{2} - |D\omega|_{n^{2}}^{2} |v|_{n}^{2} \} dx.
$$

On the other hand,

$$
D_{\alpha} \omega^{i} = \frac{\delta^{\alpha i} |x|_{n}^{2} - x^{\alpha} x^{i}}{|x|_{n}^{3}} ,
$$

and therefore

$$
|\mathbf{D}\omega|_{n^2}^2 = \frac{n-1}{\rho^2}
$$

Thus, from (3.5) and the above equality we get (3.2) . q.e.d.

Lemma 3.1. corresponds lemma 1 in [1]. Proceeding as in [I], we arrive at

Thorem 3.1. The equator map $u_* \in \mathcal{S}^{-1}(B_1,N_f)$ is strictly stable <u>if</u> $0 > f \cdot f''(a_0) > -(n-2)^2/4(n-1)$. If $f \cdot f''(a_0)$ $\sqrt{(n-2)^2}/4(n-1)$, u_* is unstable. Proof Since it is enough to check the proof of [1] theorem I , we will only give the outline of the proof.

From [1] lemma 3 and 4 , we get

$$
(3.6) \qquad \int_{B_1} {\{ |\text{Dv}| \}^2_{n^2} - \frac{n-1}{\rho^2} |v| \}^2_{n^3} dx \ge 0.
$$

From $[1]$ lemma 2 ,

(3.7)
$$
\int_{B_1} n^2 \rho^{-2} dx \le 4(n-2)^{-2} \int_{B_1} \left| \frac{\partial n}{\partial \rho} \right|^2 dx
$$

and therefore

$$
(3.8) \qquad \int_{B_1} {\{ |D\eta|_n^2 + \frac{n-1}{\rho^2} f \cdot f''(a_0)\eta^2 } dx \ge 0
$$

for $f \cdot f''(a_0) > -(n-2)^2/4(n-1)$.

Combining (3.2) , (3.6) and (3.8) , we see that if f.f" (a_{0}) > -(n-2)²/4(n-1), then

$$
\delta_{\mathbf{u}_{*}}^{2} \mathbf{E}(\mathbf{v}) \geq 0 ,
$$

and as mentioned in [1], equality holds iff $v \equiv 0$.

In case $f*f''(a_0) < -(n-2)^2/4(n-1)$, we choose $\varepsilon > 0$ small enough to ensure

$$
h := \frac{1}{4} \left\{ (n-2)^2 + 4(n-1) f \cdot f''(a_0) \right\} + \varepsilon < 0
$$

and ρ_0 E(0,1) such that γ -h ln ρ_0 is a multiple of Then we define

$$
\eta_0(x) = \begin{cases} \rho^{\frac{n-2}{2}} \sin(\sqrt{-h} \ln \rho) & \rho_0 \le \rho \le 1, \\ 0 & \rho \le \rho_0, \end{cases}
$$

so that $\bar{\eta}^{\,}_{0}$ satisfies

$$
\Delta \eta_0 - (n-1) f \cdot f''(a_0) \eta_0 = \frac{\varepsilon}{\rho^2} \eta_0 \quad \text{for} \quad \rho_0 \le \rho \le 1.
$$

Consequently, for $v_0 = (n_0, \omega)$

$$
\delta_{u_{*}}^{2} E(v) = - \int_{\rho_{0} \leq |x| \leq 1} \frac{\varepsilon}{\rho^{2}} |v_{0}|_{n}^{2} dx < 0.
$$

References

- [I] Baldes,A.: Stability and uniqueness properties of the equator map from a ball into an ellipsoid. Math. Z. 185, 505-516(1984)
- [2] Bishop, R.L., O'Neill, B.: Manifolds of negative curvature. Trans. Amer. Math. Soc. 145, 1-49(1969)
- [3] Hartman, P.: Ordinary differential equations. New York (1964)
- [4] Hildebrandt, S., Kaul, H., Widmann, K.O.: An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138, 1-16(1977)
- [5] Jager, W., Kaul, H.: Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems. J. Reine Angew. Math. 343, 146-161(1983)
- [6] LaSalle,J.P.: Stability theory for ordinary differenti differential equations. J. differential equations 4, 57-65(1968)

Atsushi Tachikawa

Department of Mathematics Faculty of Science and Technology Keio University Hiyishi 3-14-I, Kohoku-ku Yokohama 223, Japan

(Received April 20, 1985)