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There are two basic ways of measuring the complexity (or length) of proofs: 
(1) to count the number of proof lines, 
(2) to count the total size of the proof (i.e. to count each symbol). Trivially the 

size is an upper bound to the number of proof lines. It is much more difficult to 
bound the size using the number of proof lines. If we consider logic without 
function symbols a reasonable bound can be proved (see Proposition 3.4). If 
function symbols are allowed, then the situation is considerably more complicated. 
In such a case formulas in the proof may contain large terms and it is difficult to 
find some bounds to the size of these terms using only the information about the 
number of proof lines. There are still important open problems here which show 
that the role of terms in the first order logic is not quite well understood. 

Some papers about this subject are rather difficult to read, one reason being 
that they consider general classes of logical calculi. Therefore we decided to 
consider just one particular calculus, Gentzen's well-known calculus LK as 
presented in [T]. Our results generalize trivially to theories given by a finite set of 
axioms in LK, in particular to LKe, the calculus LK with equality. On the other 
hand, theories axiomatized by schemata, such as Peano arithmetic, require a 
different approach. 

As mentioned above, our presentation of the results uses the particular 
formulation of LK defined in [T], namely, we use also two different kinds of 
variables, free and bound, and we assume that terms contain only free variables 
while semiterms may contain both free and bound ones (cf. [T], p. 6 and p. 35). 
This distinction is not essential but is useful. The size of a formula or a semiterm 
will be the number of symbols in it. The size of a sequent is the sum of the sizes of 
formulas in the sequent. Semiterms and formulas in LK can be represented as 
labelled trees. The depth of a semiterm t denoted by dp(t) will be the length of the 
longest path in the tree corresponding to t. 

A proof in LK is a particular rooted tree labelled by sequents. The size of the 
proof is the sum of the sizes of the sequents in the proof. The number of proof lines 
of the proof is the number of vertices of the tree. The size of a semiterm or formula 
or sequent or proof X will be denoted by ISl. 
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The main question that we want to address here is the following. Suppose a 
sequent F ~ d  of size m has a proof with k proof  lines in LK.  How can we bound the 
minimal size of a proof of F ~ A  in L K  using k and m? We think that this is a good 
test question showing how well (or how poorly) we understand the structure of first 
order proofs. If the sequent has a cut-free proof  with k proof lines, then we have an 
upper bound which is exponential in k + m. In general, we have only primitive 
recursive bound in k + m, since we use the cut-elimination theorem. It is an open 
problem if there is an elementary recursive bound (i.e. a fixed times iterated 
exponential). 

The results are based on a reduction to the unification problem. This reduction 
is implicit in Parikh's paper [Pa] and was later developed by Farmer [F  1, F2]. In 
the case of cut-free proofs in L K  the reduction is very simple which allows us to 
obtain quite a good bound. The bound is based on an estimate to the depth of a 
most general unifier proved in Sect. 2. 

A similar reduction procedure for proofs with cuts produces only a so called 
second order unification problem (a general system of equations with free variables 
for unknown terms). This problem has been shown undecidable [G]. We shall use 
this fact to show that the problem whether a given sequent F ~ A  has a proof with a 
given proof skeleton (see Sect. 2 for the definition) is undecidable. A result of this 
type has been announced by Orevkov in [O 1] and sketched in [O 3]. This shows 
that in order to obtain a p r o o f o f F ~ A  of small size from a p r o o f o f F ~ A  with few 
proof lines we must in general change the structure, we cannot just replace the 
terms in the proof by shorter ones. Motivated by a well-known conjecture of 
Kreisel we prove these results for systems in which there is only one term 
parameter which has the form S"(0), n < o~, where S is a unary function symbol. 

A related problem has been studied by Farmer IF 1, F2]:  given k and a formula 
or a sequent, is it decidable whether it has a proof  with k proof lines? In particular 
he has shown that for cut-free proofs in L K  it is decidable. (This follows from the 
reduction to the unification.) For  general proofs in L K  it is still open. 

The most famous problem in this area is the so called Kreisel's conjecture 
mentioned already above: "Suppose that for some A(a) and k<o~, Peano 
arithmetic proves every A(S"(0)) by a proof with = k proof lines. Then it also 
proves VxA(x)". 

We could not resist to add at least some simple observations about this 
conjecture in Sect. 6. A full proof of this conjecture has been announced by M. 
Baaz. 

We assume that the reader is familiar with the system L K  as defined in [T]. 
Throughout  the paper "proof ' ,  "provable" etc. refers always to this system. 

1. Bounds to the Unification 

Let Term~ be the set of terms with variables from the set A and function symbols 
from the set L. A substitution is a mapping 

a : A ~ TermL A . 

Given a term t and substitution a, a(t) is the term obtained from t by substitution a 

i.e. tr(t) = t(a 1/a(a 1) . . . .  , am/a(a~)) 
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where t does not contain variables other than al, ... , am and we substitute for all 
occurrences of the corresponding variables. 

The unification problem is to find a substitution o- for a given system U of pairs 
of terms (tl, sl) . . . . .  (tk, Sk) such that, for all i = i . . . . .  k, a(ti) = a(si), a is called a unifier 
for (tl, S0 . . . .  ,(tk, Sk). The unification problem arose in connection with the 
resolution principle. Therefore it is not surprising that other problems in proof  
theory can be reduced to it. Such reductions were constructed in [F  1, F2].  In the 
next section we shall reduce the problem of finding a proof  of a sequent F ~ A  with 
a given skeleton S (defined in Sect. 3) to the unification problem. For  this purpose it 
is not sufficient to have any unifier, since a proof  poses some restrictions to the 
variables occurring in terms. An approach to this problem is based on the concept 
of a most general unifier. Another approach based on trees instead of terms was 
used in [K1] ,  Sect. 2. 

A most general unifier for a system U is a unifier % such that any unifier a for U 
can be decomposed into a =  a lao  for some substitution o- 1. 

The restrictions will be of the following type: 
(*) for a pair (a, c), a a variable, and c a constant, o-(a) must  not contain the 

constant c. 

Lemma 1.1. I f  there exists a unifier for U which satisfies a set of conditions of type 
(*), then any most general unifier for U satisfies the conditions too. 

Proof - trivial. []  

There is a well-known and simple algorithm for finding a most  general unifier, 
see [C-L] ,  p. 77. Using properties of this algorithm we derive bounds to the depth 
of a most  general unifier. We shall use these bounds to derive relations between the 
number  of proof  lines and the size of a proof. Par t  (i) of the next lemma is 
equivalent to a lemma of [K  1], Sect. 2. 

Lemma 1.2. Let U be a system of pairs of terms, let S be the set of terms s i and ti 
occurring in U, let v be the number of different variables occurring in U. Then each 
most general unifier a for U satisfies the following inequalities 

(i) maxdp(a(t))  < F, [t[; 
t~S  tES 

(ii) max dp(a(t)) < (v + 1). max dp(t). 
t~S  tES 

Proof. The unification algorithm produces sets of terms So, St , . . . ,  Sk such that  
(1) So=S, Sk={a(t)lt~S}, where a is a most general unifier; 
(2) Si+ 1 = {t(a/s) lt E Si}, where s is a subterm of some term in Si and s does not 

contain the variable a. Since each most  general unifier can be obtained from o- by 
permuting variables, it is sufficient to consider just a produced by the algorithm. 
For  each i = 0, ..., k, t ~ S~ we label the tree T(t) as follows. The labelled tree will be 
denoted by T(t). For  i=  0 and a vertex w of T(t), the label ofw will be the subterm of 
t corresponding to the vertex w. Thus for instance the leaves of T(t), t ~ So are 
labelled by variables and constants. For  t'E Si+ 1, t ' =  t(a/s) as in (2) above, the 
vertices of T(t') which correspond to T(t) will have the same labels as in T(t), the 
vertices which correspond to T(s) will have the same labels as in T(s), except for the 
vertices which correspond to the root of T(s) [since they have labels from T(t)]. 
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Claim 1. If u + w are on a path from the root to a leave in T(t), t �9 S~, 0 < i < k, then 
they have different labels. 

This is a corollary of a stronger Claim 2 which follows easily from the property 
(2) using induction over i. 

Claim 2. Suppose that a vertex u of T(t) and vertex w of T(s) have the same label, 
s, t �9 Si, 0 -  i___ k. Then u and w determine isomorphic labelled subtrees of T(t) and 
?(s). 

To prove the inequalities consider a maximal path p in some T(t), t �9 Sk. Since 
there are < ~ Itl labels and by Claim 1, the length ofp is less than or equal to Y" Itl, 

t~S  t~S  

which proves (i). By the construction of T(t), p can be decomposed into paths 
isomorphic to paths in the trees T(s), s �9 S, each path, except possibly for the last 
one, ending with a vertex labelled by a variable. For  different paths the variables 
must be different, thus we obtain (ii). []  

Remark.  The proof above gives in fact the following inequality max dp(o-(t)) 
t e S  

__< card {sis a subterm of some t �9 S}, which is stronger than (i) if some term occurs 
more than once as a subterm of some t �9 S. 

2. The Size of Terms in Cut-Free Proofs 

In general proofs with few proof  lines may contain large terms. In this section we 
shall show that in cut-free proofs one can replace large terms by terms whose size is 
bounded where the bound depends only on the number of proof  lines and the size 
o f  the sequent that we want to prove. 

Following Farmer IF 1, F 2] we define a proof  skeleton (or just a skeleton) as a 
rooted tree whose vertices are labelled by the inference rules of LK.  Further, it is 
marked on the tree which son of a given vertex is the left one and which is the right 
one. For  the exchange rule the label contains also the number of the pair to which 
it should be applied. The information which the skeleton does not contain are the 
terms and variables used in quantifier rules. Every proof determines uniquely its 
skeleton, but we do not require for a skeleton to be determined by some proof. A 
cut-free skeleton is a skeleton in which no vertex is labelled by the cut rule. 

Let a cut-free skeleton S and a sequent F ~ A  be given. We want to find a 
proof of F--,A whose skeleton is S. We shall consider only regular proofs (cf. IT]) 
and show that in this case the problem can be reduced to a unification problem 
with the restriction of the type (*) of the preceding section (observe that for any 
proof P there is a regular proof P' of the same end-sequent as P which has the same 
skeleton as P). We shall divide the reduction procedure into two parts. First we 
shall show that if there is any proof of F--.A with skeleton S, then its logical 
structure ( =  everything except for semiterms) is uniquely determined. Then we 
construct the unification problem. 

Let us call a preproof  any structure which has all the properties of a proof 
except for the initial sequents which are only required to be of the following form 

B(s 1 . . . .  , s e )~B( t  1 . . . .  , re), where S 1 . . . . .  SE, t l ,  . . . ,  t~, (**) 
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are semiterms 1. To construct a preproof from S and F--*A we proceed as fol- 
lows: 

(1) assign F ~ A  on the root of S, 
(2) if a sequent has been assigned to a vertex v of S and v is not a leave, assign 

sequents to its sons according to the rule assigned to v; in case of the structural and 
propositional rules these sequents are uniquely determined; in case of the 
quantifier rules choose always a new free variable and substitute it for the bounded 
variable. 

This procedure may not terminate with preproof sometimes. But clearly we 
have: 

Claim 2.I. If there is a proof of F--*A with skeleton S, the procedure above 
constructs a preproof Po such that each regular proof P of F ~ A  with skeleton S 
can be obtained from Po by substituting suitable terms for the free variables 
introduced at the vertices labelled by V: left and 3: right and by renaming the free 
variables. []  

The unification problem U is constructed from a preproof Po as follows: 
(1) We treat bounded variables, eigenvariables and free variables of F ~ A  as 

constants i.e. they cannot be substituted for; 
(2) (t, s) is in U iff t = ti, s = s~, i__< f,  for some initial sequent of Po of the form (**) 

above; 
(3) for every free variable a introduced at some V:left or 3: right vertex we 

require that any term a(a) substituted for a must not contain a bound variable, an 
eigenvariable of the proof  or a free variable of F--*A. 

Because of(l), the restrictions of(3) are of the type (*) (see Sect. 1). Let A be the 
set of free variables introduced at V: left and 3: right vertices. Let T be the set of all 
terms. Then using induction on the depth of Po one can prove: 

Claim 2.2. For  every o-: A--* T, g is a solution to the unification problem U with the 
restrictions iff ~ produces a regular proof from Po. []  

Now we can apply our bound to the depth of a most general unifier. 

Theorem 2.3. Suppose F ~ A has a cut-free proof P with skeleton S. Let T be the set 
of maximal semiterms of F ~ A, let f be the number of leaves of S and let q be the 
number of applications of the rules V: left and 3:right. Then there exists a proof P' of 
F--* A with the same skeleton S such that the depth of each semiterm of P' is bounded 
above by 

(i) f .  Y~ Lt[; 
t e T  

(ii) (q + 1). max dp(t). 
t ~ T  

Proof. The p r oc edu reabove reduces theex i s t en ceo fap ro o fo fF ~A  with skeleton 
S to a unification problem with certain restrictions. Since there is a proof  P of F--* A 
with skeleton S, the unification problem has a solution. The restrictions for the 
unifier are of the types considered in Lemma 1.1. Hence also a most general unifier 

1 The quantifiers of B may bound some variables inside of the semiterms 
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is a solution. As the semiterms of maximal depth in an L K  proof  are always in the 
initial sequents we can use our bounds for unification (Lemma 1.2). 

(i) In the reduction procedure ~ It] is a bound to the sum of the sizes of 
t e T  

maximal semiterms assigned to any vertex of S, in particular to leaves. Since there 
are f leaves, (i) in the theorem is an upper bound to the sum of sizes of the terms in 
the unification problem, hence, by Lemma 1.2 (i), also to the maximal depth of the 
unified terms. 

(ii) The number of variables in the unification problem is q. 
Again max dp(t) is an upper bound to the depth of any semiterm which 

t e T  

appears in the reduction procedure. Thus (ii) follows from Lemma 1.2 (ii). []  

Lemma 2.4. Suppose a proof P has k proof lines. Then 
(1) each sequent in P has at most k+  1 formulas; 

(2) P has at most - 1  formulas. 

Proof. The first part follows easily by induction. Let f (k)  be the maximal number 
of formulas in a proof with k proof lines. Then 

and by (1) 
f ( 1 ) = 2  

f ( k + l ) < _ f ( k ) + k + 2  

whence (2) follows. []  

Theorem 2.3 enables us to bound the size of a shortest cut-free proof of a 
sequent F ~ A  if we have a bound to the number of proof lines of some cut-free 
proof of F--*A. The bounds are probably very crude. 

Theorem 2.5. Let m be the size of a sequent F ~ A which has a cut-free proof P with k 
proof lines. Let c be the maximal arity of a function symbol in the sequent. Then there 
exists a proof P' of the sequent which has the same skeleton as P and its size can be 
bounded, for k, m sufficiently large, by 

(i) [P'l<k3m 2 if c< l ,  

(ii) IP'l<=c *m if c > 2 .  

Proof. Since in L K  each rule has at most two premises, the number of leaves of the 
skeleton of P is k + 1 

f < - -  
2 

By Theorem 2.3 (i) there is a proof P' of F ~ A  with the same skeleton which 
contains only semiterms whose depth is < m. ~. Thus the maximal size r of a 
semiterm in P' is bounded by 

_ k + l  . 
r < m . t ~ + l  ~ m . ~ -  +1 

if c =< 1 and by k + 1 
r < cme <= c m 2 
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otherwise. Using the subformula property of the cut-free proof P' we get that m. r 
is a bound to the maximal size of a formula in P'. Using the estimate to the number 
of formulas in P' (Lemma 2.4) and simple calculations we get (i) and (ii) of the 
theorem. []  

We do not know how good the bounds are in the theorem above, since we lack 
lower bound techniques. So far we cannot rule out that e.g. P' can be constructed 
so that IP'I = O(k. m). 

3. The Size of Proofs with Cuts 

In Sect. 5 we shall prove that the problem whether a given sequent has a proof  with 
a given skeleton is in general undecidable. Thus there is no recursive function 
f(k,  m) which bounds the size of the smallest proof  of a sequent F ~ A ,  ]F~A[__< m, 
with the skeleton S, [SI < k, i.e. there is no reasonable analogue of Theorem 2.5 for 
general proofs. However, a primitive recursive bound can be shown, if one does not 
require that the skeleton is preserved. This is done by cut-elimination. 

Define the logical depth of a formula A be the depth of A if A is considered 
as a term where 

(1) atomic formulas are considered to be constants, 
(2) ^ ,  v ,  3 are considered to be binary function symbols, and 7 ,  3x, Vx, for 

all bound variables, are considered to be unary function symbols. 

Lemma 3.1 (cf. rPa, F1, F2, KI]) .  I f  a sequent F ~ A ,  lEgAl =m has a proof P 
with k proof lines then F-~ A has a proof P' with the same skeleton and such that P' 
contains only formulas of logical depth m + O(k). 

Proof. Let P be given. We shall gradually replace formulas of P by propositional 
variables and at the same time construct a unification problem U. The variables of 
U will be the introduced propositional variables, the function symbols will be as in 
(2) above. For  each initial sequent we introduce a new variable corresponding to 
both antecedent and succeedes of the sequent. For  the weakening we add a new 
variable. For  other structural rules we do not add new variables, but we add an 
equation for the contraction and for the cut. For  logical rules we add a new 
variable for the principal formula of the rule in question and add an equation 

f (a ,b)=c or f (a )=c  

where c is the variable corresponding to the principal formula, a, b are variables 
corresponding to auxiliary formulas and f is ^ or v etc. Finally we add an 
equation a = A 

for each formula A of the sequent F ~ A  and the variable a corresponding to it and 
we treat the formulas of F ~ A  as constants in U. The p r o o f P  gives a solution to U. 
Thus we can apply Lemma 1.2 (i) and we obtain a proof P' where the logical depth 
of each formula is bounded by m + O(k). This is not a proof in LK, since LK does 
not use propositional variables, but, of course, we can replace each propositional 
variable by an atomic formula which does not contain variables occurring in 
P. []  
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Since the cut-elimination is proved using induction over the logical depth of 
formulas used in cuts we obtain the following corollary, cf. [K 1, O 2]. 

Corollary 3.2. I f  the sequent F ~ A, IF ~ AI =m has a proof with k proof lines then 
o proof lines. [] F ~ A  has a cut-free proof with 2m+O(k) 

Recall that 2~ is defined by 

2~ = y, 2r~ + 1 = 22~" 

Now our bound follows from Corollary 3.2 and Theorem 2.5 by a simple 
calculation. 

Theorem 3.3. Let m be the size of a sequent which has a proof with k proof lines. 
o Then the sequent has also a proof with size =20(k+m). [] 

It is an open problem whether the bound in Theorem 3.3 can be improved to a 
fixed time iterated exponential function (i.e. 2c m+k for some constant c). If such an 
improvement is possible, then it cannot be proved by cut-elimination as above, 
since the increase in the cut elimination cannot be bounded by such a function, cf. 
[St]. If the sequent does not contain function symbols at all, then an exponential 
bound follows directly from Lemma 3.1. 

Proposition 3.4. Let m be the size of a sequent F-~ A which does not contain function 
symbols and which has a proof with k proof lines. Then the sequent has also a proof 
with size 2 m+~ 

Proof. Let P' be the proof of F-~A given by Lemma 3.1. Then each formula of P' 
has size 2 m+~ (since it does not contain function symbols either). By 
Lemma 2.4 (ii) there are O(k 2) formulas in any proof with k proof  lines. Thus the 
size of P' is 

O(k2). 2re+O(k) = 2m+O(k). [] 

4. The Undecidability of the Second Order Unification Problem 

Let L be a set of function symbols, ax . . . . .  am variables. Let _T = (T, Sub x . . . . .  Subm) 
be the algebra of terms where T is the set of terms in L, al , . . .  , a m and for i = 1 . . . . .  m 

Sub/(& a) := (3(aJa) 

are substitutions as binary operations on T. A second order unification problem is a 
finite set of equations in the language Tw{Subl,  ..., Subm} plus free variables for 
elements of T. The free variables will be called the term variables. By introducing 
new term variables we can transform any such system into an equivalent one where 
all equations have form 

t~(ai/a ) = Q, 

where 6, a, ~ are terms or term variables. The name "second order unification" is 
used since this problem can be considered as a generalization of the first order 
unification. 
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The existence of undecidable second order unifications has been proved by 
Goldfarb [G],  (see also IF 1, F2]). However, he uses in his construction parameters 
which are terms built from binary function symbols. We shall show that one can 
use, essentially, the ordinary numerals as parameters. This might be interesting 
because of the connection with Kreisel's length of proofs conjecture. Also our 
proof is simple. 

Suppose a unary function symbol is chosen, say S. Then we call a numeral any 
term of the form S"(t), t a free variable or t = 0, n ~ o9. 

Theorem 4.1. Let  L contain a unary function symbol S, a constant 0 and a binary 
function symbol. Let  z o be a term variable. Then for  every recursively enumerable set 
X c= o9 there exists a second order unification problem f2 such that f2w {% = S"(0)} has 
a solution iff n ~ X .  

Proof. As in I-G] we shall use Matijasevi~'s theorem. It follows from this theorem 
that every r.e. set X can be defined by a formula 

3Yl ... Yk Dx(x,  Yl . . . . .  Yk), 

where D x is a conjunction of formulas of the form 

y i = u ,  U<O9 

yi=yj- '}-yt ,  

Yi = Y j" Yl 

y i = x ,  

i,j, l<  k. We shall simulate the variables x, Y l . . .  Yk by numerals (defined above). 
This can be done easily using the following three claims where o denotes a binary 
symbol in L. We leave the details to the reader. 

(1) The equation s(z)= z(a/s(a)), z term variable, has solutions T = S"(a), n ~ 09. 
(2) The equation z(a/0.) = Q plus the equations from (1) for term variables r, 0., Q 

have solutions: 

(3) The equations 

SP(a), Sq(a), Sm(a) for p + q = m. 

S(G1) = 0.1(a/S(a)) 

S(0.2) = 0.2(a/S(a)) 

S(0.3) = 0.3(b/S(b)) 

z(a/0.1, b/S(b), c/a o (b o c))= 0.2 ~ (0.3 ~ z) 

with variables a, b, c and term variables 0-1, 0.2, 0.3, z have solutions for 0.1, 0.2, 0.3 of 
the form 

SP(a), Sin(a), S~(b) for p. q = m. 

The proof is nontrivial only for claim (3). 
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a) Assume p . q =  m. Then SP(a), Sin(a), Sq(b) and the following term are a 
solution for the equations above 

spr 1)(a ) o (S q- l(b ) o (S p(~- 2)(a ) o (S ~- 2(b ) 

o (... (SP(a) o (S(b) o (ao (bo c)...))))))). 

b) Suppose SP(a), Sin(a), Sq(b), t are a solution. 
We shall proceed by induction on the depth of t, denoted dp(t). 
(i) dp( t )=0.  Then t is c, hence az is a and e 3 is b. Thus p.  q = m = 0 .  

(ii) dp( t )>0.  Then t is t 1 o t 2 where 

tx(a/S"(a ), b/S(b), c/a o (b o c))= Sin(a) 

i.e. tl = sm-p(a) and 

tz(a/SP(a), b/S(b), c/a o (b o c)) = Sq(b) o t. 

Hence dp(t2)>0,  so t2=t3 o t4 

t3(a/SP(a), b/S(b), c/a o (b o c)) = Sq(b), 

thus t3 = S q- l(b). Further  we have 

t,(a/SP(a), b/S(b), c/a o (b o c))= t 

= t a o (t3o t4) = S m-p(a) o (S q- l(b) ~ t4). 

By the induction hypothesis, since dp(t4)<dp(t) ,  

p . ( q - - 1 ) - - m - - p  

i .e .p ,  q=m.  We have done. []  

5. An Undecidable Proof Skeleton 

In this section we shall show that there is no recursive procedure by which one can 
determine if a given sequent is provable in L K  by a proof  with a given skeleton. 
(For the definition of skeleton see Sect. 2.) 

Theorem 5.1 (cf. Orevkov [O1, 03]) .  Let  L be a language containing a unary 
function symbol S, a constant 0 and a binary function symbol. Then for every 
recursively enumerable set X c c~ there exist a sequent A ~ A, P(a) and a skeleton S 
such that n E X iff A ~ A ,  P(S"(O)) has an LK-proo f  with skeleton S. 

In order to make the description of the skeleton shorter we shall use derived 
inference rules. Such a rule is a binary relation R on pairs of sequents which satisfies 
the following property:  For  every k, # e r there exists a skeleton S in L K  and a leaf 
do in S such that ifF--*A and FI--,A are in the relation R, k resp. d is the number  of 
formulas in F resp. in A, and we assign F ~ A  to do, then 

(1) we can find a correct assignment to the other vertices of S such that I I - - ,A  is 
on the root, 

(2) any correct assignment has F I ~ A  on the root. 
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This property enables us to transform any skeleton with derived inference rules 
into a skeleton in LK. (The dependence of S on the number of formulas in F and A 
is caused by the necessity of using exchange rules several times in order to obtain 
such a sequent.) We shall describe the rules using metavariables for formulas 
A, B . . . .  and for sequents F, A,... in the usual way. The following are derived 
inference rules for LK. 

F--* A,B 
(1) doubling F -* A, B, B" 

Here is the skeleton for this rule: 

right weakening ' ~  J left weakening 

I+i l0 ~ 6 taft contraction 
" - - . . . . / "  

cut 

One can easily check that if we label fo by F-*A, B, f l  by C-*C and ~2 by D-*D, 
then we can complete the labelling correctly iff C = D = B in which case we obtain 
F-*A,B,B on the root. 

F-*A,B,C 
(2) disjunction corresponding skeleton: 

F - * A , B v C  

right v -first version 

exchange of the last two formulas 

right v-second version 

right contraction 

A ~ A , F , B  
(3) elimination 

A ~A,  F 
Using the following skeleton: 

l+ 

/ ~  f f weakening 

cut 

A-*A, F, B is transformed into A, C-*A, F, C. Then using suitable exchanges and 
contracting A with C on both sides we obtain A-*A, F. 

Proof of Theorem 5.1. Let X__Co~ be an r.e. set. Let (2 be the set of term equations 
(second order unification problem) such that Qn = ~U {% = S"(0)} has a solution iff 
n ~ X (Theorem 4.1). Let s t . . . . .  s e be terms occurring in ~2 and let %, . . . ,  z k be term 



80 J. Kraji~ek and P. Pudlfik 

variables of f2. Suppose a~ . . . .  , a m are the free variables used in f2. Observe that if f2n 
has a solution in a language containing more free variables, then it has a solution in 
the language of f2, too, since the language of f2, contains a constant. 

Let P(a)  be a formula with at least one occurrence of a and with no other 
semiterms than a. 

Let B be the following formula: 

P(al) V . . .  V P(am) V P(Sl) v . . .  v P(se) 

[-where always all occurrences of a in P(a)  are substituted for]. 
Let A be the sentence: 

9 x l . . .  9Xm B ( a l / x l  . . . . .  a , , /xm)  . 

Instead of defining skeleton S explicitely we shall describe a general shape of a 
proof of the sequent A ~ A ,  P(S"(O)) for n e X. We shall show that the skeleton of 
such proofs can be extended to a proof of the sequent above iff f2, has a solution. 

Let n e X and let S"(0) = to, t ~ , . . . ,  tk be a solution of f2,. The proof  will start with 
B ~ B .  Then we shall derive: 

B--* B,  P(  S"(O)), P(al) . . . .  , P(am) , P ( s l ) ,  . . . , P(se)  , P ( t  l),  . . . , e (  tk) 

using several weakenings. The middle part of the skeleton will be arranged so that 
the form of this sequent is forced. 

(1) First we shall show how the form of B is forced. At the end of the middle 
part of the skeleton we shall apply successively m rules left 9 to the formula B. 
Otherwise we do not do anything with the occurrence of B in the antecedent. Any 
formula from which we can obtain A in this way must be just an alphabetical 
variant of B. As there are no free variables in the end-sequent we can assume 
w.l.o.g, that B'is of the form above. 

(2) The form of P(S"(0)) is forced, since it will be preserved until the end- 
sequent. 

(3) The form ofP(a  0 . . . .  , P(a,~), P(Sl) . . . .  , P(se)  is easily forced as follows. Using 
the derived rule "doubling" we make replicas of these formulas. Then using the rule 
"disjunction" we construct a formula which should be equal to B. That  it really is 
equal to B will be ensured by contracting it with B. 

(4) It remains to show that the form of P(tl) . . . .  , P(tk)  can be forced. First we 
show that we can force a formula to be of the form P(t )  (without any additional 
property of t). We make a replica of P ( a t )  and a replica of P( t )  (by the derived rule 
"doubling"), then we apply successively right 9 to P(a~)  and to P( t )  and contract the 
resulting two formulas. Since the form of P(at) is forced (by A in the end-sequent), 
the contraction is possible iff P(t )  has such a form. 

Finally we show that for r, u, v e {s 1 . . . .  , St, t o . . . .  , tk} we can force 

r ( a i / u ) = v  (*) 

whenever this is prescribed in t2~. This will ensure that to . . . . .  tk is some solution. 
Using "doubling" and "disjunction" [the derived rules (1) and (2)] derive in the 

succedent of the sequent formulas: 

P(r)  v P(ai),  P(v )  v P ( u ) .  (**) 
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Then apply right 3 to both formulas and contract them into one. If(*) holds this is 
possible since we can derive the same formula 

3y(P(r(ai/y)) v P(y)) (***) 

from the formulas of (**). Now assume that for some r, v, u such a derivation is 
possible in which all occurrences of ai are substituted by y in P(r) v P(ai) when 
applying right 3 to it. Thus P(r)v  P(ai) is transformed into (***). Hence also 
P(v) v P(u) must be transformed to this form using right 3. Thus the term which is 
replaced by a bound variable in P(v)v  P(u) must be u. Therefore v with some 
subterms u replaced by y must be equal to r(ai/y ). But this is equivalent to (*). Thus 
we only need to show that the form of (***) can be forced. Let C be a formula 
obtained from P(r) v P(ai) after applying right 3. Using "disjunction" we construct: 

C v e(al)  v ... v P(a i_ 1) v e(ai+ l) v ... v P(am), 

[from some replicas of P(aj)'s obtained by "doubling"]. Then we apply (m-1 ) -  
times right 3 to this formula. Let D be the resulting formula. This formula will be 
present in the sequent when we apply m-times the rule left 3 to B. But this is 
possible only if D does not contain al, ..., am. Then also C must not contain a~, 
which means that it has the form (***). 

The description of the skeleton is almost finished. We should only add that 
before applying left 3 to the occurrence of B in the antecedent we have to apply 
m-times right 3 to its occurrence in the succedent and eliminate P(al) . . . . .  P(tk) from 
the sequent using the derived rule (3) "elimination". Finally we eliminate also the 
other formulas which do not belong to the end-sequent (i.e. formulas such as D 
above). [] 

6. Generalizing Short Proofs with Large Terms 

Georg Kreisel conjectured that for suitable systems a proof of a sentence 
containing large terms which has few proof  lines can be transformed into a proof  of 
a general statement. We shall be little more specific about  this conjecture. 

For  systems related to those of [Pa] G. Kreisel conjectured (cf. the second 
edition of IT], footnote 3 on p. 402): 

"For  A(x) and c < 09 there are M, N < 09 s.t. if d is a proof  of A(n) having < c 
proof lines and n > N then there are m < M and a derivation of a similar logical 
form to d that proves: 

x = n(mod m) D A(x) ." 

We shall call this new conjecture Sharpened Kreisel's conjecture. 
As G. Kreisel observed the original conjecture follows easily from the new 

one. This is seen as follows. 
Clearly it holds for any n < e~ and any m < M: 

x = n(mod M!) D x -- n(modm). (1) 

Also trivially: 
V x = ( N + i ) ( m o d M ! )  �9 (2) 

i<M!  
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Assume that we have proofs of A(O),A(!),A(2),... with < c  proof lines. By 
Sharpened Kreisel's conjecture the proofs of A(N + i), i=  0, 1, 2, ..., M ! - 1 ,  can be 
turned into proofs of: 

x -- (N + i) (mod mi) 3 A(x), (3) 

for all i < (M! - 1) and appropriate mi < M. 
Combining (1), (2), (3) the wanted formula VxA(x) follows. 
The reduction to the unification that we have used in Sect. 2 can be applied to 

prove a theorem in this spirit. Since this application is straightforward we present it 
here, though our main concern in this paper was to investigate the relation of the 
number of proof  lines to the size of proofs. The idea that unification can produce 
such result was communicated to us by M. Baaz. The methods of M. Baaz promise 
to be a deep insight into problems related to Sharpened Kreisel's conjecture. 

Theorem 6.1. Suppose F ~ A, A(t) has a cut-free proof P with skeleton S. Let T be the 
set of maximal semiterms in F ~ A, A(a), let ~ be the number of leaves of S and let q be 
the number of applications of V: left and 3: right. Then there exists a term s and a 
proof P' of F ~ A, A(s) such that 

(1) P' has the same skeleton as P; 
(2) t can be obtained by a substitution from s, 
(3) the depth of s satisfies the inequalities 

dp(s)=<E. F, Irl; 
reT 

dp(s) < (q + 1). max dp(r). 
reT  

Remarks. 1. If t does not satisfy the inequalities in (3) then s must contain a free 
variable, hence in this way one can obtain a proof of a general statement from a 
proof  of a special case. 

2. In the proof  we shall show even more: any t' such that F ~ A ,  A(t') has a proof 
with skeleton S can be obtained by a substitution from s. 

3. The theorem is true also for proofs with cuts if we leave out condition (1), 
and increase (substantially) the bound in (3): This follows from the cut-elimination. 

Proof. Extend P to a proof of F ~ A ,  3xA(x) by adding one application of right 3 
rule. Then Theorem 2.3 gives us everything except for condition (2). This condition 
follows by observing that the terms of the constructed proof(in Theorem 2.3) are 
the terms of a most general unifier. []  

Observe that Theorem 6.1 implies that Sharpened Kreisel's conjecture is true 
for a finite set of axioms. The next corollary follows also from a result of Miyatake 
[M] for A a little stronger. 

Corollary 6.2. Let A be a sentence such that 

A ~ a  = 0 v a = S(O) v ... v a = S m- 1(0) V ~ x ( a  = Sin(x))  
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is provable in LK  e for every m. Suppose B(a) is a formula and k a positive integer such 
that 

A--*B(S"(O)) 

is provable in LK e using k proof lines for every n. Then A ~ Vx B(x) is provable too. 

Proof. By T h e o r e m  3.2 we  can assume w.l.o.g, that each A--,B(S"(O)) has a cut-free 
proof  with =< k proof  lines. Let n > k. ]A~B(a)]. Then,  by Theorem 6.1 there is a 
term s such that dp (s) < n, A--*B(s) is provable  and S"(0) is a subst i tut ion instance of  
s. Thus s is Sin(a) for s o m e  m < n and a free variable a. N o w  a proof  of  A ~ Vx B(x) 
can be constructed from the proofs of  A ~B(Si(0)) ,  i =  0, . . . ,  m - - 1  and the proof  of  
A~B(Sm(a)). []  

As we have already pointed out, the situation is essentially different if we extend 
L K  by axiom schemata. The following fact has been proved by Yukami [Y]. 

Fact 6.3. There exists k such that, for all m, n, the sentence S"(0)+ S"(0)= Sin+"(0) 
has a proof in Peano arithmetic with <_ k proof lines. []  

It follows that, for the formula A(a):= 3y(a = y + y), there exists k such that 
each A(SZn(o)) has a proof with < k proof lines in Peano arithmetic but Vx A(x) is 
obviously not provable. Hence in theories such as Peano arithmetic we cannot 
generalize short proofs with large terms in the manner of the preceding two 
theorems. However, observe that the proofs of the formula above does generalize 
in the sense of Sharpened Kreisel's conjecture. 

(The reader interested in results obtained by various authors during the 
attempts to prove Kreisel's conjecture may consult a survey paper [K2].) 

Acknowledgement. We thank to M. Baaz and to G. Kreisel for important suggestions. 
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