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Abstract. We consider the C*-algebra (9, generated by n ~ 2 isometries $1 ..... S, 
on an infinite-dimensional Hilbert space, with the property that 
StS ~ +... + S,S* = 1. It turns out that (9, has the structure of a crossed product of 
a finite simple C*-algebra ~ by a single endomorphism scaling the trace of~-  by 
1/n. Thus, (9, is a separable C*-algebra sharing many of the properties of a factor 
of t)23e 1II~. with 2 = 1/n. As a consequence we show that (9, is simple and that its 
isomorphism type does not depend on the choice of S t .... , S,. 

A C*-algebra is simple if it contains no non-trivial closed two-sided ideals. We call a 
simple C*-algebra with unit infinite if it contains an element X such that X * X  = ! 
and XX* +1. While non-separable algebras of this type are well known (e.g. the 
Calkin algebra or type III factors on a separable Hilbert space) there is to my 
knowledge no explicit example of a separable simple infinite C*-algebra. The 
existence of such algebras was proved by Dixmier in [9, 2.1] by the following 
argument. Let $1, S z be two isometries (S*S i = 1, i=  1, 2) on an infinite-dimensional 
Hilbert space ~ such that $IS*+$2S*=1.  Since the C*-algebra C*(St, $2) 
generated by S 1 and S z has a unit, it contains a maximal proper two-sided ideal J .  
The quotient C* (S 1, $2)/~¢ is separable, simple and infinite. One of the results of the 
present paper is that C* ($1, $2) itself is already simple (thus answering the question 
of Dixmier to this effect). More generally, we study the C*-algebra generated by 

n > 2 isometrics S t ..... S, satisfying £ S~S* = 1 (this condition implies in particular 
i=1 

that the range projections SiS* are pairwise orthogonal). We include the case n = oo. 
We note incidentally that J. Roberts, motivated by investigations on superselection 
sectors, has studied closed linear spaces generated by isometrics with this property 
[15]. These spaces are in fact Hilbert spaces and C*(S1, ..., S,) is from this point of 
view the C*-algebra generated by a Hilbert space. 

We construct a faithful conditional expectation of C*(S1,...,S,) onto a C*- 
subalgebra Y; and show that C*(S1, ..., S,) is the crossed product of ~ by a single 
endomorphism • (in a sense to be made precise in Section 2). I fn is finite, then ~ is a 
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UHF-algebra in the sense of Glimm [12] of type n ~ and ~b scales the trace o f ~  by 
1/n. Thus we have here the C*-analogue of a factor of type III~ with 2 = t/n (cf. [6]). 
We use this description of C*(S 1 ..... S=) to show that the isomorphism class of 
C*(SI, . . . ,S,)  does not depend on the choice of Sl , . . . ,S,-- that  is, if S1,...,S, is a 

second family of isometrics satisfying ~ S~S* = 1 then C* ($1 ..... S,) is canonically 
i = l  

isomorphic to C*(S 1 ..... S,). We denote in the following (the isomorphism class of) 
C*(S , . . . , S , )  by (9,. 

It is then easy to see that (9, is simple. What is more, (9, is simple in a very strong 
sense--for every 04=Xe (9, there are A, BE(9= such that AXB= 1. Among infinite 
simple C*-algebras the algebras (9, play a universal role comparable to that which 
UHF-algebras play among antiliminary C*-algebras. Any simple infinite C*- 
algebra d with unit 1 contains, given n = 2, 3,..,, o% a C*-subalgebra d=  with 1 E ~ ,  
such that a quotient of d ,  is isomorphic to (9,. For n = oe the subalgebra d o can 
even be chosen in such a way that N ~  itself is isomorphic to (9~o. 

Since the algebras (9, represent quite a new type of C*-algebras they give rise to a 
number of counterexamples. From the representation as a crossed product it 
becomes clear by the recent results in [7], [4] that (9, is nuclear. On the other hand 
we show that (9, can not be an inductive limit of C*-algebras of type I. This answers 
to the negative a question which arose naturally in the recent development of the 
theory of nuclear C*-algebras (cf. [3]). J. Rosenberg after reading this article 
showed that (9, is even amenable [ 16]. Since (9, is clearly not strongly amenable this 
solves a problem of Johnson [13, t0.2]. 

C*-algebras generated by isometries have been studied before by various 
authors. Curiously enough, it usually turns out that the isomorphism class of these 
C*-algebras does not depend on the choice of the isometries--but only on their 
algebraic relations. The difference between the present paper and investigations 
such as [2, 5, 11] lies in the fact that the isometries considered here are in every 
respect non-commutative. 

We remark further that O. Bratteli has recently shown that the crossed product 
of the CAR-algebra by a gauge automorphism is simple [1]. However, these 
automorphisms do not scale the trace, so the algebras obtained are finite. 

1. The Algebras (9. 

In the following we fix n = 2, 3 ..... oe and a (finite or infinite) sequence {Si}7= 1 of 

isometries (i.e. S, S i = i  ) on a Hilbert space W. If  n is finite we assume that 
r i = l  

SiS* = 1. If n is infinite we assume that ~ SiS* < 1 for every rE N. We are going to 
i = 1  

determine the structure o f the C*-algebra C* (S ~, ..., S,) (we use this notation also if n 
is infinite) generated by {Si}~= 1- 
1.I. Given kEN, let W~k be the set of all k-tuples (Jl,"',Jk), with jgE{1 .... ,n} 

(i = 1,..., k) if n is finite, o r j ~  N if n is infinite. Further let l ~  o = {0} and W"~o = 0 
k=O 

W~k. We write So= 1 and, given e=(jl,...,jk)E W~k, we denote by S~ the isometry 
S~=S2S~. . .S~.  Let f (~)=k  be the length of c~ and E(0)=0. 
1.2. With this notation we have the following lemma. 
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* M Lemma. a) Let #, v~ I4~ and Y(#)=E(v). Then SuSv-5u~I. 
b) Let #, vE W~ and let P, Q be the range projections of  Su, S~ respectively. 

Suppose SuS ~ :t: O. 
I f  ¢°(#)=f(v) then S , = S v  and P = Q .  
I f  ~(#)<E(v) then S~=S,  Su, with #'E I4~t(,) _e(u) and P > Q .  
I f  ((#) > f (v) then S u = SvS ~, with v' ~ l~e(u )_ ~(~) and P < Q. 

Proof, a) follows easily from the relation S*S j=ru l ,  
b) The first assertion follows immediately from a). To prove the second 

assertion write S~=S~Su, where ~(e)=Y(#) and f (# ' )=E(v)-f (#) .  By a) we have 
S*S~S~, = 6u~S,,, whence c~ = #. Finally Q = Sv S* - S~ (S u, S~,) S~ < S~S~ = P. 

1.3. Lemma. Let M 4= 0 be a word in { S i} w {S*}. Then there are two unique elements #, 
v ~ Wn~o such that M = SuS*. 

Proof, Let M = X r . X , where Xje { Si} w { S* } (j = 1, ..., r). In this expression we may 
cancel out every term of the fo rmX~i+  i w i t h X ~ +  1 = 1. After finitely many such 
eliminations we get an expression for M in lowest terms M =  Y1...Y~ where 
Y/Y~+l . l ( i= l , . . . , s -1 ) .  Since S * S j = r u l  and M4:0, the Y/ must satisfy the 
following 

Yje{Si}==:> Y j _ l @ { S i }  ( ] = 2  . . . . .  S). 

Thus, ifjo is the largest number between 0 and s such that Yjo e {S¢}, we have Yj~ {Si} 
for 1 ~J<Jo and Yj~ {S~} forjo + 1 GiGs.  This shows that there are #, vEWd such 
that M=S~S*.  Assume that a, fl~14~ are such that M=S~S~. Then obviously 
S*S~ 4:0 (since M * M  4= 0) and S~S~ = M M  = S~S~. Thus the range projections of S~ 
and S~ coincide and according to Lemma 1.21o) we get S~ = S~. The same argument 
applied to M* shows S~ = S~. 
1.4. Let ~ = G1 and let ~ be the C*-algebra generated by the set {S~S~ ]#, vE W~k }. 
We denote by ~ the star algebra of r  x r complex matrices and by 3ff the algebra of  
compact operators on an infinite dimensional separable Hilbert space. 

Proposition, I f  n is finite then ~-~ is star isomorphic to ~/[,~ and ~kC~k+l~-~ ~ 
(k = O, 1, 2 .... ). I f  n is infinite then ~ is star isomorphic to 2g r for all k > O. 

Proof, According to 1.2a), for #, it', v, v'E I4,~, we have 

( S . S * )  * - * (S . .S~,)  - 8 ~ . , S . S ~ , .  

Since also (SuS*)* = S~S* this shows that {SuS*I#, w 14~k } is a self-adjoint system of 
matrix units generating ~ .  If n is finite, then 

S~S~*-- ,., SuS~S ~ Sv 
i = 1  

is in ~ +  ~ since each summand on the right hand side is in ~-~+ ~. 

~-" (k=0, 1,2,...). 1.5. Let ~-" be the C*-algebra generated by the union of all ~ k 
Proposition 1.4 shows that ~-" is a UHF-algebra of type n ~, if n is finite. I f  n is 
infinite ~ is not a UHF-algebra but an AF-algebra. 

1.6. We are now going to describe the algebra ~ generated algebraically by {Si}~= 
and {S*}~: ~. We take and fix one of the Si, say S~. To emphasize the special role of 
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S I, we will write V for S 1 and V- 1 for S*. Let M=S,S* be a word in {Si} and {S*}. 
Let r= f (# ) ,  s=g'(v) and k = r - s .  

I f  k > 0  set M=S,S*S *k. Then )V/s ~ "  and M = M V  k. 
I f k < 0 s e t  ~ -k . M = S  1 SuS ~ . Then ~ 1 ~  and M =  Vk~I. 
I f  k = 0  then M a . ~  r - ~ s .  

Since any A ~ ~ is a linear combination of  words, A can be written in the form 

- 1  N 

A= E ViAi+Ao + E Ai V~ 
i = - N  i = 1  

where the A i are in ~n.  We write A i-- Fi(A). 

1.7. Proposition. The elements A i = F'i(N ) are uniquely determined by the construction 
described above (they do not depend on the special representation of A as a linear 
combination of words). We have I1Fi(A)II < llA II. 

For the proof  of this proposition we first need a lemma. Let n be finite and let 
{ei}i~ N with eiE { 1 ..... n} be a sequence which is aperiodic in the sense that there is no 
i o > 0  such that {ei}~>i0 becomes periodic. Given r~N,  write U~=S~...S~ and 
Pr= v,c*. 
1.8. Lemma. Let M ~, ..., M,, be words in S~, ..., S, and S*,..., S* and let k be a natural 
number. Suppose that each M i has the form M i --S ,S v* where f (#) 4: ~ (v). Then there is 
r~ N such that 

P~S~ M~St~P ~ = 0 

for i = 1  ..... m and for all ~, fl6 W'~k. 

Proof. I f  M~ = S~S* where ~ (#) + E(v), then S~ MiS ~ = 0 or we have after cancellation 
S~*MiS ~--  S~,S~* in lowest terms where ~(7 ' ) - f (3)  = ~ ( # ) - ~ ( v )  (cf. 1.3). This shows 
that S*M~Sa also satisfies the hypothesis on M~ of the Lemma for any e, fie l~l~. Thus 
it suffices to show that for any finite collection M~ .... ,M~, of  words of  the form 
Mi=S S* with #(#~)4:#(v~), there is r ~ N  such that P~M~P~=0 ( i = i , . .  m'). It 
suffices to prove this for the case m'= 1. 

Let d(#~)=p and ~(v~)=q. Then, for r>p, q, the expression L~ = U*rM~ U ~ can 
be non-zero only ifS,~ = Up and S~ = Uq (1.2b)). Thus - S *  * L~-  ~/..S~+ ~ S~q+ ...S~/ But 
then L, must be zero for sufficiently large r since by assumption p ~= q and since {e~} 
is aperiodic. 

Proof of Proposition 1.7. Since for i > 0, by construction Fi + ~ (A) = Ff (A V*) and for 
i<O, F i_ ~(A)= Fi(VA), it suffices to prove the assertions for Fo(A ). 

We consider first the case that n is finite. Choose an aperiodic sequence {e~} as in 
the preceding lemma. Let k be so large that Fo(A ) is in ~ .  Using Lemma 1.8 we find 
r~ N, r > k such that P~S* V~AjSaP, = 0 for j  = - N,..., - 1 and P~S*A~VJSaP~ = 0 for 
j =  1, ..., N and for all e, fl~ W~k. We set 

Q= ~ S~P~S*. 
~ W k  

Then QV~AjQ=O for j =  -N, . . . ,  - 1  and QAjVJQ=O for j =  1,...,N. On the other 
hand Q commutes with every X~ ~ and X~-~QXQ is an isomorphism of  ~ onto 
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Q ~ , Q .  In fact, QS~S?=S~S~Q=S~P,S? and the set {S~P~S?ic¢, ]3s W~k } is a self- 
adjoint system of matrix units generating Q ~ , Q .  Thus 

lIFo(A)[ [ = [[QFo(A ) Q [[ = ![QAQ[[ < [[AI[ • 

Consider now the case n = oo. There is a finite subset tI of N such that A is a linear 
combination of words in S~, S* (isIl). We assume that C*(S 1, S 2 .... ) is represented on 
Hilbert space and choose an isometry S such that S*S = 1 and 

SS* = P = 1 - ~  SIS*. 

We may assume that l s l l  and define [~i(X) for X in the star a lgebra~  generated 
algebraically by S i, islI and S, as above with respect to V= S 1. Then Fo(A)= Fo(A ) 
since A is an expression in St, S* only. We know already from above that there is a 
projection Q in ~ such that Q A Q = Q F o ( A ) Q  and IIQFo(A)QII = II/~o(A)ll. Hence 

!lFo (A) i! = I! t~0 (A)l[ = H Q/?o (A) Q I! = il QAQ tl <= II A I!. 

Since in the finite and in the infinite case the mapping Fo(A)~+QFo(A)Q is an 
isomorphism, we finally see that F o (A) is uniquely determined by QF o (A)Q, hence 
by A. 

1.9. Suppose that ~ " {Si}i = 1 is a second family ofisometries satisfying i Si ~* = 1 and 
i=1 

let ~ be the star algebra generated algebraically by this family. It follows from 1.4 
that ~-'c~N and o & " ~  are algebraically isomorphic. Since these algebras are 
inductive limits of finite-dimensional C*-algebras, they carry a unique C*-norm. 
We may therefore identify i f "  and ~-". With this identification, if A s #  and A is the 
corresponding linear combination of words in ~ ,  then F~(A)= F i (A) for all is 2~. In 
particular, A = 0 if and only if i] = 0. This shows that N and ~ are algebraically star 
isomorphic. We equip ~ with the largest C*-norm 

[t X II 0 = sup{ll~(X)l/Lo is a star representation of.~ on a separable Hilbert space}. 

Let LP be the I1" II o-comp letion of N. Since I1' II o is a C*-norm which majorizes the 
initial norm on ~ ,  the C*-algebra C*(S 1 ..... Sn) is a quotient of 5¢. We shall show 
that 50"~C*(S1 .... , S,). This will imply 

C*(S  1 . . . .  , Sn) ~. (~2 ~ ~ ' ~  C*(~ l ,  ...,Xn) 

1.10. The mappings Fi:~--+dP-'(is2g ) extend according to Proposition 1.7 to 
n ormdecreasing linear mappings Fi:C* (S 1 .... , S,)---*~" and F~:2 z-> ~ "  (the use o f 
the same notation for both mappings will not cause confusion). F o is a conditional 
expectation [17, p. 101]. 

Proposition. Let X s 5 0 .  I f  F~(X)=0 for all isTZ, then X = 0 .  

Proof  We use an argument which appears in [14, 1.2.5]. Let oW be faithfully 
represented on jug. By definition of the norm on 50 the mapping 
~ :S i~2S i ( i=  1, ..., n) extends, for every 2s(E with modulus 1 to a continuous star 
representation Q~ of 5 ° on Yt °. Note that Q~(X) =X for every X s Y  ~. 
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Given 4, q e Jig with JI ~ II = ]l q l] = 1, let f be the function on the unit circle ~" in Ir 
which is defined by 

f (2)  = (~z(X) {ltl) (2e'IF). 

Let {Ak} be a sequence in ~ which converges in £0 to X. Consider the functions 

hkO.)=(~x(Ak)~ltO (2~1r). 

Since H 0k (X)-0x (Ak)ll 0 ----< JlX- A k II o, the functions h k tend to f uniformly on ~. We 
have 

- 1  

h~(2)= 2 ()~q/Fi(Ak){Irl) 
i= - N  

N N 

+(Fo(Ak)~l,l)+ • (F,(Ak)2'V*~itl)= • %2' .  
i=l i= -N 

The i-th Fourier-coefficient % o f h k converges to the i-th Fourier-coefficient fi o f f 
as k~oo.  

But lim laikl__< lira {[Fi(Ak)llo=O by assumption for all i~2g so that f = 0  and 
k-~o~ k~eo 

X = 0, since ~, t/were arbitrary. 

Remark 1. The idea of the proof of 1.10 really consists in interpreting Fi(X ) as i-th 

Fourier coefficient of the function 2~-,Qz(X) (2e ~). In fact, the equation Fi(X ) = 
Qa(X)2-id2 holds for every Xe 2,. 

lr 

Remark 2. Let AkE~  converge to X~2, .  Since 

F ° ( X * X ) :  k~,lim [<~oi Fi(Ak)*Fi(Ak)+F°(Ak)*F°(Ak)+ i>o ~ V-iFi(Ak)*Fi(Ak)IA] 

we see from the proposition that F o is faithful in 2,. 
This fact and Proposition 1.10 itself could have been derived in a slightly 

different approach from the general theory of crossed products [18]. We preferred 
the proof given above because it is very elementary and fits exactly into the 
framework of this paper. 

1.11. Proposition. 2,  is canonically isomorphic to C*(S>...,S,). 

Proof The identity mapping re : N ~  extends to a continuous star homomorphism 
re of 2 '  onto C*(S 1 .... ,S,). We show that z~ is injective. We obviously have 
Fiort = rtoF i [after identification of ~ "  and re-1 (~-0)]. If re(X)=0 then Fi(re(X))= 0 
whence re(Fi(X))=Fi(X)=O for all ie2g. 

1.12. Theorem. I f  ~ " {Si}i= 1 is a second family of  isometries satiffying Si ~* = 1 
i=1 

(or i=1 ~ Sfi* < l f°r every rs N' if n= °°) ' then C * ( ~ l ' ' ~ n )  is can°nically is°m°rphic 

to C*(S 1 .... , S~) (i.e. the map SI~Si  extends to an isomorphism fi'om C*(S 1 ..... S~) 
onto C*(S 1 ..... S.)). 

Proof This follows from 1.9 and 1.11. Note that in t.9 all isomorphisms are 
canonical. 
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In view of  this it makes sense to write (9, for C* (S1, ..., S,) since the isomorphism 
class of (9, does not depend on the choice of {Si}7= v We remark that Theorem 1.12 
also shows that (9, is simple. In fact, let J be a maximal ideal in (9,= C*(S 1 ..... S,) 
and rc:(9,-~(9,/J the canonical projection mapping. Then, by Theorem 1.12, the 
simple C*-algebra ( g J j  = C*(rc(S 0 ..... ~(S,)) is isomorphic to (9,. But we are now 
going to show that (9, has a property which is much stronger than simplicity (in [8] 
we raised the question if every infinite simple C*-algebra with unit has this 
property), 

1.13. Theorem. Let n be finite and Iet X be a non-zero element of (9,. Then there are A, 
B6(9, such that AXB=I .  

Proof By 1.10 we have Fo(X*X)+O. Without loss of  generality assume that 
}1Fo (X'X)I1 = 1. Let Y~ ~ be a positive element such that IIX*X - Yll < ~ < 1/4. Then 
IIFo(Y)II _>_ 1 - e  (t.7). In the proof  of  Proposition 1.7 we constructed a projection 
Q e ~ " m ~  such that tIQFo(Y) QII = II Fo(Y)II and Q YQ = QFo( Y)Q. Let k be so large 
that QFo(Y)Q is in ~ .  Since ~ is a finite-dimensional C*-algebra, QYQ has the 

form Q YQ = ~ 21R i where Ri are minimal projections in ~ and 2i are positive real 
i = 1  

numbers. There is io, 1 __< i 0 < s such that 2~o > 1 - e and there is a partial isometry U 
in ~-~ such that U*U=Rio and UU*=SkS *k (note that ~1~1~*k is a minimal 
projection in ~ ) .  Then with A = s*kUQ we have A YA* =2~ol and 

tiAX*XA* - 111 < I[AX*XA*- AYA*[I + liAYA*-il[ <2e 

(since II A ]] = 1 and 1 - e  < 2io < 1 + e). This shows that AX*XA* is invertible and we 
are done. 

Remark. I fin the situation o f the preceding theoremX >__ 0 and tlFo (X) It = 1, then it is 
obvious from the proof  given above that A and B can be chosen such that tlAll, 
j] BI] < 1 + e, for any given e > 0. (Moreover A, B can be chosen such that B = A*.) We 
will use this in Section 3 where we will prove a version of Theorem 1.13 for (9®. A 
different proof  of 1.13 for the case n = oo could also be given using methods similar 
(but more complicated) to those employed in the proof  above. 

2. Representation of  (9. as a Crossed Product 

2.1. Let n > 2 be finite and let jE~.  Then ~ "  can be represented as an infinite tensor 
product [17, 1.23.11] 

~ "  = @ °A/~ = d j  where ~ ~ JC{, for all i. 
l = J  

Define embeddings 

by d j ~ X ~ e  11 ®X ~ d j_ 1 = J//, ® d i ,  where {euli, j = 1,...n} denotes a self-adjoint 
system of matrix units in ~ , .  If we take the C*-inductive limit [17, 1.23] of this 
sequence we get a C*-algebra c£, isomorphic to Y ® ~ " .  We may, of  course, 
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continue the above sequence of embeddings to positive integers 

... "-*ag 2 ~s~ i ~s¢ o ~s¢_ i ~÷"" 

in the same way by ~c~j~Y~->eil®X~dJ j_ i (J~)" Since all ~¢i are isomorphic we 
may consider the automorphism 4 of c~, which is induced by the shift to the left, 
mapping an element in Mj to the corresponding element in . ~ +  ~. One may express 
the action of 4 somewhat informally by 4 ( X ) = e l l ® X ~ e a ~ ® ~ g ~ d ~  for 
X~s¢~_~. 

Let the crossed product C* (~g,, 4) be faithfully represented on the Hilbert space 
~/f. Then there is a unitary U on 24z such that 4(X) = UXU*(Xe~g,) and C* (~,, 4) is 

N 
the closure of the set of finite sums of the form A =  ~ XiU ~ (XieCg,). With 

i= - N  

Jf~ = U-~X~ U ~ this expression becomes 

A= Z U X,+Xo+ Z X U' 
i < 0  i > 0  

Let P be the unit o fsg  o C C* (c~,, 4). Since UPU* = e 11 ®P~ ~ o  = J~/,®~¢i we have 
UP = P UP and PX i Uip = (PXiP) (UP) ~ for i > 0 and P u i x i p  = (UP)* - *PXi P for 
i < 0. With V= UP we get 

P A P =  ~ ViPXiP + PXoP + ~ PX,PV ~. 
i < 0  i > 0  

Thus •,=PC*(Cg,, 4 )P  is generated by ~¢0 =pcg.p together with V. 

Let Si=(e i l®P)V( i= 1 .... ,n). Then S*Si=P and ~, SiS*=P. Further s~ o is 
i = 1  

generated by all elements of the form S,S* where ~t, vE W~ and ((#) = ~(v). In fact, if 
P=(Jl .... ,Jk) and v=(i~ ..... ik), then S**S*=ejlix®ej2i~®...®ej~i~®p~s¢o = 
J¢/,®,.. ®JC/,®dk. Hence C ,=  C*(S 1 ..... S,)~-(9,. 

Let Pk be the unit of d k (k<0). Then C*(~¢,,4) is the inductive limit of 
PkC*(~,, 4 )P  k (k--, - oe). It is not hard to see that Pk- t C*(Cg,, 4 )Pk-  1 is generated 
by Pk C* (cg,, 4)Pk together with {e~j®Pkl 1 < i,j < n} C xg~_ 1 and that, consequently, 
C*(C~,, 4) is isomorphic to : f®(9, .  
2.2. Let now n=  oo. For j ~ N  let ~ j  be the C*-subalgebra of (9~ defined by 
d j  - ~ j  ~ - ~ * j - ~  ~ . Then s~ej_~ ~CI@(xCQsCj).= On the other hand we also have 
s~' i---s/o=ff  "~ for all i sN .  Define s¢ i for negative j inductively by 
d j _ t  =~l@(Yf®sCj).  We fix a minimal projection R in J(( and consider the 
sequence of embeddings 

S¢o " + ~ -  1 ~+d_ 2 ~.. .  

defined by s C j ~ X ~ R ® X ~ X ® s C j C ~ c j _ ~ .  Let c ~  be the inductive limit of this 
sequence. Clearly cgo~ is an AF-algebra. I f  as above we let 4 be the automorphism of 
cg~ which is induced by the shift to the left on the above sequence (continued to 
positive integers) then (9oo ~-PC*(Cg~, 4 )P  where P is the unit of su¢ 0 C C* (cg~, 4). 
2.3. We have seen that (9, (n-- 2 .... , oo) is isomorphic to the crossed product of an 
AF-algebra by a single automorphism, cut down by a projection. By recent results 
of Connes [7, 6.8, 6.5, Theorem 6] and Choi and Effros [4, Corollary 3.2] this 
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proves that (9, is nuclear. I am indebted to A. Connes and S. Sakai who called my 
attention to this fact. We show now that (9, can not be obtained as an inductive limit 
of type I C*-algebras. 

Proposition. Let n be finite and let S~ ..... S, be isometries on a Hilbert space 

satisfying ~ SIS*=P<=I. Suppose that , JC~(J / t  ~) is a C*-algebra containing 
i = 1  

elements A1,.. . ,A . such that t[Ai-Sit I <e. I f  e is sufficiently (depending on n) small 

then there are ~ t l , . . . ,A ,~¢  such that A*Ai= i  and ~ fti~i*<=l. I f  P = I  then 
i = 1  

~tl,...,ft n can be chosen such that the sum of the range projections of ~1 i equals 1. 

Proof Let 8 < 1/10. We have 

IIA*A,-III < IIA*A,-A*S,I[ + IIA*S,-S*S~II <(1 +~)~+~ <3~. 

Hence A*A i is invertible and 

l lAi-  A~(A*Ai) -~ II < IlAell II 1 -  Ai A i "II <(1 +8) 38<48. 

Now ~=A~(A*A~) -~ is an isometry and 

t[~r*-S~S*N < It ~ r * - s , g * l t  + tls~g*-s~s*ll  <58+58= 10~. 

Further 

II(V~V~) (vjvT)li ~ II(SiS~) (sjs~)ll + LI(S~S~ = - v~v~=)sjS] ll 

+ l L v y * ( v y T - s s * ) t l  <208 for i , j .  

Given 6 >0, by [12, 1.7], if e is sufficiently small there is a family of pairwise 
orthogonal projections E1,...,E . in d such that IIEi-Vy*II<~. Then 
[IE~V~- V~II <~. Thus V*EiV i is invertible for small 6 and the elements .41=(EiV~) 
(V*E~V~) -~ are isometries. Moreover the elements A~A*==E~ are pairwise 

orthogonal projections and Q = ~, A~A* is a projection such that 
i = 1  

IIQ-Pll = ~=~ (E~-S~S*) Nn(g)+ 108). 

In particular Q = 1 if P = 1 and e and ~ are sufficiently small. 

Corollary 1. Let ~ be a C*-subaIgebra of (9, (n finite) containing elements A 1 ..... A,  
such that II Ag- S~ll < ~. If ~ is sufficiently (depending on n) small then any such s¢ must 
contain a C*-subalgebra which is isomorphic to (9,. 

Corollary 2. An infinite simple C*-algebra ~ with unit can not be an inductive limit of 
type I C*-atgebras. 

Proof By [8, 2.2] ~ contains isometries V1, V 2 such that V 1 V* + V2V ~ < 1. Let s¢ be 
a C*-subalgebra of N containing elements A1,A2~such that lIAr-~II <8. I f  ~ is 
sufficiently small, then ~¢ contains isometries Aa, A z such that AIA ~* +AzA 2. _-< 1. 
Since a quotient of C*(A~, A2) is isomorphic to (92 (3.1) and (92 is clearly not of Type 
I, ~¢ can not be of type I. 
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2.4. As &', is simple, so is g(®O,.  But X ® (_9, is even algebraically simple (i.e. has no 
non-trivial not necessarily closed two-sided ideals), This follows from the following 
general theorem. 

Theorem. Let d be a simple C*-algebra with unit. Then S ® d  is aloebraieally 
simple ~ and only if there is k~N such that J/Zk®d is infinite. 

Proof "Only if part". We use the notation of [8]. Assume that JCdk®d is finite and 
let P be a projection of dimension r and Q a projection of dimension 1 in ~#k. Then 
(P®l/Q®l)=rin ~ k ® d .  In fact, we have a=(P®l/Q®l)<=r. On the other hand 
a < r would imply (P® 1/R ® 1)= 1 for any projection R __< P of dimension a in ~k" 
Since P ® I  is a finite projection in J / / k ® d  [8, 2.4], this is impossible [8, 2.1]. 
Assume now that Jgk®d is finite for any k~ IN. If P is a projection of dimension r 
and Q a projection of dimension 1 in s( r then (P®I /Q®I)  in s¢7®d equals 
(P®I/Q®I) in (P®l)  (g#®~¢) (p®l) -~Jd ,®~¢ hence equals r (we may assume 
Q < P). Let P1, P2 .... be a sequence of one-dimensional orthogonal projections in Y 

and let H =  ~ 2iP~ where 2 i>0 and 2i--+0. 
i = 1  

Then for any rs  N and for any one-dimensional projection Q in A r we have 

H ~ i P~=A, and (H®I/Q®I)>(A,.®I/Q®I)=r. 
i = 1  

This shows that the ideal generated algebraically by Q®I  in 2 C ® d  does not 
contain H® 1. 

"I f part". The proof is essentially contained already in [ 10, 3.1.4]. We have only 
to combine Dixmier's argument with [8, 2.2]. We may assume that d itself is 
infinite. Let El, E2,... be a sequence of pairwise orthogonal one-dimensional 

k 

H ~ projections in a f  such that the sequence { k}k= 1, defined by H k = y '  Ei, is an 
i = l  

approximate identity for 2C. It is easy to see that Hk®l  is an approximate identity 
for J l ® d  (it is enough to check this for the algebraic tensor product of Of and d ) .  

Let J be a non-zero ideal of J C ® d .  If X # 0  is in j then there is k such that 
(H k ® 1)X (H k ® 1) :t: 0 hence there are i, j, 1 < i, j < k such that (E i @ 1)X (Ej ® 1) :t= 0. I f 
EijE J f  is a partial isometry with support projection Ej and range projection E~ then 
(Ei®I)X(Eij®I)* is in J and is non-zero. Thus J n E i ® d  is non-zero, hence 
equals Ei®d  since d ' ~ E i ® d  is algebraically simple. 

From [8, 2.2] using induction we get the existence of infinitely many pairwise 
orthogona! projections F~ and elements V~ in d such that I/*V~ = 1 and Vii/* =F~ 
(i = 1, 2 .... ). We have E1 ® Fi "~ E 1 ® 1 ~ E i ® 1 in W ® d .  Let U i be a partial isometry 
in J f ® d  with range projection E 1 ®F~ and support projection Ei®l .  With G k = 

k k 

Fi and Yk= ~ Ui we have YkY'~=EI®G k and Y*Yk=Hk®I. 
i = 1  i = 1  

To complete the proof it is enough to show that any positive element X of 
J r ® a / i s  in ft .  Since (Hk®I)X ~ is a Cauchy sequence also le~Y} is a Cauchy 
sequence converging to an element Y of ~ ® d .  Since (El ® 1) Y= Y and E, ® 1 e f 
we have Y, Y ' e f t .  Therefore Y*Y=X is in J .  
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Remark. Let A, B~JY'®(9, and B#:0. There are i, j ~ N  such that 
(E~®I) B(Ej®I) # 0. Let C = (Eli®l)  (Ei®l) B(Ej®I) (Ejl ®1) (Ei~ = partial isom- 
etry in x/f with support projection Ej and range projection Ei). Then C:t:0 and 
C~Et®(_9 .. There are F, G in (9, such that ( E I ® F ) C ( E I ® G ) = E ~ ® I  (1.13, 3.4). 

Further there are Xt , . . . ,X  ~ and 1'],..., Y~ in S ® ( 9 ,  such that A =  
i=1 

X i (E 1 ® 1) Y~ (the ideal generated by E 1 ® 1 in g f  ® (9, consists exactly o f all finite 
sums of  this form). Let V 1 ..... l/; be isometrics in (9, such that 1/1 V* .... , V,V* are 
pairwise orthogonal projections in (9,. Then 

A=(~=IX~(E~®V*))(E~®I)(~=~ (E~ ® V~) Y~). 

Together this shows that there are X, YsW®(9. such that A =XBY. 

3. Extensions of C. 

3.1. Proposition. Let II1,... , V, be isometries on a Hilbert space J/f such that 

ViV* ~ 1 (n finite). Then the projection P = 1 - V f *  9enerates a closed two-sided 
i=1 

ideal J in C*(V 1 ..... V,) which is isomorphic to Y and contains P as a minimal 
projection. The quotient C*(V1, ..., V,) /J  is isomorphic to (9,. 

Proof Define, given #E W"~, an isometry V, in the same way S u was defined in 
Section 1. The closure o f the set J of all linear combinations o f elements o f the form 
V,P V* (#, ve W~o) is clearly a two-sided ideal in C*(V1,..., V,). On the other hand J 
is contained in every two-sided ideal containing P. 

Consider the product X =(V, PV*) (V~PV~) (#, v, e, fls W"oo ). After cancellation 
we have V*V~ = V~V* (7, 5e W'~) in lowest terms (1.3). But PV~V*P+-O if and only if 
V r V* = 1, since P V/= 0 (i = 1 ..... n). Thus X ~: 0 if and only if PV* V~P :I= 0 if and only if 
v = a  (1.2). Hence 

(V~PV*)(V~PV~)=5~V, PV~ 

and 

(VuPV*)* =VvPV ~ . 

In other words the set {V~PV*t#,v~ W'~} is a self-adjoint system of matrix units 
generating J .  Therefore j can be mapped isomorphically onto a dense star 
subalgebra of ~(  which is an inductive limit of finite-dimensional C*-algebras, 
hence carries a unique C*-norm. This mapping must be isometric and extends to an 
isomorphism of  J =  j onto 5¢2 

Remark 1. It seems to be interesting to study more general extensions of (9, by the 
compacts. 

Remark 2. In the situation o f the proposition, given i (1 =< i = n) and #, v ~ W'~, there is 
kE IN such that V*kV~P V* V~ = O. This shows that V*kA V~ tends to zero as k ~  ~ for 
each A~ J .  
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3.2. Let d be a simple C*-algebra with unit. It follows by induction from [8, 2.2] 
k 

that d contains a sequence V~, V 2 .... of isometries satisfying ~ ~V* < 1 for every 
i=1 

k~ N. We know already from Section 1 that C* (VI, V2,..,)--- (9oo. From 3.1 we see that 
C*(Vt,...,V,) (n>2 finite) contains a closed two-sided ideal J such that 
C*(Vt,... , V,)/J ~-(9,. Therefore 0o~ is contained (with the same unit) in d and (9, is 
for any finite n > 2 contained up to quotients in d .  
3.3. Consider (92 = C* ($1, $2). We put $1 = S~, Sa = $1S2, and $3 = $2. Then S*Si = 1 

3 
and ~ SiS* = 1 so that (93 ~ C* ($1, Sz, $3) C (92. By induction we get the following 

i=1 
chain of inclusions 

(92 ~ (933 (943..-  3 (gcx~ . 

3.4. We use 3.1 to prove a version of 1.13 for (9o0. 

Theorem. Let X be a non-zero element of (9~. Then there are A, B~C~ such that 
AXB=I .  

Proof We may assume thatX > 0 and 1[ Fo (X) II = 1. Let Y be a positive element of the 
star algebra generated algebraically by SDS2,... such that tlX-Y]I < e < l / 4 .  
Without loss of generality we may assume that IlFo(Y)II = 1. 

There is a finite subset 1I of N such that Y is a linear combination of words in Si, 
S* (JEll). We assume that (.0o0 is represented on the Hilbert space ~ and choose an 

isometry S on ~ such that SS* = 1 - ~ SIS*. Further we fix i o ~ N such that io¢It 
iE~[ 

We consider the C*-algebras ~¢1, generated by Si (i~]I) together with S, and ~¢2, 

generated by S~ (i~I[) together with S~o. The projection P = I -  ~ Sfi*-S~oS* 
i~]I 

generates a non-trivial closed two-sided ideal J in ~ 2  (3.1) and d z / )  ¢ is 
canonically isomorphic to ~¢a (1.12). 

We may assume that 1~II and define Fi in ~¢~ with respect to S 1 and Fi in ~¢2/J  
with respect to ~(S~) (where ~ :~¢2-~¢2 / J  is the canonical mapping) in the same 
way in which F i was defined in Section 1. Then F0(Y)=F0(Y) since Y is an 
expression in Si, S* (i~l~ only. Therefore 

[IFo(e(Y))l[ = ll/~o(Y)Ii = IIF0(Y)ll = t .  

By the remark in 1.13 there are A , B ~ 2 / j  such that Ao(Y)B=I  and IIAH, 
ItBtl < l + e .  Then A, B can be lifted to elements .~, /~ in d z such that IIAtt, 
11/~ll<1+2e. We have A Y / ~ = I + K  with K ~ J .  By Remark 2 in 3.1 we get 
S * k ( J Y B ) S ~ I  as k * ~  for each i~K Since 

ItS~'k(/~,Y/~) S~ - S~k(A Y/~) S~ ]1 <7 (1 + 2e) 2 e < 1 

this shows that S*~(JX/~)S~ is invertible for sufficiently large k. 
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