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Abstract. Solutions of  the equations of classical Yang-Mills theory in four 
dimensional Minkowski space are studied. It is proved (Theorem 1) that there is 
no finite energy (nonsingular) solution of the Yang-Mills equations having the 
property that there exists e, R, t o > 0 such that 

ER(t)= S O00(t,x) d32>--~ forevery t> to ,  
I~I<=R 

000(~, t) being the energy density. Previously known theorems on the absence of 
finite energy nonsingular solutions that radiate no energy out to spatial infinity 
are particular cases of Theorem 1. The result stated in Theorem 1 is not 
restricted to the Yang-MiUs equations. In fact, it extends to a large class of  
relativistic equations (Theorem 2). 

I. Introduction 

In a very interesting paper [1] Coleman has proved that there are no (nontrivial) 
finite energy nonsingular solutions of classical Yang-Mills theory in four dimen- 
sional Minkowski space that do not radiate energy out to spatial infinity. More 
precisely he has proved: 

Theorem (Coleman). The only finite energy nonsingutar solution of  the Yang-Mills 
equations in four dimensional Minkowski space satisfying 

lim 1213/Z+~F~(t, Yc)=O, 6 > 0  (1) 

uniformly in Ixl and t, t>0 ,  is the vacuum solution. F~v(t, 2) is the field strength, 
#v=0,  1, 2, 3 are space-time indexes and a is an internal index. 2elR 3, t~IR, and the 
F",v(t, 2) are real valued functions in IR 4. 
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Coleman's theorem generalizes [1] previous results in the absence of finite 
energy nonsingular non-radiant solutions [1, 2]. 

Coleman's argument is remarkably simple (Coleman's proof is basically a 
refinement of an argument of Pagels [3]). (1) is a sufficient condition for the relevant 
surface integral to go to zero at spatial infinity uniformly in time. 

I have been able to improve Coleman's argument. In this way I can get rid of the 
strong assumption (1) and I prove the following theorem: 

Theorem 1. There is no finite energy (nonsingular) solution of the Yang-Mills 
equations in four dimensional M inkowski space having the property that there exists ~, 
R, t o > O, such that 

ER(t)= S Ooo(t, 2) d3x>=e forany  t > t  o. (2) 
I~1 < g 

Ooo(t, 2) being the energy density. From the definition of  Ooo(t, 2) and the relation 
F a  ~ a ,~ -F~u it follows that 

d3x[F~,,I 2 <=2E for any t. (3) 

This gives us all the uniformity in time that we need. E is the energy of the fields 

E =~ d3xOoo(t, 2). 

The previously known results [1, 2] on the absence of finite energy, non-singular, 
non-radiant solutions are particular cases of Theorem 1. 

The result stated in Theorem 1 is not restricted to the Yang-Mills equations. It 
extends to a large class of relativistic equations: Let O~(t,2) be the energy 
momentum tensor associated with a relativistic equation. Assume 

(~) Ooo(t, 2)_>0, 0u"=0 , Ou0u"=0. 

([3) There is a constant C > 0 such that 

[Ou~(t, 2)[d32<CE for any t ,  

where E is the energy integral: 

E=~ Ooo(t, 2)d3x. 

Then 

Theorem 2. For any relativistic equation such that the associated energy momentum 
tensor satisfies (~) and (f3) there is no finite energy (nonsingular) solution having the 
property that there exists ~, R, t o > O, such that 

ER(t)= ~ Ooo(t, 2)d3x>=e forany  t > t  o. 
I~J <= R 

II. The Proofs 

Let A"u(t, 2), t~lR, 26IR 3 be a set of vector fields. Define the field strength F~u~(t, 2) by 

F ~ ( t , -  a ~ ~b~ b x) = c~ A ~ -  c?,,Au + C AuA~. (4) 

C abe are the structure constants of a compact Lie group. We have 

F ~ =  - F ~ , .  (5) 
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Summation over repeated indexes is understood (unless otherwise specified). The 
derivatives are taken in distribution sense and the F"uv(t, ~) are assumed to be real 
functions. 

The Yang-Mills equations are 

# a abc ,ub c 0 F ~ + C  A F ~ = 0 .  (6) 

The signature of the metric tensor is (+ ,  , , - ) .  The energy momentum tensor is 
given by 

O . v  _ F m , a F v a  1_ . t / t vFa  F a a 7  
- - - -  --y - -  4tY - - ? a ~  " (7) 

#, v, 7, a = 0, 1, 2, 3. We have 0f = 0, ~u0 "~ = 0, and 

0 0 0  = 1 a a a a > . -~(EiE i +H~Hi )=0  (8) 

i = 1, 2, 3, where E~ and H~ are the analogues of the electric and magnetic fields 
. . . . . .  1 "~ ijk = 1, 2, 3. The energy is given by E i - Fi, o, n i  = ~ i , ] k t ' ~ j k ,  

_ 1 a a E =~ O°°(t, 2)d3x - -~ ~ (EiE ~ +It~'H~)d3yc (9) 

We assume E < oo. 
It follows from the fact that the F ~  are antisymmetric in # and v, and from (8) 

that 

(. [F~lEd3x =< 2E < ~ (10) 

for any t. This fact gives us, for finite energy solutions, all the uniformity in time that 
we need to prove Theorem 1. In fact, for the Yang-Mills equations (6) we have 
0~ =0, c~uO ~u--O, 0oo >0. Hence (~) of Theorem 2 is satisfied. Moreover by (10) ([3) is 
satisfied as well. Then Theorem 1 follows if we prove Theorem 2. 

Proof of Theorem 2. Suppose that there exists a finite energy solution having the 
property that there exists 5, R, t o > 0 such that 

ER(t)= ~ d3xOoo(t, Yc)d3x>__e forany t > t  o. 
Ixl__<g 

Let #(r)~ •I(R) satisfy the following conditions: 

(i) #(r) > 0 ,  #(r) =0  for r < R .  

(ii) I[rp(r)I[1 < oo. 

(iii) [[#H1 >g/ellr#(r)l[~o, 

where K is a constant defined below. We define 

w(t)=Sdr#(r) ~ d3xxi O°i. 
I~l_-<r 

By ([~) 

tw(t)l__< 3CEilr#(r) il 1. 

On the other side by O,0~v=0 and 0~=0 

~tw(t)=I P(r)Er(t)dr-l  p(r)dr ~ dax Z ~i(xJOU) " 
tX[<r i j  

(11) 
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Clearly 

S l~(r)E~(t)dr >= e [1 t~(r) tt 1. 

Moreover by the theorem of the divergence and (t3) 

Sp(r)dr ~ d3x~3,(xJO'J)<K]lrp(r)]]~, K = 9 C E .  
[~[<r i j  

Then 

a~w(t) > ell #(0111 - Kll r~(r)ll ~ = A > 0. 

Then for t > t o 

w(t)> A t - w ( t o ) .  (12) 

Obviously (11) and (12) cannot be satisfied simultaneously and we reach a 
contradiction. The theorem will be proved if we show a function in ~l(IR3) 
satisfying (i), (ii), and (iii). Take for example 

0, r < R  

#(r)= -,1 R ~ r < R l < ° °  
P 

O, r > R  1 , 

where R 1 is so large that lnR 1-1nR0>K/e .  Q.E.D. 
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