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Abstract. A definition of detailed balance for quantum dynamical semigroups is 
given, and its close connection with the KMS condition is investigated. 

1. Introduction 

In recent works [1-3] various definitions of detailed balance for a quantum 
Markovian master equation have been proposed and discussed. In this paper, we 
give a definition of detailed balance for a quantum dynamical semigroup of a W*- 
algebra, which extends the analogous notion proposed in [3] for quantum 
dynamical semigroups of matrix algebras (for a heuristic motivation, based on the 
analogy with the corresponding classical concept, see [3, 4]). We give the general 
form of the generator L of a dynamical semigroup of M(~)  satisfying detailed 
balance and with a norm continuous dissipative part, thus extending the result of 
[3]. 

The physical meaning of this seemingly formal definition is investigated by 
showing that the property of detailed balance is characteristic of dynamical 
semigroups describing relaxation to thermal equilibrium, thus providing yet 
another characterization of KMS states. 

2. Quantum Detailed Balance 

Let d /  be a W*-algebra. A dynamical semigroup of Jg  [5-,-7] is a weakly *- 
continuous one-parameter semigroup {~ t : t>0}  of completely positive identity 
preserving normal maps of d / i n t o  itself, with ~b 0 the identity map. 

Let Q be a faithful normal state on Jg  which is stationary under {~t}, and denote 
by (cog, re, f2) the GNS triple associated to Q. There exists [8, 9] a strongly continuous 
contraction semigroup {~t} on ~ such that 

,~tn(A)g2=rc(cbt(A))O for all A e ~ / ,  t > 0 .  (2.1) 
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Denote by L the densely defined generator of {St}. 

Definition. We say that {~t} satisfies detailed balance w.r.t. Q if there exist a 
selfadjoint operator L s and a skewadjoint operator/~h in • such that 

(i) /,~o = L~p +/,h~P (2.2) 

for all ~ in a dense linear manifold cd C ~ which is a common core for/ , ,  Ls,/ 'h; 

(ii) rc(at(A))g2=exp([,ht)rc(A)O (2.3) 

defines a weakly *-continuous group {at} of  *-automorphisms of  d/l ; 

(iii) n(Ft(A))f2=exp(£~t)~(A)(2 (2.4) 

defined a dynamical semigroup {Ft} of  J¢/. 
{at} (resp., {Ft} ) will be called the Hamittonian part (resp., the dissipative part) of 

{~,}. 

Remarks. It can be shown that if a decomposition (i) exists with k s = L*, L h = - L~', 
then it is unique (Appendix A) and that (iii) is actually a consequence of  (i) and (ii) 
(Appendix B). 

The state Q is stationary for {at} and {Ft}. Indeed, ~(at(A))=~(a_~(1I)A)=Q(A ) 
and Q(F,(A)) = ~(Ft(~ ) A) = Q(A). 

Both {at} and {It} commute with the modular automorphism group {o-t} [10] 
associated to Q. This property, which for {at} is welt known [11], is a special case of  
the following 

Proposition 2.1. I f  two completely positive identity preservin 9 maps F and F' of  a W*- 
algebra dg satisfy 

Q(F'(A)B)=e(AF(B)) for all A ,B~d/ t ,  

where ~ is a faithful normal state o n / d ,  then F and F' commute with {at}. 

Sketch of  the Proof The contraction maps/~ and/% on J{, associated to F and U as 
in Equation (2.1), commute strongly with the modular operator A [12, Lemma 2]. 
Since O is separating for ~z(J/), the statement follows. 

In the following, we restrict our consideration to the case ~ = N(~cg), the algebra 
of  all bounded operators on a separable Hilbert space ~ .  This is a suitable 
framework for the description of  the reduced dynamics of  a spatially confined 
quantum open system. For this case, we give a classification of  the generators of 
dynamical semigroups which satisfy detailed balance and possess a norm con- 
tinuous dissipative part. 

The Hamiltonian part {at} of  a dynamical semigroup {~t} of  ~ ( ~ )  satisfying 
detailed balance with respect to a faithful normal state ~ is of the form [13, 
Corollary 2.9.32, p. 120 and Remark 2, p. 166] 

at(A ) = exp(itH) A exp( -  itH), A ~ ~ ( ~ ) ,  (2.5) 

where H is a selfadjoint operator in H ,  commuting with the density matrix which 
expresses ~ (and for which we shall use the same notation ~). 
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If the dissipative part {Ft} of {~bt} is norm continuous, then F t = exp(L,t), where 
L~ is a bounded linear map o f N(Jf )  into itself. In this case, rt(N(a¢')) O is a core for L~ 
[14, Theorem X.49], and the restriction of/.~ to rc(N(~4¢')) is given by 

£s~(A) o = ~(L~(A))O, A e ~(Xe). 

Hence the selfadjointness of L~ is equivalent to 

o(L~(A)B)=o(ALs(B)) for alI A, U c ~ ( . ~ ) .  (2.6) 

A linear map Ls o f ~(~gf) satisfying (2.6) will be called p-symmetric; a linear map L a 
of M(gf ~) will be called &antisymmetric if 

o(La(A)B)=-~(ALa(B)) for all A, B c ~ ( W ) .  (2.7) 

Theorem 2.2. The general form of a Q-symmetric generator L~ of a norm continuous 
dynamical semigroup {Ft} of ~(gf)  is the following 

N 

L~(A)=uw-lim ~ Crr,~,[nrrAn~,~-½{Prrn~,~,A}], (2.8) 

where A ~ N(af) and 

P~,, = Ir) (r'J, {[r)} a complete orthonormal set (c.o.n.s.) 
of eigenvectors of O, 0t r)  = 0,I r)  ; (2.9) 

{C~rss, } is a positive matrix in the sense that 

XT, Crr~,X,s,>O for all sequences (2.10) 
r t ' s $ "  

{x~r } for which the expression converges; 

N 

C~, ,~,P,rP¢, converges uItraweakly as N ~oo • (2.11) 
rr" SS ~ ~ 1 

C,~, ~,o,=Cs,,,,~o~,, (2.12) 

(or, equivalently, C,r**,O, = C,,,r~Or). 

Remark. Note that the condition characterizing 0-symmetry is (2.12). 

Proof. L, can be written as [7] 

Ls(A)= ~ ( A ) -  ½ { ke(l[), A} + i[H, A], A e N(Jt°), 

where F is a completely positive normal map of N(W) and H=H*~(~CF) .  By 
Proposition 2.1, L~ commutes with a t = 0~*(. )0-i,. Hence, with no loss of generality, 
we can assume 7-' to commute with {a,} and H to commute with ~. Indeed, t/, can be 

T 

replaced by Tlim (1/2T) ~ dtat~a_ t, where the limit exists and defines a normal 
- T  

map (compare [15]) and the convergence is in the bounded-weak topology, with 
respect to which the cone of  completely positive maps is closed [16]. Similarly, H 

T 

can be replaced by UUT,21im(1/2T ) ~ dtat(H ) (compare [15]). We can choose {tr)} 
- T  
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such that Hjr) = erlr ). Write T(A) = ~ VffA V;, A, Vj ~ ~(,X¢')(ultraweak convergence) 
[17] and let J 

Kr,,~s, =Tr[PsrT(P,,s,)] = ~ <rl Vff [r'} <s'l Vjls>. 
J 

Since T commutes with {cry}, Krr,,~, = 0  = K~,,r, ~ unless Q,Q[ j =Qr~oj 1. Then the ~- 
symmetry of L~, i.e. 

Tr[QP~,L,(P,,~,)]=Tr[QL~(P~)P~,~,] for all r,r',s,s' 

is equivalent to 

~K~,~, - ~,K~,~,~ = 2 i (~ -  ~) ~r~,CS~,. (2.13) 

N 

Let HN= ~ ~,P~,. We may set q =0 ;  then, by Equation (2.13), 
r = l  

N 

H~=(1/2i) ~ (K~.,,-K~.,~)P,,,. 
r r '  = 1 

N 

Let TN(A)= ~ Kr~,~,,P~r,AP~,~, AeM(J¢'). Defining the completely positive 
rr" s s '  = 1 

map E N : N(~Cg~)~(x/f) by 

N 

EN(A)=QNAQN, QN = ~. P,.,., 
r = l  

we have H N = EN(H ) and T N = ENTE N. 
Define also the completely positive map T~ of ~(4/f) by 

J 
N 

= ~ C,~,~.Pr,.,AP~,~, 
r r ' s #  = 1 

where vj~  (11Vj]I) and 

c.,~s, = ~ (r l (V;*-  N~)lr') (s'l V;-v;~)ls) 
J 

= K ~ , ~ ,  - 6 r~ ,K  t 1 ~,  - 6~s'K~,, 11 + 6 ~ ' 6 ~ ' K  1111-  

{C,~,~,} is positive by definition and satisfies condition (2.12) by Equation (2.13). 
Moreover, we have 

N 

C,.~,~,P,.¢P~,, = T~(I[) 
rr" s$" = 1 

= E NT(QN) - 2iEN(H ) -  EN(~ ) K ~  ~ .  (2.14) 

Now uw-lim Eu(H) = H, uw-lim EN(~ ) = 1[, and lim Tr{Ao[E N T(QN)- T(~I)] } = 0 
N-'~ oo N ~ o o  N---~ c~ 

for all A o in the linear span ~o  of the P~js. Since ~o  is dense in the space of  trace 
class operators on ] f  and Tr{Ao[ENT(QN)-- T(][)]} is bounded by 2tlAo!t 1 ll Tll, the 
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expression (2.14) converges ultraweakly as N ~  oc to 

7,CI1)- 2 i l l -  K 111111,. 
Finally, a straightforward calculation yields 

~ ( A ) - -  ½ { T~,,(~), EN(A)} 

= 7 ,u -  ½ { 7,u(11), Eu(A)} + i[Hu, EN(A)] 

= ENLEN(A ) + ½ {EN(7'(~ -- QN)), EN(A)}, A ~ ~(2C). 

For A in ~o, the ultraweak limit of the r.h.s, as N-~ ~ is L(A) by the same arguments 
as above. The extension to ~(~vt~) is made using the ultraweak density of ~0 in 
~(W), the ultraweak continuity of L~ and uniform boundedness estimates. 

Conversely, ifa map L~ is of the form (2.8) and satisfies (2.9)-(2.11), then it is of 
the Lindblad type [7] with no Hamiltonian part, and 

N 

7,(A)= uw-lim ~ Crr,,.~,Prr,AP~,,, A ~ ( W ) .  
rr' ss' = 1 

By Equation (2.11), 7' is well defined and normal. It is completely positive by 
Equation (2.10) and the fact that the cone of completely positive maps is closed in 
the bounded-weak topology [ 16]. The e-symmetry of L~ follows immediately from 
Equation (2.12). Q.E.D. 

Remark. In the special case dim ~ = N < ~ and e the central state Q = z----N-~ 11, it 
follows from the form of the generator given in [6] that a z-symmetric generator has 
the general form 

N 2 -  1 

Ls(A ) = ½ ~ cij{FjEA , Fi] + [Fj, A] F,}, (2.15) 
ij= 1 

where Fj=F*, Tr(Fj)=0, Tr(FiFj)=5~j, and where {cij } is a positive symmetric 
matrix. These are exactly the generators describing the dynamics of an N-level 
system with a purely random Gaussian stochastic Hamiltonian [ 18J, or the reduced 
dynamics of an N-level system in the limit of singular coupling to a reservoir at 
infinite temperature [i9]. 

Remark. An elegant expression of the general form of a e-symmetric generator has 
been given by Alicki [3] in the case when dim J r  = N <  ~ and the spectrum of Q is 
nondegenerate. The latter restriction can be dropped with the aid o f the result (2.15) 
above, and the form of L~ then reads 

N 

L,(A) = ½ Z Dij{X*[A,X,j] + IX*, A]Xfj}, (2.16) 
i j  = 1 

where 

Tr(X*-/gkl) = 6~kbjt, (2.17) 

Qie~ i j, (2.18) 

X*=X~j for e~=ej; X*=Xj~ for e~4=ej, (2.19) 

Dij>__O for all i,j; Dij~j= Djiei for Qi 4:~. (2.20) 

The proof of this statement is given in Appendix C. 
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3. Weak Coupling Limit and KMS Condition 

In this section, we investigate the close connection between quantum detailed 
balance for dynamical semigroups obtained in the limit of weak coupling [20] and 
the KMS condition for the associated reservoirs. 

Consider a spatially confined quantum system S interacting with an infinite 
reservoir R. We describe S by an algebra of observables N(X/F), H a separable 
Hilbert space, with dynamics determined by a semibounded selfadjoint 
Hamiltonian H with pure point spectrum and such that exp(-  fill) is trace class for 
all f l>0. 

We denote by d the C*-algebra of observables of R and assume R to be initially 
in a state co which is stationary under the free evolution. We describe the latter by a 
weakly *-continuous group {et} of *-automorphisms of the yon Neumann algebra 
do, = rco,(d)", implemented by a group of unitaries of the GNS space ~;, ,  assumed 
to be separable. In the following, these conditions will be summarized by the 
notation R = ( d ,  co, e,). 

We couple S to R by a bounded interaction 

gV=g ~ Fj®q~i (3.1) 
j = l  

with g > 0, Fj = F* e ~(x¢), q~j = ~p* e do,, co@j) = 0. 
Under suitable conditions on the sufficiently fast decay of the multi-time 

correlation functions of the operators ~oj in the state co [20, Theorem 2.3], the 
reduced dynamics in the interaction picture for the observables of S in the weak 
coupling limit (g~0, ~ =gZt finite) is described by a dynamical semigroup whose 
generator L is bounded, commutes with the free evolution of S and is given by [20] 

N 

L(A) = uw-lim ~ ~ (Fj)rr,(Fi)s;~(isij(e r -  gr,)(~r,s,[Prs, A] 
N-~oo r r ' s s '= l  i j = l  

+ ho(er- e~,) [P~,AP~,~- ½ {P~,P,,~, A}]), (3.2) 

where A ~ N(~f) and 

Pw =lr} (r'l, {Ir)} a c.o.n.s, of eigenvectors of H, 

HIr)=e~lr), (Fj),~,-(rjFjjr') ; (3.3) 

/~;(2)= i dte-i~hu(t), hu(t)=-co(~°jet(O~)); (3.4) 

sij(2 ) = i ! dte-iahij(t) - ~ hi j(2 ) 

= ! ~  +Y - ~,j(u) 
J a u - -  (3.5) 

2~z -~o u - 2 '  

0~ denoting the principal part. By virtue of Davies' conditions [20] the/~j(2) are 
continuous functions. Furthermore, {/~j(2)} is a positive matrix for all 2sIR by 
Bochner's theorem [14, Theorem IX.9]. 

The generator L is the sum of a Hamiltonian part i[H1,. ], where H~ commutes 
with H, and a non-Hamiltonian part which depends on the correlation functions 
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/~ii(2) of  R. If  co is a KMS state at inverse temperature fl>0, then 
Otj=exp(-flH)/Tr[exp(-flH)] is a stationary state for the reduced dynamics 
{exp(Lt)}, the Hamiltonian part is op-antisymmetric, and the non-Hamiltonian part 
is 0a-symmetric as a consequence of the KMS condition on the Fourier transforms 

/~i ( -2)=exp(- f l2) /~(~)  for all 2ciR. (3.6) 

Then, {exp(Lt)} satisfies detailed balance with respect to the canonical state Qp. 
Negative or infinite temperatures (fl <0) are allowed if S is an N-level system. 

Detailed balance for the Markov process induced on the diagonal elements was 
already recognized by Davies [20]. 

In order to prove the converse result that detailed balance for the reduced 
dynamics implies the KMS condition for the reservoir, we need some technical 
assumptions. 

We require that there exists a subset N of the selfadjoint part of d~0 such that 
a) if q~ is in ~ ,  then also et(cp) is in N for all t, and the smeared operators 

(P(f)- S dt f(t)~t(~o ) are in ~ for all functions f(t) whose Fourier transforms are C ~ 
of  compact support;  

b) if~o is in N, then co(p)=0, and for all qh, q0~, hij(t)- co((pjet(q~i) ) is in L10R), so 
that its Fourier transform hi~(2) is continuous; 

c) the multi-time correlation functions of  the operators q~jeN in the state co 
satisfy the conditions which allow the application of  Theorem 2.3 of [20], so that 
the weak coupling limit technique can be applied and leads to the result (3.2) for all 
couplings of the form (3.1) with (pjeN; 

d) for any bounded interval I CIR, there exists a finite collection {q~j}~.= ~ CN 
such that 

~ /~i(2)4:0 for all 2 e I .  (3.7) 
ij= 1 

If R is a quasifree fermion reservoir and co is a quasifree gauge invariant state, we 
can choose N to be the set of  selfadjoint linear combinations of  creation and 
annihilation operators smeared with test functions having a compact support in the 
energy space; then, all assumptions a), ..., d) are satisfied (for an explicit form of 
condition c) in the case of  a quasifree reservoir, see Section 3 of  [20]). For general 
reservoirs, we lack an explicit form of condition c), and we need either one of the 
following additional conditions to hold: 

e) the linear span of N~{11} is a strongly dense *-subalgebra of d o ;  
e') the dynamics {at} can be defined at the C*-algebra level as a strongly 

continuous group of *-automorphisms of d and the linear span of Nu{ll} is 
uniformly dense in d .  

Theorem 3.1. Let R = ( d ,  co, at) be an infinite quantum system coupled to a spatially 
confined quantum system S with d i m ~ > 6 .  Assume that the reduced dynamics 
{exp(Lt)} orS in the weak coupling limit satisfies detailed balance with respect to some 
faithful state Q, for all choices of H and of a coupling gV of the form (3.1), with q~ j~ ~f. 

Q is assumed to be stationary under the free dynamics of S, and may depend, a 
priori, on H and on gV 
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Then, if N satisfies assumptions a) ... . .  d), there exists a real number fl such that 

hji(-2)=exp(-fl2)hij(2 ) for all 2~IR, q)i, t p j ~ ,  

and Q is the canonical state ~ =exp(- f lH) /Tr[exp(- f i l l ) ]  (when =Of is infinite- 
dimensional, this forces fi to be positive). In the quasifree fermion case, or if e) or e') 
holds, co is KMS at inverse temperature ft. 

Proof. The strategy of the proof consists in showing that the ratio f~ji(- 2)//~ij(2) is a 
positive multiplicative function of 2, which does not depend on i and j, as in [21]. 

We can assume the spectrum of H to be nondegenerate and fix our attention on 
six eigenvectors of H, which we label It>, ..., 16>, with eigenvalues el, ...,e 6. Let 
es 4= es, for s 4= s' and es+ 3 - e,. + 3 = es -  e~. (s, s' = 1, 2, 3). We consider only couplings 
of the form (3.1), where the operators Fj are linear combinations of the Pw with 
r, r '=  1 .... ,6. Then all the summations in the expression (3.2) of L are finite, and we 
can define a bounded linear operator L' on ~ ( H )  by 

Tr [0L'(A)B] = Tr[QAL(B)], A, B ~ ~(Yf). (3.8) 

The most convenient way of imposing detailed balance on L is to require the e- 
antisymmetric part L~ =(1 /2 ) (L-L ' )  of L to be a derivation. A straightforward 
computation yields 

6 

La(A) = Z Z ~ (Fj),.¢(Fi),,s(isij(2)br,,.[P~,, A] 
£ rr'ss'=l i j= l  

gr - 8r' = £s - ~, = 

+ [/~j,(- 2 ) -  e,e;; ~ fhj(2)] P,,~AP,~,), (3.9) 

where A e ~(W). The condition L~(P~,Ppq)= L~(P~,)Ppq + P~,L~(Ppq) for all m, n, p, 
q is equivalent to the following two equations 

[/~j~(- 2 ) -  Q ~ / ~ ( 2 ) ]  (Fj)~,(F~)~,~ = 0, (3.10) 
i j = l  

where r 4= r', s # s', 2 = ~, - ~, :I= O, and 

[/~ji(O) -/~,j(O)] (Fj)~(F,)~s = O. (3.11) 
i j= 1 

Take q~l, q°2 in ~.  By choosing a coupling 

V=FI @q)I -t- F2@(P2, 

where F~ and F z are suitable linear combinations of the P,,,, r, r '=  1 ..... 6, it can be 
seen from (3.10) and (3.11) tha t /~z(2)=0 for some 2 if and only if /~z~(-2)=0. 

Let E be the subset of IR on which/~12(2) does not vanish. By assumptions 
a) .. . . .  d), for any positive integer m it is possible to choose a finite collection {q~j}y(__m) 3 
of operators in N, smeared with test functions whose Fourier transforms vanish in 
E, and such that 

n(m) ] 
~. hi~(~.)4=O for all 2~ ( -m,m) ,  

ij = 1 

/~ij(2)=O for 2~E, i,j=3,...,n(m), 

/~jl =/~lj =/~j2 =/~zj = 0 identically for j = 3 , . . ,  n(m). 

(3.12) 
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Choose a coupling 

n(m) 

j=l  

with 

F i =(P12+P23+P31)+h.c. ,  
Fj=Ft+F 2 for j = 3  .... ,n(m), 

so that Equation (3.10) yields 

105 

F2 = (P45 + P56 + P64) q- h.c., 

By Equation (3.13), #(m)(2) = G0J  1 ( G -  G' = 2) for 2 #: 0. 
It follows that 

~(m)(,~) f")(2') = ~(m)(2 + 2) 

for 2, 2', 2 + 2' in (-rn,  m) and different from zero. By the continuity of #(m)(2), this 
still holds when some of the 2, 2', 2 + 2' are zero. 

If  m<m', by suitably smearing the operators ¢p~(n(rn)<j<n(rn')) with test 
functions having energy support disjoint from ( -  m, m), we can fulfill the condition 

#(~)(2)=/~(~')(2) for 12I<m. 

Therefore, the limit of the sequence {#(~)} defines a function/~ : IR--,(0, oo) which 
satisfies 

#(2)#(2')=/~(2+2') for all 2,2' in IR. (3.15) 

Hence #(2) is an exponential. For 2 in E,/42) reduces to/~2 l( - 2)//~12(2) by Equation 
(3.12). Hence 

/~21 ( - '%) = exp( - fi 12 2) ~ i 2(2) (3.16) 

for some real number ]J~2. 
We show that fi~2 is independent of the choice of qOl, (P2 in ¢L By assumption d), 

we can find a positive number M and two elements qh, ~°z of N such that 

/~12(2)=~0 for all 12[<M, 

and a pair ¢P3, ~°4 in N such that ]~34(2o):#0 for some 2 o e ( - 2 M , 2 M ) .  Choose a 
coupling 

4 
v=  E % ® ~  

j=l  

(3.1.4) #(m)(2)= [f121(__ 2) Af n(m ) ] [~/12(2)_~_ ij=3 - 1  

F/21(--2) q- E ~lji(--2)~--QsOs'l ]I12(2) q- z 3 [)lij(2) (3.13) 
ij= 3 "'= 

for all s , s '= l ,2 ,3 ,  r = s + 3 ,  r ' = s ' + 3 ,  2=G-G;=~-O. Define a function/£~)(2) on 
( - m ,  m), with values in (0, oo), by 
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with 

FI=(P12+Pz3)+h.c., Fz=(P45+Ps6)+h.c., 
F3 =P13 + h.c., F4 =P46 +h.c. 

Then, setting e 1 - e  3 = 20 and using Equation (3.16), Equation (3.10) yields 

exp(--fl122)=Qle~ -1 ( 2 = e  a - - e 2 )  , 

exp(-//lz2')=QzQ~ 1 (2 '=ez-e3) ,  

exp(-//34(2 + 2')) = 01031, 

so that//34 =//12- This proves that the real number/ / is  the same for all correlation 
functions whose Fourier transforms do not vanish identically in ( -2M,2M) .  
Hence, using again assumption d), we can choose a finite collection {q~j}f= 1 such 
that 

P 

/~ii(2).0 for all 121 < 2M 
ij= 1 

and 

/~jf(-2)=exp(-//2)hli(2 ) for all i,j=l,...,p. (3.17) 

Then, let %, % in N be such that/~qr(20) =~ 0 for some 20 c ( - 4 M ,  4M), and choose a 
coupling 

V= ~ Fj®cp2 
j = l  

with 

Fj=(Plz+Pz3+P45+P56)+h.c. for j=l,...,p, 
Fq=P13+h.c., Fr =P46 + h.c. 

Then, setting e 1 - e3  = 2o and using Equation (3.17), Equation (3.10) yields 

exp( -  f12) =0102 a (2 = e 1 - -  g 2 ) '  

exp(-fl2')  = Qz~o~ -1 (2 '=ca-e3) ,  

exp(-//0,(2 + 2')) = 010~ 1. 

Hence//qr =//. Iterating the above argument proves that there exists a real number//  
such that Equation (3.6) holds for all qh, q~j in .~. 

From the above discussion, it follows that the eigenvalues 0r of~ (r = 1,..., 6) are 
given by 

Qr = e x p [ -  fl(ar- Sl)] QI" (3.18) 

Since the choice o f the six eigenvectors 1t), ..., t6) is arbitrary, Equation (3.18) holds 
for all the eigenvalues of Q. Then, Q is proportional to exp(-/ /H).  If ~ is infinite- 
dimensional, this rules out the case/3 < 0. 
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In the quasifree fermion case, the KMS condition (3.17) can be extended to the 
strongly dense *-algebra of polynomials in the operators of,¢~, using the expansion 
formulas 

~(~tl(~°J). . .  % ,  ~ 1(~°J2o + 1 ) )=o ,  

e)(~tl(q~jl)'"~,2,,(~°~2,,)) = 2 signp f i  c~(c~t,(2r_,(qojp ~ ..... ,)~,~(~o~,~,)), 
pen t ,  r = 1 

where ~ is the set of those permutations p of { 1, ..., 2n} for which p(2r-  1)< p(2r) 
and p(2r-  1)< p(2r + 1). The extension to the whole d,o follows from Corollary 1, 
p. 200, of  [22]. The same Corollary allows the extension of the KMS condition to 
the whole algebra for general reservoirs, under assumption e). When e') holds, the 
extension can be made with the same arguments as in [21]. Q.E.D. 

The formal similarity of the above proof with the arguments of  [21], in which 
the KMS condition was derived as a consequence of  stability, suggests the existence 
of a link between stability and detailed balance. This is confirmed by the following 

Theorem 3.2. Let R = ( d ,  o), cQ, and let S be a spatially confined quantum system 
whose free Hamiltonian H possesses a nondegenerate spectrum. Assume that the 
reduced dynamics of S derived in the limit of weak coupling to R leaves invariant a 
faithful state ~, which does not depend on the coupling gV and is stationary under the 
free dynamics of  S. Then the reduced dynamics {exp(Lt)} of S satisfies detailed 
balance w.r.t. 0. 

Proof. Since the spectrum of H is nondegenerate, 0 commutes with H as well as with 
the Hamiltonian part of  the reduced dynamics. Hence, it is a stationary state for the 
reduced dynamics iff 

2 ~ h i j ( g r - -  8r')(Fj)rr'(Fi)s's 
rr'ss" ij  = 1 

~Jr - gr ¢ ~ gs - 'Ss' 

• (P~ ,~oP~,  1 1 - g P ~ ' P ~ ' ~ O -  g ¢ P ~ ' P ~ ' ~ ) - O .  (3.19) 

Now, ePic, = ¢~P~,. With r = s, r'= s', the above formula yields 

~. ~. (F ~)~,(Fi),.~[hij(e,- e~,)O, -/~ji(¢r,- e,)0~,] = 0  (3.20) 
r' i j = l  

tbr all r. Fix two indices k, k' (k 4= k') and let Fj = 2j(Pkk, + Pk'k) + iktj(Pkk ' --Pk'k), 2j, 
p2ellL Then Equation (3.20) with r = k  gives (zj= 2j + i#j) 

i j=  1 

The expression within square brackets defines a Hermitian matrix for all k, k'. The 
complex numbers zj are arbitrary, hence 

h ii(ek' -- ek) = ekO~ l f~i~(ek -- ek') (k 4: k'). (3.21) 

Upon inserting Equation (3.21) into Equation (3.20), it is seen that (3.21) holds also 
for k = k'. Thus the non-Hamiltonian part of  L is 0-symmetric. Its Hamiltonian part 
is clearly ¢-antisymmetric. This amounts to detailed balance. Q.E.D. 
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Remark. The hypothesis of Theorem 3.2 is a stability property of the state 0 ® co of 
the combined system S + R, and it can be regarded as a natural characterization of 
what is meant by saying that the system S is in thermal equilibrium with the "heat 
bath" R (compare [23]). 

Appendix A 

Uniqueness of the Decomposition (2.2) 
Suppose that 

LV = L~V + LhV for all V in a common core (g for /,,/,~, L h 

and 

LV '= L'~V' + L~V' for all V' in a common core of' for L, L' s, L~, 

where L~, L'~ are selfadjoint and Lh, L~ are skewadjoint. Let ~ be the symmetric 
semibounded sesquilinear form defined on ~(L) by 

~(q~, q,) = ½[(~ l£v)  + ( v i L e ) I ,  4,, v ~ ~ ( £ ) ,  

and let s (resp., s') be the restriction of ~ to qf (resp., cg,). Then 

s(q~lt;) = (4~IL¢;) ~p, v e ~ ,  

s'(q~' I v ' )  = (4~' I £ ;v ' )  4 / ,v ' e¢g ' .  

Clearly s and s' are closable. Moreover, they are contained in the closure of each 
other. Indeed, since cg is a core for L and ~f' C @(L), for all V'ecg ' there exists {~p,} Cog 
such that V,~V' and LV,-~LV'. Then 

I s ( v . -  ~;m IV.--  Vm)l = IRe(v.  - V.,I£(V, - Vm))l 

_-< I I v , - w . I I  l l L v , - L v ~ l l - , 0 .  

Hence V' is in the domain of the closure of s. The same argument can be repeated 
with the interchange of Cg and cg,. Then the closure ofs and the closure ofs' coincide. 
Thus L~ Icg and L; Icg' have the same Friedrichs extension [24]. But since they are 
essentially selfadjoint, L~=L'~. Finally, the closure of L -L~  is a skewsymmetric 
closed extension of both/~h ~qq and /~  ~cg,. Hence £ h = L ; = L - £ , .  

Appendix B 

Proof of Equation (2.4) 
Let U,=exp(Lht),/~=exp(L~t). Let {A,} (resp., {V~})be the strongly continuous 
predual semigroup of {~t} (resp., predual group of {at}), and let 5O (resp., 5oh) be its 
generator. Define 5os as the closure of 5O- 5°h. For Vefff, define Q~e Jg, by Qt~(A) 
=(VI~z(A)O) for all A~J//. The linear manifold g = {Q~ : reef} is in the domain of 
5O~ and 

5osO~=OLs~, for all V~:g. 

The manifolds g and (o¢- ~5os) ~ (where J denotes the identity map o fJg.) are dense 
in J/g~. Indeed, cg and (]1- L y g  are dense in ~ since cg is a core for Ls; the range of 
(11-L~) is X,  and the set 5~= {0t~ : V e ~ }  is dense in ~ .  by [25, Example 5]. 
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But since ~go is dissipative, ( J  - £,0)- ~ exists and is continuous, hence the range 
of ( J -  5¢~) is the whole of ~ . .  Then ~s  is the generator of a strongly continuous 
contraction semigroup { Yt} o f J / . ,  by the Phillips-Lumer theorem. ~ is given by the 
Trotter product formula 

Yt= s-lim(V t,,At,,)'. 
n - ~ o  ~ - -  / / 

Passing to the dual maps, 

Y**(A)= w*21im(~bt/,a t/,)"(A ) for all A . ~ .  

It can be easily verified that {Yt*} is a dynamical semigroup of J L  In particular, 
complete positivity follows from the fact that the cone of completely positive maps 
o f a W*-atgebra is closed in the bounded-weak topology [16]. For all ~ s X ,  A e Jg, 
we have 

(,¢ I/*,~(A) f2) = lira (~ I (~,/, U_,/,)" ~(A) (2) 
n ~  oo 

= lira 0Pl ~((~,/,a_,/,)'(A))f2) 
n - - e ~  

= (w 

which proves (2.4) with Yt*= F t. 

Appendix C 

Proof  o f  (2.16) -(2.20) 
Starting from the form (2.8) of L~, we can write L s = L  1 + L  v where 

N 

LI(A ) = ~. 1 C,,,~,,[P,,,APs, s -  ~ {P,,,Ps,~, A}], 
r r¢~$  ' = 1 

0 r  = Or',  Os = Qs' 

N 

C (A) = E 1 Cr,,~,[Pr,,AP~, ~ -  ~ (Pr,,P~,s, A}]. 
r , ' s s "  : 1 

{2r4: Cry', q s  ~ ~s '  

L~ is a 0-symmetric and z-symmetric generator, hence it can be given the form (2.15), 
which in turn can be diagonalized in terms of nonnegative coefficients D o and 
selfadjoint operators satisfying (2.17). From the 0-symmetry and ~-symmetry of L~ 
it follows oLa(A ) = L~(oA) and LI(A)o = L~(AO) for all A in ~(W), hence, by [26], 
commutes with the operators X u appearing in L~. As for L v it is a 0-symmetric 
generator to which the arguments of [3] can be applied (this is indeed the major part 
of the proof). The result then follows. 
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