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In the last fifteen years notable progress has been made in celestial mechanics, centered 
around the contributions of Siegel, Kolmogorov,  Moser and Arnold. Perhaps the key 
paper in a whole series of  brilliant papers by these distinguished mathematicians was 
the four page announcement by Kolmogorov [5]. Moser and Arnold generalized 
Kolmogorov 's  theorems, and extended them in various fashion with appropriate 
proofs, but no proof  has been given following Kolmogorov 's  original outline. The 
present paper is devoted to doing this. Moreover, it is felt that as an introduction to 
this chain of  ideas, the Kolmogorov approach is the least complicated. 

Before proceeding, let us give a brief history of the problem under consideration. 
Given a Hamiltonian:  

H(pi  . . . . .  P,, qi , - . - ,  q,) = H0(pl,  ..., P,) +/~H1 (el  ... P,, ql . . . .  q,/~) 

that is real analytic in all its variables and periodic in the q's of  period 2n, one of  the 
basic techniques in celestial mechanics is to make a canonical change of variable 
(p, q)~--~(P, Q) by means of a generating function of the form 

W(P, q ) = Z  P,q,+E #"S,(P, q) 

such that in terms of  the new variables (P, Q) the Hamiltonian is only a function 
of the P's .  Let us define this as a yon Zeipel transformation. 

In [10, Vol. II, Par. 125] Poincar6 showed that  formally a von Zeipel transformation 
was always possible, at least at points p where the n numbers 21=OHo/Op~ were 
rationally independent. In this case the Hamiltonian is called nondegenerate. How- 
ever Poincar6 felt that the resulting formal expansion would never converge, but was 
rather an asymptotic expansion. The central idea of  Kolmogorov (which we state 
more precisely below) is that if the 2; satisfy inequalities of  the form: 

(*) IZ h,2,1 1> , / ( •  Ih,I)" 

for all integers h i not identically zero then the von Zeipel transformation actually will 
converge, not everywhere, but at points where (*) holds. 

Inequalities of  the form (*) were first used by Siegel [12, 13] in similar investiga- 
tions. He has given a simple proof  [11, p. 165, 166] of  the fact that in the sense of  
measure theory almost all points 2 satisfy (*) for some e>0 .  Arnold [2] has given 
proofs of  results that extend those of Kolmogorov to degenerate Hamiltonians, 

* Portions of this paper were presented at the Seventh Annual Summer Institute in Dynamical 
Astronomy held at Purdue University, June 19-July 14, 1967. 
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hence which are applicable to the main problems of celestial mechanics. Kolmogorov 
and Arnold deal only with analytic Hamiltonians, while Moser [6, 8] has given proofs 
that are applicable to functions which are assumed to have only a finite number of 
derivatives. 

Following Kolmogorov, we establish our main theorem below by taking the limit 
of an infinite number of canonical transformations. This is not how we defined a yon 
Zeipel transformation above. However, from recent results of Moser [9] it follows 
that if the Kolmogorov procedure converges, so does the usual von Zeipel series 
expansion. 

In summary, consider any point p~ where (*) is satisfied, translate it to the origin 
and perform a yon Zeipel transformation, then the results of this paper imply that (if 
# is small enough) the yon Zeipel transformation will converge at Pi=0.  

The main theorem that we wish to prove is: 
THEOREM 1. ff  H(p,q)=H(p~... p,,, q~... q,,,) is analytic, and periodic of period 2~ 

in the q's, and can be written in the form: 

H(p, q) = rl + ~ ),iPi + A(q) + Z B,(q) Pi + Z Cij(q) PiPj + D(p, q) (1) 

( t /a  constant, and D(p, q) - t e rms  of third and higher order in the p~) satisfying the 
hypotheses 

(H1) [~ 2ihi[ >~ ~ ,  for integer h i with I[hl[ = i=1 lhil > 0, s an integer ~> m. 

2g  2~ 

detc, (0  0 (27Zlm "'" Ci2(q) dql ...dq,,, 
0 0 

then for sufficiently small A(q) and B~(q), there is a solution of the Hamiltonian 
equations of the form 

q, = O, + f , (O)  

p, = a , ( 0 )  

with O =(01 ... . .  Q,), Qi =2~(t-z~), z i a constant, andf i  and 9~ periodic of period 2~ 
in the Qi's and analytic. 

Theorem 1 follows from the following result: 
TrmoREM 2 (KOLMOGOROV THEOREM). If  H(p, q) of Theorem 1 is analytic for 

fP~I ~< ro, and IIm q~l ~<0o, then for sufficiently small A(q) and B~(q) in this region, 
there is a canonical change of variables (p, q)~--~(P, Q) with 

Pi = Pi + gl (Q) + Z Pjgij (Q) (2) 

q, = fi(Q) + Q, 

such thatfi ,  g~, 9 ,j, which are periodic of period 2re in the Q's, are defined and analytic 
for IIm Qi] <30o/4- Further, the mapping (2) maps JPi[ <3r0/4, llm Q~] <30o/4 into 
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[pil<~ro, [[m qi[~0 o. In terms of P, Q the Hamiltonian is analytic in the former 
region and is of the form 

H = E 2,Pi + E ~ij (Q) PiPj + 0 (p3). (3) 

(That is, the terms A(q) and Bi(q) no longer appear, hence P,=0,  Q~=2,( t -T,)  is a 
solution of the canonical equations.) 

We now outline the method suggested by Kolmogorov to prove Theorem 2. The 
transformation specified is the limit of an infinite sequence of transformations, in 
each of which the terms A (q) and B i (q) get smaller and smaller. 

Starting with the Hamiltonian in the form (1), let us introduce the first change of 
variables (p, q)~-+(P, Q) defined by the generating function 

Then 

and 

S(P, q) = ~ (Pi + r ql + X(q)  + ZPiYi(q),  
i = l  

OX 0Yj(q) a S=(p,+r +ZPj 
Pi = Oq i ~q~ ~qi 

(~i a constant). 

(4) 

OS 
Q,-- - -  = qi + Y~(q). (5) ~P, 

Substituting the expression (4) for p~ in the original Hamiltonian and noting from 
Equation (5) that qi=Fi(Q) for some F v we find 

O = r 1 + E 2ir + a(O) + Z )~,Pi + A*(q) + ZPiB*(q) + A")(Q) 

+ EPiB}I)(Q) + Z C}))(Q)PiPJ + D(')( P, Q) 

where D~I)(P, Q) signifies terms of third and higher power in the Pv In the above we 
set 

aX 
A*(q) = y, 2i ~qi + A(q) - a(O) 

and we use the notation zj = e iqs, A (q)= ~ a(k) e i(k' q)= ~ a(k) z k, with 

e i ( k l q l  ,.. "4- krnqrn) _k l  km 
a ( k )  e i(k '  q) a k l . . . k , n  = a k l . . . k , , Z  1 . . .  Zra , e t c .  

In (4) and (5) X, ~i, Yi are assumed to be small quantities. They occur in A*(q) and 
B* (q) at most to the first order, and in A ~ (Q) and B~ t) (Q) at least to the second order. 

The procedure suggested by Kolmogorov is to choose X, ~i, Yi such that A*(q) 
=B* (q)=0. This is done as follows: 

Setting X(q)=~ 'x (k )  z k, Yi(q)=~'y,(k)  z k, with 2 '  meaning that the term k = 0  is 
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absent (i.e., setting x(0)= yi(0)=0), we have from A* (q)=0: 

1 (k, 2) x (k) + a (k) = 0, with (k, 2) = E k,2i, 

which determines x (k). 
Setting 

9X 
E,(q) = E e,(k) z k = E C,j(q) 

@s J 

we have from B* (q) = 0: 

(6) 

(7) 

then 
cij(O) {j + ei(O) + bi(O) = 0, which determines ~j; (8) 

~ / 7 1  (k, 2)yi(k) + ei(k) + b,(k)  + cij(k) Cj = O, 

which determines y~ (k). (9) 

Note that hypothesis (H1) and (H2) insure that (6), (8) and (9) have unique solutions. 
Since we assume all quantities X, ~, Y, are small, it follows that A (1), B} 1) are small of 
the second order, and thus by repeated application of this scheme, we look for con- 
vergence. This is what we now establish. 
LEMMA 1. If  the 2 i satisfy hypothesis (HI) of Theorem 1, and if T = ~ '  t (k)z  k, and 

t (k )  z k 
S = - ~ '  

4 - -  1(k,2) 

i.e., if S satisfies the equation 

8S 2 z 8S 
2 2, G = , / -  1 = 

then S satisfies the following estimates for some constants C: 

C 
IISlls(0-h) • ~(h)S+~ II TIIs(~) 

Zi O~ S(e-h) C <<- e(h)s+m+l [ITtls(o), 

with 0 < h < p ,  where we use the notation: 

S(Q) = {z, ]e -~ <~ Iz,[ ~< e ~ = {q,J IImq,I ~<Q} 

IIFtls(e) = sup lF(z)l. 
zES(r 

PROOF: The mapping z i = e  ~qj takes the strip IIm q~l ~<Q into the annulus e-Q~< Iz~l <e~, 
In the following we work in the annulus. 
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By HSlder's inequality, and Hypothesis (HI)  of Theorem 1 we obtain 

i = 1  
~< ~< _ _  Ik, l ~.  

8 13 i=i 
If l ( x ) = x / 1 - x ,  and M =  II T[Is(o), we obtain by Cauchy's inequality 

T ~ M ~[ (l(zl/e o) + l(e-~ = M(z)  = E'  m(k)  z k, 
i = 1  

where ~ means majorized by. 
Thus 

S ~ I(k, 2)-~]- ~ 13 re(k) [(IklI ~ + ... + Ikm[S)] zk; 

then since 

(X ~)sXk=(k)S Xk: 

S "~ - -  +_ zj M(z)  13 
j = l  

OS 17~s-lQ ~ i i ) ~ (  ~:j)s z i - - ~ - -  +_zl +__zj M(z)  
~zi 13 

j = l  

and the result follows since 

(d)S 
X-~x ( x / 1 -  x ) =  P ( x ) / ( 1 -  x f  +' 

LEMMA 2. Let 

eo = max(llAlls(oo), I[B, Ils(oo)), 

131 = max(llA(1)lis(ol), IIB}l)lls(ol)), 

r l = r  o - 2 h ,  Qt = Q o - 4 h ,  with O < h < ro/2, 0 < h < Q o / 4 ,  

and introduce the following additional notation: 

S(r, p) = {(Pi, qi) I lpil < r; IIm q~[ ~< e}, IIF(p, q)lls(,,o) = suplF(p,  q)[. 
(p, q) e S(r, o) 

Let 

max Ic~1(0)1 ~< 2N, I[D(p, q)lls(ro, oo) <<- 2M, [IC,jlls(oo) <~ 2M,  

where -* " cij (0) is the inverse of the matrix clj(O) defined in (H2) of  Theorem 1, and let 
the 2 i satisfy (HI)  of Theorem 1, and using the notation of that hypothesis let h<e, 
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t = s + m + 1, and finally let 1/> r o t> �89 Then there are constants C i depending only on 
N, M and m, such that if 

h 2 t + 3  

(H3) e o ~ < -  
Co 

then the following assertions hold: 
(A1) The transformation (4), (5) may be written: 

q~ = Q~ + A(Q)  = F~(Q), 

p, = P, + g,(Q) + Y o ,  (Q) Pj = as(P, O), 

with Fi, G i being analytic for QeS(Q O, 

I]fills(ol) <~ 2h, II• ~< 2him + 2, IIg~jlls(o~) ~< him + 2, 

thus Fi, G i maps S(rx, 01) into S ( r o - h ,  0o-2h) .  

C1 
(A2) 1~11 ~< h-3,~ I~ol 2. 

(A3). The Hamiltonian is defined for (P, Q)eS(r  1, ol) and the following estimates 
hold: 

( a )  (1) licit, lls(0t) ~< IlCe~lls(oo) + CEh, 

(b) liD(l)( P, Q)lls(,1,0,) ~< liD(p, q)l[s(,o, oo) + C3h, 

(2) (c) clj ( ) -  clj(0)[ ~< + C5 h. 

PROOF : In the following, C will stand for a constant that depends on N, M and m. Its 
exact value may change from equation to equation. 

Solving for X(q) from (6), we find from Lemma 1, that 

~X C~,e o 
= << ht+~ �9 X* max ~ S(Qo-h) 

Thus, recalling the definitions and equation for E / a n d  r (7), (8)), we find: 

Ce,s 0 
IIE~lls~oo-h) <~ ht+~  

C ~e o 
I~il ~< ht+X. 

Having found X, Ei, r in S(po -h ) ,  we can solve (9) for Y~ in S(Q0 -2h) .  Lemma 1 
implies 

Cyeo . 
m a x  <. ~ . Y* = max I[Yilis(Qo_2h) <~ h2 t+l  , Y~ = ~qj S(oo-2h) 
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We now show, that if Y* < 2h, that transformation (5) has an inverse qi = Q i+ f i(Q) 
with [[fi][s(oo_gh)<2h, mapping S(O~) into S(Oo-2h). We carry out the proof as- 
suming two degrees of freedom. The proof readily generalizes to n dimensions. 

In the Equation (5) involving I71, we consider q2 fixed. Rouche's theorem applied 
for [Im ql[ ~<0o -2h ,  asserts that every point Qa with lira QI[ ~<0o - 4 h  is the image of 
one and only one point ql. The derivative of the transformation cannot vanish, 
otherwise the transformation would not be locally one to one. (See H. Cartan [4] 
p. 174). Hence by the implicit function theorem for analytic functions: 

(*) ql = Q1 + 91(Q1, q2). 

Substituting this expression for q~ into the Equation (5) involving Yz, and considering 
Q1 fixed, we find as above 

q2 = Q2 + fE(Qa, Q2). 

Substituting this expression for q2 into the equation (*) establishes the equations 

q, = Q1 + f~ (Q). 
Sincefl (Q) = - Y, (q), it follows that I] f i  11S(0o - ~h) < 2h. Further if ql and Q i satisfy (5) 

so do qi+2rm and Q1 +2~zn; from this it follows that thef,(Q) are periodic. 
The estimates for X*, Y*, ~i apply in S (0o-  2h). Hence it follows from transforma- 

tion (4), that the assertion (AI) of the Lemma will follow if Co =max  (Cx, Cr Cy, Cyt, 
m+2).  We further remark that with this choice, X*, Y*, ~i are all less than h/m+2. 

To complete the proof, we write out the expressions for the terms in H (P, Q): 

with 

and 

LaqJJ D,(q) 

D(')(P, Q) = D Pi + ~i + (q )  + ~-'PJ ffqiqi (q)' q - D~ 

- -  ~, Di(q)n i -- ~, Dij(q)P, Pj 

~X 6 + 
qJ L aqkJ 

DiJ(q) /_a @kOPk cqj ' + C~qkd + ~qlJ 

where in all terms on the right we substitute qi = Qi+ fi(Q). 
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When QeS(01), assertion A1 of the Lemma implies qeS(Qo-2h), and hence the 
estimates for X*, (i, Y* apply. 

To estimate the terms D o (p, q), D i(p, q), D~ i(p,  q), we note that if D (p, q) is of the 
third order in p, and if l~> ro~>�89 with [pl<~ro/2, [p[=max(lp~l...lpm[ ) it readily 
follows from Cauchy's inequality, and then from Schwarz's lemma for several 
complex variables, that: 

lID(p, q)lls(eo) ~< Coa IPl 3 

~ (p, q) ~< c o 2  Ipl 2 
S(Oo)  

c32D q) s(eo) (p, ~< C0a [Pl. 

Thus assertion (A2) readily follows. If  we recall that X*, ~, Y~ are all less than h, 
assertion (A3), parts (a) and (b), also follow. For  part (c), we need the further estimate: 

2 ~  1; 
m "~ C,j(q) (2~) 

0 

2 ~  

(2n)" "'" 
0 

2~ ,f 
(2~ )  ~ 

0 

2~ 

f cij(q) dQ1 ... dQm 
0 

27r 

f cij(Qk + fk(Q)) OQ1 ... dQ,, 
0 

2 ~  

f Cij(Q) dQ1.., dQ,, 
0 

2 ~  2 ~  

�9 .. ~ (Qk + Ofk(Q)) fk dQ1.., dQm, 
! 0 0 

where we integrate over real Q. Thus estimating the integrand in the last term we find: 

C C 
[C,j(q) - c,~(0)] ~< - -  2h <~ - -  2h. 

Qo - 2h Q1 

This, together with our previous estimates, establishes the Lemma. 
PROOF of  Theorem 2. Using the Kolmogorov Transformations we have taken the 
Hamiltonian in the region (p, q) eS(ro, Qo) and transformed it into a Hamiltonian of 
the same form in the region (P, Q) eS(ro-2h, Qo-4h). We can now keep repeating 
the process as many times as we wish. If  we define rn+1 = rn-2h.+l, Q.+a = Q . - 4 h . + l  ; 
at the nth stage we will have a Hamiltonian defined for (P("), Q(")) aS(r., on), with 
e . = m a x  (HA(n)[[s(o.), I[B}n)[Is(o.)). 

We now wish to show that we can make Lemma 2 applicable at each stage of this 
process. To begin with, let us observe that the set of equations 

= ( L ) . + ~  xn+l x ,  n = 0 , 1 ,  2 , . . .  
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has the solution: 

(L~Xo) ~~ 
X n -- Ln+2 , n = 1, 2 . . . . .  ( 1 0 )  

This can easily be verified by induction. 
We apply this remark to Lemma 2 especially (H3) and (A2), which in the present 

notation are 
h~'++t 3 Cl a 

Thus, if we choose an L > 1 such that 

max (Co, C1) 

h3t+3 n + l  

~< L "+1 , (11) 

and then eo such that ( L % o ) = a <  1, (10) and (A2) imply that I~,1 ~ < a 2 "  and (10) shows 
(H3) is satisfied since 

1 1 / a3 t+  3 / f ,  
g,n < ~ < ~ ~ ,,n+ l l'..,~O . 

To satisfy (11), we set h,=,5/2" and L~> (23t+3/63t+3) max(Co, Cx) and L >  1. 

We now determine 6 > 0, so that certain conditions are fulfilled. Assume that in the 
original Hamiltonian 

Ic~(0) l  < N, IIGjllsr < M,  liD(p, q)lls<,o, oo> < M.  

Next we note that by the change of variables pi=Rop~,  H = R o H ' ,  qi=q'i,  we may 
always assume that our Hamiltonian at first converges for Ip~l ~< 1 or equivalently we 
may assume r o = 1. 

Since ~2= 1 hn =,5, we now choose ,5 >0,  but sufficiently small, to accomplish all of 
the following: 

N 

(a) r N = r  o - 2  ~ h . / > r  o - 2 6 / > 3 r o / 4  
. = 1  

N 

(b) QN=Qo- -4  ~ h , / > 0 o - 4 6 i > 3 0 o / 4  
. = 1  

(c) II F(.),, �9 -.ij ~s(o.) <~ M + C2,5 <~ 2 M  

(d) I[D(n)lls(,..o.) <<. M + C3,5 <. 2 M  

Ic,j(O) <. (2C  ) 
- + C  5 6 .  

\ ~o 

Hence by continuity 6 may be chosen so Id}~)[ ~<2N, with _~jd!".) the inverse matrix of 
c~? (0). 
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Thus we may continually apply Lemma 2, and have e , ~ 0  in S(3ro/4, 3qo/4 ). 
Finally, using the notation 

(pC,), Q(.)) = W(,)(p( ,+ l), Q(,+,)) 

for the mapping obtained at the nth stage of the iteration corresponding to the Fi, Gi 
of  assertion (A1) of  Lemma 2, we now describe the limit of  these mappings and show 
it fulfills the conditions of  Theorem 2. 
We define the mapping 

W(") (P, Q) = W (1)o W (2) o. . .o W (') (P, Q). 

Since w("): S(r,+ 1, ~,+l)--+S(r,, ~,), the domain of each I~ (n) includes S(3ro/4, 

3qo/4), and its range is in S(ro,  Qo). Thus the analytic functions composing the 
mappings I~ ~") (P, Q) are uniformly bounded on S(3 ro/4, 3Qo/4) and a subsequence of  
the I~ (') converges to a limiting mapping W ( P ,  Q). I t  can be shown that W ( P ,  Q) is 
unique, by using (A1) to show that the sequence W(")(P, Q) is Cauchy however the 
present p roof  does not require this. 

Siegel [11, p. 9-10] shows that a transformation is canonical if and only if its 
Jacobian a satisfies the equation 

a 'Ja  = J (12) 

where a '  is the transpose of a, and 

Since the W (") are canonical it follows from (12) that the fir(,) and W are also canonical. 
We let W be the transformation (2) of  Theorem 2. By substituting (2) into (I), the 
Hamiltonian is brought to the form (3). This completes the proof  of Theorem 2. 
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