
Z. Phys. C - Particles and Fields 38, 623-642 (1988) Part  f~r Physi~ C 

and 
�9 Springer-Verlag 1988 

Second order logarithmic corrections 
to the Drell-Yan cross-section 

T. Matsuura and W.L. van Neerven 
Instituut-Lorentz, P.O.B. 9506, 2300 RA Leiden, The Netherlands 

Received 12 October 1987 

2 calculation Abstract. We present a complete order ~s 
of the large logarithmic terms of the type lni(1 - x)/ 
(1 - x) (x = Q2/s), which appear in the Wilson coeffi- 
cient of the total and differential DY cross-sections. 
These terms are computed using renormalization- 
group methods. It is shown that besides the well known 
constant part, they constitute the bulk of the radiative 
correction. This in particular holds for the higher r- 
region which is still accessible to experiment. The large 
logarithmic corrections determine the shape of the K- 
factor and give a partial explanation of the pheno- 
menon of anomalous scaling. 

I Introduction 

During the last ten years much effort was spent by 
theorists and experimentalists in confronting the data 
of many deep inelastic processes with predictions of 
perturbative QCD. The results are rather impressive, 
in particular as far as the size of the various total and 
differential cross-sections are concerned. Nevertheless, 
the theory is still not able to provide us with an accu- 
rate description of the precise details shown by the 
experimental distributions. As an example we want to 
mention the K-factor [1, 2] and the behaviour of the 
v parameter in the angular decay distribution [3] of 
the muon-pair in the Drell-Yan (DY) process 
rc + W ~ # + #  - + "hadrons". Both of them are in dis- 
agreement with the predictions of perturbative QCD. 
These discrepancies are due to several problems which 
arise in experiment as well as in theory. 

In experiment, both statistical and systematic errors 
lead to uncertainties in the determination of the 
nucleon structure functions. Further, if one measures 
these structure functions in deep inelastic scattering 
on nuclear targets one has to correct for the Fermi- 
motion and to deal with the so called EMC effect [4]. 
As has been shown in [5] the above uncertainties 
influence the parameters in the pion structure function 

and explain partially the effect of anomalous scaling 
of the K-factor. 

As far as the theory is concerned, the measurement 
of the parameters in the parton-distribution functions 
and the running coupling constant depend heavily on 
our knowledge of the underlying deep inelastic 
processes. However, the nonperturbative properties 
of QCD are poorly understood. Here we want to 
mention the evolution of parton-jets into the observed 
hadrons and the question of higher twist effects. Our 
understanding of the perturbative aspects of the theory 
is much better, but one has to bear in mind that at 
energies used in the above experiment, the running 
coupling constant is rather big. This leads to a slow 
convergence of the perturbation series. Moreover, 
hitherto most processes have only been calculated up 
to the next-to-leading order. Some of these corrections 
turn out to be very large and are of the same size as 
the Born term. An example is the Wilson-coefficient 
of the DY total and differential cross-section [6-8 3. 

A thorough analysis reveals that these large correc- 
tions can be attributed to parton subprocesses which 
contain the maximum number of gluons in the final 
state. They manifest themselves as feZ-terms coming 
from the virtual and soft gluon contributions and as 
large logarithms of the type l n i ( 1 -  x ) / ( 1 -  x) which 
appear in the hard gluon part. The latter gives a large 
contribution near the boundary of phase space where 
the Bjorken scaling variable x goes to one. Since 
second order corrections are not available yet, many 
authors [9-13] have tried to improve the predictions 
of perturbative QCD. They resum these large correc- 
tions using various techniques. This mostly results in 
the exponentiation of the lowest order term. A second 
way to improve the perturbation series is to use a 
suitable factorization scale. This has been done in the 
frame work of optimized perturbative QCD [14-16]. 
The drawback of these approaches is that they are 
based on extrapolations of the next-to-leading order 
terms, ignoring effects coming from higher order 
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corrections. The sensitivity of the improved perturba- 
tion series to the higher order contributions will 
decrease, if the running coupling constant gets smaller 
like e.g. in W and Z production. Nevertheless, it is 
our opinion that a full knowledge of the second order 
correction is necessary in order to confront theory 
with the data. This in particular holds for the two 
types of corrections mentioned above. 

In this paper we will present a complete calculation 
of all logarithms of the type lni(1 -x)/(1 - x )  up to 

z which appear in the total DY cross-section order ~ 
da/dQZ(hl+h2-~7*+"hadrons").  This will be an 
extension of a previous article where one of the 
authors [17] has calculated the contribution for i = 3, 2. 
These results have been confirmed by [18]. We also 
determine the same type of terms appearing in the 
differential cross-section da/dxfl~dx v and discuss its 
effect on the K-factor and the phenomenon of anoma- 
lous scaling. We will show that these corrections are 
very important to the shape of the K-factor. 

2 0 ( ~  2) corrections to the total Drell-Yan 
cross-section 

In this section we will present the calculation of the 
0 ( ~ )  corrections to the K-factor of the Drell-Yan 
(DY) process 

hl + h2 ~7"  + "hadrons". (2.1) 

The colour average cross-section is defined by: 

do- 47z0~ 2 Q2 
dQ 2 - 9Q 4 z w(z, Q2) z =__.s (2.2) 

Where s represents the centre of mass energy of the 
incoming hadrons (h 1, h2) and Q2 stands for the virtual 
photon (7*) mass. From the DY mechanism it follows 
that the hadronic structure function W(z, Q2) can be 
written as 

1 1 1 
Wtz, Q2) = I dxl ~ dx2 I dx6(z - xl XzX) 

0 0 0 

"[fq(xl, Q2)fq(x2, QZ) 

+ fo(xl,  Qz)fq(x2, QZ)] A (x, Q2). (2.3) 

Here fq(fq) denotes the quark (anti-quark) distribu- 
tion functions and A(x, Q2) is the QCD correction term 
to the zeroth order DY process. In the subsequent 
sections we will limit ourselves to parton subprocesses 
with a quark and an anti-quark in the initial state. 
The correction term A(x, Q2) can be obtained from 
the DY and deep inelastic (DI) parton structure func- 
tions I~V(z,Q 2) and o~2(r,Q 2) using the following 
mass-factorization 

1 1 1 
(V(z, Q2, e) = ~ dxa ~ dx 2 ~ dx~(z - x~ x2x ) 

0 0 0 

"~" 2(xl, Q2, e )~  z(x2, Q2, e)A(x, Qz). 
(2.4) 

/ 

/ 

/ 
Fig. 1. Real and virtual gluon graphs contributing to the O(ct 2) DI 
structure function of the process: 7" + q ~ q + q + q 

Fig. 2. Real and virtual gluon graphs contributing to the O(ct~) DY 
structure function of the process: q + q ~ 7 *  + q + c] 

In this case the e represents the collinear divergences 
appearing in W and ~-2, which are regularized by 
n-dimensional regularization (e = n - 4). Equa- 
tion (2.4) only holds for the non-singlet part of the 
parton structure functions. However, from the litera- 
ture [6-8] it is known that the bulk of the correction 
can be traced back to the non-singlet part of A (x, Q2). 
Hence we are justified to limit ourselves to the calcula- 
tion of this quantity only. 

Further, we want to point out that the mass- 
factorization chosen in (2.4) is the most natural one, 
since DI lepton-hadron scattering provides us with 
the best information about the phenomenological 
(anti-)quark distribution functions. 

The O(es) DI patton subprocess, which contributes 



t o  Off- 2 is given by 

y*(q) + q(i6)-~ q(ff) + g ( k l )  (2.5) 

and the O(a 2) contributions are coming from the 
processes 

y*(q) + q(i0)~ q(P') + 9(k~) + g(k2) (2.6) 

?*(q) + q(P)~ q(P') + q(lq) + ~1(k2). (2.7) 

Equation (2.7) stands for the process where a gluon in 
the final state decays into a quark anti-quark pair 
(Fig. 1). The corresponding DY processes which 
contribute to W are given by 

q(/~l) + c1(/32)-* 7*(q) + 9(lq) (2.8) 

and 

q(/~) + c~(i02)~y*(q) + 9(k~) + g(k2) (2.9) 

q(/~) + ~(i02)--* y*(q) + q(~cl) + c](k2). (2.10) 

(See Fig. 2 for the process in (2.10).) 
From mass-factorization and the renormalization 

group we can derive the following expressions for the 
non-singlet parton structure functions. 

~r QL 5) 
O~ 2 el2 

+ {�89 | Po)(X) + floPo(x)} 52 

+ {�89 (x) + (no | fo)(X)} _I 

1 1 Q2 
+-i(Po| 

+ { �88 | Po)(X) -- �88 floPo(x) } ln2( Q2 

+ {�89 + (Po| fo)(X)- ~ofo(x)} ln(~2 ) 

+ f~ (x) J.  (2.11) 

Where x is the Bjorken scaling variable, defined by 
x = Q2/(2pq). 

r162 Q), 5) 

= 6(1 - x) + t ~ . , / t T ,  ] 

\4~) L 

1 
+ {PI(x) + (Po| 

1 Q2 +2(Po| ) 
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+ {Pl(x) + 2(Po| floWo(X)} ln( Qt~2 ) 

+wl(x)]. (2.12) 
With x = Q2/~ and ~ = (101 +/~2) 2. 

The convolution symbol | is defined by 
1 1 

(f  | (2.13) 
0 0 

The Pi(x) are the well known splitting functions which 
have been calculated in the literature [19-21] and fl0 
is the lowest order coefficient of the fl-function. The 
splitting functions are related to the anomalous 
dimension 7 (") of the non-singlet operators in the 
following way. 

The coefficients 71 ") are obtained from Pi(x) via the 
Mellin-transform 

1 
71 ") = - S dxx" -~ e,(x) (2.15) 

o 

and the flo is defined by 

(Notice that this definition differs from the usual one, 
see also (2.20).) From mass-factorization one finds that 
~(n) (n) o~z a n d W  can be written as 

~, ~2n)(Q 2, e) = A(z")(g)C~(Q 2) (2.17a) 

I7r 2, e) = {A~z")(e)} 2 C~(Q2).  (2.17b) 

Where the operator matrix element A(z")(e) is given by 

A~"~@) = 1 + 

2 

. 0 1 0  ) j - - 2 1 1  7 ~ '  (2.18) 

Here 5 denotes the collinear divergence and not the 
UV-singularity. 

Using (2.17a) and (2.18) we obtain the Wilson coeffi- 
cient C~I(Q 2) 
c~1(Q 2) 

-- 1 + ~ - �89 - ~ 7 ~ ) l n  a 

5 (n) [ Q 2 \ ]  +I<o"' +7Io lntyJj> 
(Ors ",l 2 f r• ,,,.(n),2 • ! A> ,,(.)l ( Q 2 )  

+ \4~.,/ lESt 'O '  --4voro j l n  2 
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+ [ _ �89 _ • _ flof(o.)] In + f]") 2 ~'0 J 0  

(2.19) 

An analogous formula exists for C~)y(Q2). The 
definitions above have been chosen in such a way that 
the quantities Pi(x) and fl~ can be immediately obtained 
from the literature [19 21]. Using these definitions 
C(")(Q 2) satisfies the Callan-Symanzik equation 

I # ~  + fl(O~s) ~ss - ~(n)(o~s)]C(n)(Q2,~2, O~s)=O. (2.20) 

From (2.4), (2.11) and (2.12) one can derive that 
A(x, Q2) is equal to 

A(x, Q2) = 6(1 - x) + Ao(X ) 

+ \  4~ J 
Al(X) (2.21) 

with 

Ao(x) = Wo(X) - 2fo(x) (2.22a) 

Al(x) = wl(x) - 2fl  (x) - (f0 | fo)(X) 

- 2(fo | Ao)(X) (2.22b) 

and a~(Q 2) is the running coupling constant, defined by 

0~s(fl 2) 4n 
~s(Q2)= . o  ~s(fl2), / /Q2,~-  //Q2,,~- (2.23) 

1.  )  0'n( 
Where A is a parameter which has to be determined 
experimentally. For our subsequent calculation of the 
parton structure functions we introduce the following 
notations. The parton structure functions corres- 
ponding to the processes in (2.5)-(2.10) receive contri- 
butions from virtual, soft and hard gluons*. Therefore 
we will split them up into three parts [8]. 

~" 2(x, Q2, e) = ~V(Q2, e) + ~S(Q2, ~, 6) 

+ ~, 2n(x, Q2, e) (2.24a) 

~r & ,  ~) = ~r ~) + ~r e, 6) 
+ VVn(x, Q2, ~). (2.24b) 

Where f l y ,  ~v ;  ~ s ,  ~ s  and f l y ,  Wz stand for 
the virtual, soft and hard gluon contributions respect- 
ively. The 6 in the soft gluon structure functions is a 
resolution parameter which distinguishes soft (x > 
1 - 6) and hard (x < 1 - 6) gluons. Since ~ v ,  ~ v  and 
~ s ,  ~ s  are nothing but multiplicative corrections 
to the Born-term they can be written as 

~ g  + ~ 
-= 6(1 - x)~S+V(Q 2, 6) 

=6(1-x)[F(QZ)IZB~ Q 2 < 0  (2.25a) 

- 6(1 - x)fVs+V(Q 2, 6) 
=6(1-x)[F(Q2)I2BDV(Q2,6) Q2>0.  (2.25b) 

Here F(Q 2) denotes the quark-formfactor and 
BD~(Q 2, 6) and BDV(Q 2, 6) represent the soft brems- 
strahlungs corrections to the processes in (2.5)-(2.10). 
The latter quantities appear, when there is a soft gluon 
or a soft fermion pair in the final state, and they can be 
calculated using the following formulae. 

1 
BD'(Q 2, 6) = 1 + ~ d x ~ ( x ,  Q2, e) (2.26a) 

1 - 6  
1 

BDY(Q2,6) = 1 + ~ dxITVn(x, QZ, e). (2.26b) 
1 - 6  

The O(as) contribution ((2.5) and (2.8)) to the above 
quantities can be found in the literature [7, 8]. It turns 
out that the correction to the zeroth order Drell-Yan 
cross-section is very large, about 80~o at Q2= 
100GeV 2. This is mainly due to the large ~r 2 terms 
appearing in o@s+ v (2.25a), ffs+v (2.25b) which give 
rise to a change in the overall normalization of the 
cross-section. Another source of large corrections are 
the logarithms of the type ln i (1-  x) / (1-x)  which 
appear in ~ and ~ n .  They affect the shape of the 
K-factor and are therefore relevant to the study of the 
phenomenon of anomalous scaling [1, 2]. Both correc- 
tions are due to soft gluon initial state radiation and 
in higher order also to soft fermion pair emission, see 
(2.7) and (2.10). The last process has been calculated 
and the result is given in Appendix A and [22]. From 
this calculation we infer that the virtual and soft parton 
structure functions in (2.25a), (2.25b) are a series 
expansion in the Riemann zeta function ((n)*. The ~(n) 
originate from the expansion of the gamma-functions 
which appear in the n-dimensionally regularized 
integrals. Their coefficients can only be obtained by 
an explicit calculation which we plan to do in the 
future for processes (2.6) and (2.9). In contrast to these 
terms the large logarithms mentioned above can be 
obtained by a trick, so that a long calculation is un- 
necessary. At this moment we can only determine the 
coefficients of lni(1 -x)/(1 - x )  up to O(~z), since the 
renormalization group coefficients mentioned in (2.14) 
and (2.16) are only known up to that order. 

The coefficients of the large logarithms are deter- 
mined in the following way. Let us start with the most 
general form of the correction term A(x, Q2) [6-8]. 

A(x, Q~) = 6(1 - x) + 
i 

- 0(1 - 6 -  x)Ao lnj(1 N) 
1 - x  t -6(1-x)  

* The calculation which involves the In(6) approach proceeds along * The n 2 term appearing in the O(es) part is a particular example 
the way as is outlined in [6, 8] (n 2 - 6((2)) 



(2.27) 

W h e r e  z~(x,Q 2) represents all the remaining terms 
1 

which satisfy the relation: ~dxTl(x, Q2) is finite. The 
o 

A~ stand for the sum of the virtual and soft gluon contri- 
butions as indicated in (2.25a), (2.25b). In the above 
equation we have used the fact that there exists an 
one to one correspondence between the coefficients of 
the large logarithms and those of the In 6 terms. This 

1 
follows from the constraint that ~dxA(x, Q2) is finite. 

o 
Analogous expressions like (2.27) exist for the renor- 
malization group coefficients Pg(x) and the non-pole 
terms fg (2.11) and (A) i (2.12). The ln6 terms can be 
wholly attributed to the soft bremsstrahlungs contri- 
bution in (2.26a), (2.26b). The determination of their 
coefficients proceeds as follows. 

Expanding the renormalized F(Q 2) and B(Q 2, 6) in 
a power series of as we get 

F(Q2) = 1 + ( ~ - ) F ~  2) 

(~ 2 

(2.28) 

(-) B(O2,a)= 1 + 4n 8")((2~'a) 

+ B(2)(QE,6)+~floBm(Q2,&) +.... 

(2.29) 

2 contribution to the quark-formfactor Fig. 3. Order cq and cq 
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The F (1) and F (2) a r e  obtained from the diagrams in 
Fig. 3. The B (1) and B (2) originate from the O(as) and 
O(cd) contributions to s and 17r see (2.26a), (2.26b), 
which can be computed from the following amplitudes. 

The O(as) amplitudes corresponding to the pro- 
2.5)cesses and (2.8) are denoted by mDl( f f ,  kl) and 

M~V(q kl) respectively, so that s and 17r (1) are 
equal to 

s )(x ' Q2, e,) ~ I d P S21M~I(ff , kl ) l  2 (2.30) 

I?V(,) (x ' Q2, e) ~ ~ dPS 21M~V(q, k,)12. (2.31) 

Where dPS,, stands for the n-body phase space (see 
Appendix B). 

The O(~ 2) contribution consists of two parts. 
1. The O(as) virtual corrections to MID I and MiD v, 

which we will denote by m~i'v(ff, ~Cl) and MDY'V(q, lcl) 
respectively. 

2. The O(cq 2) amplitudes corresponding to the pro- 
cesses (2.6), (2.7) and (2.9), (2.10). They are represented 
by M~'(p', lq, ~:2) and MDY(q, fq, To2). 
The 0(~ if) parton structure function can be written as 

s (x, O 2, e) ~ 2SdPS 2 {Re(MTI'V(ff, lcl) 

�9 M~'(ff,/~1))} + SdPS3IM~'(!Y, kl,Fc2)I 2 (2.32) 
i~(2)(x, Q2, ~) ~ 2~. dnS 2 {Re(M~Y,V(q, Fca ) 

�9 M~V(q,/~))} + ~dnSaIM~V(q,k~,lc2)l 2. (2.33) 

From the structure of the two and three body phase 
space integrals in Appendix B we can derive that the 
parton structure functions behave like 

/ Q 2  \el2 
s Q2, e)-(1-e)~12t#2- ) AD'(x, Q2, e) (2.34) 

^ /x l/Q2 ~e12 
W(1)(x, Q2,e)~(1-x)"t~- ) ADY(x, Q2,e) (2.35) 

and 

s ' Q2, ~) ~ (1 - x) ~/2 \ ~ ) AT',v(~, Q~, ~) 

+ ( 1 -  ~)~ (Q---~)~ AT'(~, Q~,~) (2.36) 

/Q2V 
l~V(2'(x, Q 2 , ~ ) - ( 1 - - x ) e t ~ - )  ATY'V(x, Q2,~ ) 

/ Q2 \~ 

(2.37) 

The processes mentioned in (2.5)-(2.10) lead to infrared 
(IR) singularities in the parton structure functions. 
These singularities manifest themselves as poles of the 
type ln i (1-  x ) / ( 1 -  x) in the quantities A m and A DY 
(2.34)-(2.37). From the above equations we can derive 
the In 6 dependence of B(Q 2) in (2.26a), (2.26b). Substi- 
tuting (2.28) and (2.29) in (2.25a), (2.25b) we find 
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~ +  ~(&, 8, (5) 

= l+(42~zlr){2F(I)(QZ)+B(1)'DI(Q2,(5)} 

+ k 4 n ]  ( cq "~2 { 2F(2)(Q2) + (F(1)(Q2))2 

+ B(E)'DI(Q 2, (5) + 2F(I)(QE)B(t)'D~(Q 2, (5) 

+ ~ flo(2 F(X)(Q2) + B(1)'D'(Q2, 6) ) } (2.38) 

with a similar expression for ~ s  + v. 
On the other hand the In (5 terms can be obtained 

from the insertion of (2.34)-(2.37) in (2.26a), (2.26b). 
So that we can make the identification 

flQ2 he/2 1 
B(I"DI(Q2' (5)"~ \ ~ - )  1 ~-6 dx(1 -- X)e/2 ADI(x' Q2, 8) 

/ 

(2.39) 

B(1)'DV(Q 2, (5) ~ / / 0 2  \e/2 1 ~ - )  1-,5~ dx(1-x)eA~V(x'Q2'8) 

(2.40) 
/Q2 \~ 1 

(2.41) 
/Q2 \~ 1 

B(2"DY(Q2' (5 ) -  ~ ) 1  ~-6 dX(1 -- X)2eADY(x' Q2 8) 

(2.42) 

( 2F'I)(Q 2) + ~flo)B(1)'DI(Q 2, (5) 

\ l  a2/I 1 ~_ dx(1 - x)~/zar~LV(x, O 2, 8) (2.43) 

(2F(~)(QZ)+~flo)Bt~)'DV(Q2,(5) 

_ ( e ' y  ' \ #2  ] x~0dx(1-x)~Ar~v'v(x,Q2,8) �9 (2.44) 

Hence we can derive the formulae for the soft brems- 
strahlungs contributions. 

2n DI 
B(n),Dl = (5n(e/2) E dn'i (2.45) 

i=0 8i 

B(n),DY = (she s d,D,/v (2.46) 
i=0 8i " 

In the above equations we have generalized the 
expressions for B (n)'Dl and B (n)'DY to all orders in 
perturbation theory, in particular as far as the beha- 
viour of the In (5 terms are concerned. This behaviour 
is essential for the determination of the coefficients of 
the large logarithms, as we will see below. First we 
observe that the pole terms of ,~-Sz+V and 17V s+v are 
determined up to order ~2. This can be inferred from 
(2.11) and (2.12) where Po, P1 and fo, COo are known 

from the literature [6-8, 19 21]. Next we know the 
quark-formfactor F(Q 2) (2.28) from [23]. We have 
repeated the calculation with the help of dispersion 
relation techniques [24] and agree with their result as 
far as the pole terms are concerned. From the observ- 
ations made above and in (2.38) we can determine all 
the pole terms of B(Q 2, 6). This enables us to compute 

2 all the coefficients of the In (5 terms up to order cq. 
Let us start with the determination of the (5(1 - x) 

piece of the parton structure functions ~2(x,  Q2,(5) 
(2.11) and W(x, Q2,(5) (2.12). In Appendix C we have 
listed all renormalization group coefficients in the limit 
x--* 1. Substituting them in (2.11) and (2.12) we obtain 
for the soft and virtual part the following expressions 

In ~-s2+ V(Q2 , 6) 

= ~ -  CF (81n(5+6)-e 

+ 2 In 2 (5 -- 3 In (5 -- 9 -- 4((2) + e {�89 In 3 (5 -- �88 In 2 (5 

+ (7-- 3((2))1n 6 + �88 + 9}/  

~s 2 2 Q2 

+ (2 + 12((2) + 56((3) - 32((2)In (5)~ t 

+ CACF t ( ( ~  - 8((2)) In (5 + ~z + ~4((2) - 12((3))! 

1 11 ~ ln (5 ) lnz (Q 2 )  + (~  In (5 + 22) ~ + ( -  T 

+ ( _  221n 2 (5 + ( ~ Z _  8((2))1n 6 

+ ~ + ~ ( ( 2 ) -  12((3))1n ~ -  

. 

+ ( - ~ 6 1 n ( 5 - 4 )  + ( l+~ ln (5 ) ln  2 #2  

+(~1n2(5 5Sln 19 16 ( Q 2 ) } ]  (5 - -T--T((2) l ln  7 

(2.47) 

In ITv s + V(Q2, 6) 

O{ s Q2 e/2 

�9 [ (16  In (5 + 12)-1 + 8 In 2 (5 - 16 + 8((2) 
l_ 8 

+ e(w 3 (5 - 6((2)In (5 - ~-((2) + 16)~ 
A 



f e~'~2l~2f Q2"~ f. 128((2)12 
+t ,~)  L'-"t,~ 2 ) t -  

+ (3 - 24((2) + 304((3) - 256((2)In 6)! t 

+ CACvt((5~-- 16((2))In 6 + ~z + ~ ( 2 ) -  24((3))~ 

+ ( -  ~ l n  2 6 + ( ~  - 16((2))In 6 + ~ - 24((3)) 

Q2 { ( -  ~~ 6 - 2 _ �89 ~(2))1 

+ ( -  ~Zln 6 - 8) 12 + (~- In ~ + 2) ln2 ( Q2 )/~2 

Q2 
+ (~6 ln2 6 -- ~ l n  6 - ~4) In ( /~2)}] .  (2.48) 

We have suppressed terms of the type 7E- ln(4rc) 
(?E = Euler constant) in the above and subsequent 
equations. They originate from n-dimensional regular- 
ization but disappear in the finite correction term 
a(x, Q2).. 

The renormalized quark-formfactor for space-like 
and time-like Q2 is given by 

lnIF(Q2)I 

---=(gs~l\egJ ( 0 ~ )  2 F(1)(Q2)I + 

�9 {IF(2)(Q2)I-�89 } 

=Cv ~ ~2 -e2 + e +  ((2) - 8  

+ e(8 - �88 -- 7((3)) / 

\ 4 x ]  I C ~ ( # 2 ) {  (~-12~(2)+24((3))14 

- ~ + 29((2) - 30((3) - 44((2)2 t 

1 
+ (~4 ~ + 11((2) - 26((3))- 

8 

T i t T ) +  ( -  2((2))1n 2 Q2 

* We use the MS scheme to remove UV-singularities 
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44 1 1 
+ -~ -~ -  + ( - ~  + 4((2)) 

+ 54 T a~((2) - 26((3) In 

51157 337 F/")h } - ~ -  ~ -  ~ . . ,  + ~ ( ( 3 )  + 4"((2)  2 

{ ;  161 65 +nrCr 9 ~2 + ( - ~ - 2 ( ( 2 ) )  -1 

-- 291n3 (#Q:) + ~ln2 ( ~ )  

(831 201 209 ~ ) (Q#:) 
+ ~ +  9 e 27 ((2) In 

+ ~ + a~((2) + 2((3)}1 

+ ( ~ ) 2  { CACv ( - 22((2) In (/~Q@) 

233 ) + ~ ( ( 2 )  - 12((2) 2 

+ nl Cv (4{(2) In (#Q~-) - ~((2))  } 1. (2.49) 

Note that the first three terms of the Cv part of the 
formfactor exponentiate. Since the leading pole terms 
in the quantities B DI and B ~ have to cancel the corres- 
ponding ones appearing in the quark-formfactor we 
make the following ansatz, see (2.39)-(2.44). 
In BDI(Q 2, 6) 

( ~s ~2/B(2',DI([~ 2 ~' !/B(1),DI(I~ 2 
+ t ~ 7 _ _  l , ~ ,  , - 2 ,  ,~  ,a)) 2 

2 2 a)} +-  floB(1)'m(Q 

/0~ \/Q2\e/2 [- +2 flo o: s 

F 1 6 - 6  ] 
�9 Le2 e + 7 -  6((2) + e ( -  7 + 9((2) + ~((3)) 

{ o~s ~2 / Q2"," V [ a~I2 a~l _ o, ] 

( bDl DI DI 
+ cAc~2~  + b~ + b~l + bT~ ~ 3 ,32 

CcDI -1-C712-'}-C71-1-C71tl (2.50) 
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In  BDY(Q 2, 6) 

(X 2 
+ ( ~ )  {B(e)'DY(Q2,6)--�89 

=\U~j\-jJ F [ l + e  \ 4 n i l  

. [ ~ -  6((2) + e ~ ( ( 3 ) ]  

DV bO2V+~21 + b  ~ 
+ C A CF .+ e2 g 

[.( ~DY cDY DY } 1 
- -  ~ ~C23 . 22 C21 DY (2.51) + n ,  cv ~ - + ~ + - - + C 2 o e  �9 

The residues of the pole-terms in the above equations 
can be derived from the equalities (2.25a), (2.25b) i.e. 

lno~S+V(Q2,6) = 21nIF(Q2)] + lnB~ (2.52a) 

In WS+V(Q~,6) = 21nlf(QZ)l + In BDV(Q2, 6) (2.52b) 

and (2.49)-(2.51). The results are given in Table 1. 
Notice that in contrast to F(Q 2) the C~ part ofB(Q 2, 5) 
only exponentiates in the first two terms. The coeffi- 
cients a2o and b2o have not been calculated yet. 
However, the c2o term has been calculated in [22] 
and Appendix A and is given in Table 1. These 
coefficients are needed for the determination of the 
constant part of the K-factor i.e. the A~ in (2.27). Using 
Table 1 and the arguments given below (2.27) we are 
able to compute the coefficients f~ and w~ in (2.11) 
and (2.12)�9 The results are 

, ,~  ~0(1-6--x)  
f l tx)  = -(~__~ [C2{~- ln3(1-x ) -301n2( l -x )  

Table 1. The residues of the pole-terms in the soft bremsstrahlungs 
corrections B D~ and B ~ (See (2.50) and (2.51).) 

DI DY 

a22 --32((2) -- 128{(2) 
a2~ -- ~ + 36((2) + 8~(3) 256~(3) 
62o ? ? 
b2 3 as 88 

b= ~-8( (2 )  ~ - ~  8((2) 
b2, - - 4 ~  + ~9-((2) + 40((3) -- ~~ + ~-~((2) + 28((3 ) 
b2o ? ? 

16 16 c2~ ~- 
76 ~0 C22 - -~-  - -~-  

Cz~ ~ - ~ ~  12172 ~ ( ( 2 )  
7081 95 64 C20 - a ~ - + ~ - ( ( 2 ) + ~ - ( ( 3 )  --~]-328+7~ ) ~ - s t  ) 

+ (20 - 96((2))1n(1 - x) + z~z + 36{(2) + 8~(3)} 
+ CACe{ - 91n  2 (1 - x) + (3_~_~7 _ 8((2))1n(1 - x) 

~ 5 ~  • ~ ( 2 )  + 40~(3)} 
- x) + ~ - - ~ ( 2 ) } - ]  +nfCF{~ln2(l_x)_~ln(1 247 s 

+ 6(1 - x)[C2{~ln46 - 10In 3 6 + (10 - 48~(2)) In 2 6 

+ (2@z + 36~(2)+ 8((3))In 6} 
+ CACv{ -Z~ ln  3 6 + (z~87 - 4~(2)) ln2 6 

3155 44 + (-- ~w- + T~(2) + 40~(3))1n6} 
+ nsC v {41n3 5 - Z~ln z 6 + (a~77 - 8~(2))In 5} ] 

(2.53) 
x~l 0(1 - a - x) 

w l ( x ) -  i l - - ~  [CeZ{8@6 ln3(1 - x) 

+ 96 In 2 (1 - x) - (256 + 576~(2)) ln(t - x) 

+ 256 - 240{(2) + 512~(3)} 
+ CACv{ -- ~6 ln2(1 -- x) + (Z~Z _ 32((2)) 
�9 ln(1 --x)--  1616 176 27 + ~ - ( ( 2 )  + 56{(3)} 
+ nzCz{91n2(1 - x ) -  ~9-1n(1 - x) 

+ ~74 - 9{(2)} ] 
+ 6(1 - x)[C2{Z@4 in 4 6 + 321n 3 6 

- (128 + 228 {(2)) In 2 6 + (256 - 240~(2) 

+ 512~(3))1n6} 
+ CACv{ -- l@ln 3 5 + (s36 _ 16~(2))1n z 6 

1616 176 56~(3))1n 6} + ( -  2 v - + ~ - ~ ( 2 ) +  
+ nfCF{~ln 3 6 - - ~ l n  2 6 

+ (~2~74 - 332-((2))In 6} ]. (2.54) 

In order to obtain expression (2.27) by means of 
mass-factorization it is convenient to calculate the 
Mellin-transform of the parton structure functions ~'z 
(2.11) and I~ (2.12). In Appendix B of ref. [10] one 
can find the Mellin-transforms of the distributions in 
the limit n ~ oo which is equivalent to x ~  1. Using 
these formulae, we find 
In ~(2n)(Q 2, g) 

\ 4 r c f \ # z  f CF ( - 8 I n n + 6 )  

�9 +21n z n + 3 m n - 2 ~ ( 2 ) - g  

( c ~ ) 2 [  C2\#(Q@~ ~ ( 3 -  12~(2) + 24~(3)) 1 - / (  e + 

+ (3_  12((2) + 24~(3))1n n t 

-1- CACF{((--2~"~ 8 ~ ( 2 ) ) 1 n  n 

1 
+ ~67 + ~ ((2) - 12((3))- 

8 

+ (-- ~ I n  n + 22) 1~ + ( ~ l n  n - ~t)ln2 (Q~-) 

_.~ 22 _2 ( - w i n  n + ( - ~ 7  + 8r n 



+ z @ +  2 2 ( ( 2 ) -  12((3))1n 7 

+ Zoaln 3 n + (~287 - 4((2))In 2 n 

/'3155 22 t + ~ z -  - ~- ((2) - 40((3)) Inn 

( ~  In n - �89 - 8 ((2))_1 + nf CF 
[ 

<) + ( ~ 6 1 n n - 4 ) ~ + ( - 4 1 n n +  1)ln 2 ~ -  

<) + (-~ln 2 n + ~ l n  n - ~ - 4((2))In 

- ~ln3 n - z99 In2 n + ( - ~ -  + ~((2)) Inn j , j .  

In ~r e) 

( ~ ) ( ~ ) ~ / z  Cv { 1 = ( -  161nn + 12)- 

+ 8 1 n Z n -  16 + 16((2)} 

+ ( ~ ) 1  [ C2(gQ@)'{(3 - 24((  2 ) 

CACv~((-- ~ + 16((2))1n n + 
t 

+ 48((3))~} 

+ ~z + ~ ( ( 2 )  - 24((3)) 1 g 

+ ( - ~ l n n  + 4 4 ) ~  + ( ~ l n n - l l ) l n 2  ( ~ )  

+ (-- ~ l n  2 n + (-- ~ + t6((2))1n n 

+ ~ -  - -3- ((2) - 24((3))In 

+ t-~-~6 ln3 n + (59@ - 16((2))ln2n 

+ (x~_ _ 56((3)) In n t 

<) + ( - ~ l n n + 2 ) l n  2 ~ -  + ( ~ l n Z n + ~  ~  

- - ~ l n 3 n - ~ - l n 2 n - Z ~ 4 1 n n } l .  

Mass factorization (see 2.4) yields 

(2.55) 

(2.56) 

In A~")(Q 2) 

631 

= In 1~(")(Q 2, e) - 2 In o~")(Q 2, e) 

"g~ ( e s (Q2) )  C F {4 In z n - 6 In n + 2 + 20((2)} 
\ 4~ ] 

+ \  4re J [ C ~ { ( - 3 + 2 4 ( ( 2 ) - 4 8 ( ( 3 ) ) 1 n n }  

+ CACF{~ln 3 n + (~ -  -- 8((2)) In 2 n 

+ (-- 57 + ~ ((2) + 24((3)) In n} 

+ nf CF { -- ~ln a n -- affln 2 n + (10 -- ~((2))In n} ]. 
(2.57) 

Where the/3 o In (Q2/#2) term was removed using the 
definition of the running coupling constant  (2.23). 

Taking the inverse Mellin-transform of A(n)(Q 2) 
we get 

A(x, O 2) 

x~10(1 -- 6 - -  X) E ( ~ )  
- ( i  5 ~j- CF(8 In(1 - x ) +  6) 

+ {es(Q2)~ 2 { C2(32 ln3(1 - x) + 72 ln2(1 - x) 
/ 

+ (52 + 64((2))1n(1 - x) + 15 + 24((2) 

+ 112((3)) + CA Cv( -- 44 ln/(1 -- x) 
+ ( ~ -  16((2))ln(1 -- x) 

+ 57 + ~ ( ( 2 )  -- 24((3)) + n fCr 

�9 (8 ln2(1 - x) - ~ l n ( 1  - x) -- 10 -- *36((2))} ] 

+ 6 ( l - x )  
1 +  2 4re J 

�9 CF(4 In 2 ,5 + 6 In ,5 + 2 + 16((2)) + //~'(0~) ']2 
\ 4re ] 

�9 {C2(8 ln4`5 + 241n3,5 + (26 + 32((2)) ln2`5 

+ (15 + 24((2) + 112((3))1n,5 
624-( 2 2 + 2 +  1 4 ( ( 2 ) + 4 8 ( ( 3 ) + ~ -  ( ) ) 

+ CA Cv( - ~ In3 ,5 + (169 _ 8 ((2)) In 26 

+ ( 5 7 +  88 2 ~ T ( (  ) - 24((3))1n,5 

- ~ ( ( 2 )  -- -~((3) + 8((2) 2) 

+ nfCv(~ln 3 ,5 - ~Zln 2 ,5 - (10 + ~6-((2)) In 6 

+ 22-((2) + ~ ( ( 3 ) ) } 1 .  (2.58) 

The coefficients of the leading and next-to-leading 
terms in (2.57) and (2.58) were already found by an 
explicit Feynman diagram calculation in [17-1. This 
calculation was confirmed in [18], where it was also 
shown that the well known exponentiat ion [9, 10] of 
the 4 In 2 n + 2re 2 could be generalized to the exponen- 
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tiation of the complete lowest order assymptotic term. 
In IR behaved theories like QCD the typical form of 
(2.57) and (2.58) is characteristic of all quantities which 
are calculated in the limit where only soft gluons and 
fermion pairs are contributing. As an example we 
mention the O(a 2) calculations of the Sterman- 
Weinberg formula in [23] and the low PT DY differen- 
tial cross-section in [25]. In all these expressions large 
logarithms appear, of which the coefficients can be 
derived from the non-singlet anomalous dimension in 
(2.14). In the limit n ~  oo the latter can be written as 
follows (see [20] and Appendix C). 

7 t~176 = 7 (K) In n + ~. (2.59) 

Where y(~) is the residue of the IR singularities appear- 
ing in the formfactor and in the soft bremsstrahlungs 
factor as given in (2.49)-(2.51). Its definition is given 
in [26]. Notice that it is a renormalization group 
invariant in contrast to ~. The latter merely represents 
the residues of the collinear divergences. From (2.14) 
it follows that y(K) and ~ can be expanded in ~, 

7 tK) (O~s~"(K)"I-(O~s~2]) (K) (2.60a) 
= \ 4 a : )  i '~ " \ 4 f t . }  + " "  

(-) ~ =  ~ ~o \ 4 ~ }  ' 7~+ ' "  (2.60b) 

The coefficients 7~ ~ and ~ can be found in Appendix C. 
Expression (2.57) can be rewritten into 

In A(")(Q 2) 

(~s(Q2) "] [�89 r) In 2 n + fo In n + CF(2 + 20((2))1 

-~- -- ( g s ( Q 2 ) -  ~2  r 1R ~,(K)in s n + 1(7]~) + f loTo)  

�9 ln 2 n + (~1 + floCF(12((2) -- 14))ln n]. (2.61) 

We checked that the same type of expression can be 
found for (72) in [23] and for (15) in [25] and we 
believe that this can be generalized for all quantities 
which are dominated by soft gluons and soft fermion 
pairs. 

3 0 ( ~ t  2) corrections to the differential Drell-Yan 
cross-section 

The DY differential cross-section will be denoted by 

2qL d2a 4n~2 W ( x ~  ~ x F (3.1) 
dxO dxO - 9 Q y  = x/7" 

Where qL is the longitudinal momentum of the virtual 
photon. Further, x ~ and x2 ~ are defined by o o X 1 X  2 = g 

and xr  = x ~ - x ~ Since we deal with the same QCD 
processes as in the previous sections, the hadronic 
structure function becomes 

w(x ~ x ~ Q~) 
1 1 1 1 

= j d t l ( d t 2 ~ d x  1 Idx2b(x  ~ - tlXx)(~(X 7 - -  t2X2) 
0 0 0 0 

. [ fq(t l ,  Q2)fq(t2, Q2) + fo( t l ,  Q2)fq(t2, Q2)] 

�9 d(xl,-x2). (3.2) 

Where A(xl ,  x2) is the non-singlet QCD correction 
term, which is determined in the following way 

~(zl, z~, & ,  ~) 
1 1 1 1 

= Sdtl Sdt2 5dXl Sdx2c~(zl - tlxl)c~(z2 - t2x2) 
0 0 0 0 

�9 ~ 2 ( t l , Q 2 , g ) ~ , 2 ( t 2 , Q 2 , e ) A ( x l , x 2 , Q 2 ) .  (3.3)  

The I?V stands for the patton DY structure function, 
which is defined in the same way as the hadronic one 
in (3.1), whereas ~ 2  is given by (2.11). From the lowest 
order calculation [7, 27] of A(xl,  x2) we infer that it 
can be written as (Appendix D). 

A(x.x>O 2) 
= 6(1 - x~)6(1 - x2)As+v(Q 2, 6) 

+ 6(1 - xl)0(l  - 6 - x2)as+v+H(x2, Q2, 6) 
+ 0(1 - 6 -  x~)6(1 - xe)AS+V+I~(x~, Q2, 6) 

+ 0(1 -- 6 -- xl)0(1 -- 6 - -  X i ) z ~ H ( x 1 ,  X2). (3.4) 

From (3.3) and the expression for ~-2 in (2.11) we can 
derive the same form for l?V(xl, xz, QZ, e) as for 
A(X1,X2). From the lowest order result for A(x 1, x2) 
a n d ~  2 we are now able to determine all pole terms 
in W which leads to an analogous expression as given 
in (2.12). We aim to determine A(xl,  x2) in the limit 
xl ,  x2 ~ 1, which will be the analogon of formula (2.58). 
We can proceed along the same line as has been done 
in the previous section. However, here we encounter 
some complications which are due to the C 2 part. 
The problem of the calculation of this part is revealed, 
if one looks at the perturbative expansion of W(za, z2), 
which cannot be presented here since it is too long. 
The origin of the difficulty can be traced back to the 
second and third part of (3.4). In contrast to the total 
DY cross-section the In ~ terms do not only appear in 
the double g-function term, but also in the single ones. 
Since the quark form factor only contributes to the 
double g-function, it is very difficult to compute the 
soft bremsstrahlungs factor B~ (2.26b) for 
the single 6-function. The situation is different for the 
CACF and nyCF terms, because in these cases the 
calculation is very similar to the lowest order one, as 
we will show in Appendix D. Therefore we decided to 
choose a different approach which will be inspired by 
our findings in the last part of Sect. 2 and by the form 
of the lowest order correction term. 

Let us start from the double Mellin-transform, 
which is defined by 

1 1 
f(.,,,2) = ~ dzl Jdz2z~'-  1z~22- l f ( z  D z2). (3.5) 

0 0 



The lowest order contribution [13] to A t .... 2) is given by 

- 31nn 2 + 2 + 20((2)}. (3.6) 

A comparison of (3.6) with the lowest order expression 
for d t") in (2.57) shows that they are equal for nl = n2 = 
n. Our  first assumption will be that A (" .... ) is equal to 
A t") for na = n 2 = n and n ~ oo to all orders in as. The 
second assumption is that d t"''"2) has the same struc- 
ture as given in (2.61). This implies that the lowest 
order correction exponentiates completely and that 
the other coefficients are given by the fi-function, the 
non-singlet anomalous dimension yr,) and some 
unknown constants, which follow from the first 
assumption. 

We make the following ansatz 

lnd(  ..... )(Q2) 

/as(Q2) "~ rl-,,tr) n n 1 In n 2 + �89 n 1 + In n2) =t 4~. ]Lzr~ 1 
+ C,(2 + 20~(2))3 

\ - T ~ - - J  [�88176 n~ In n2 + In n~ In 2 n2) 

+ �89 ? (1 K) Inn 1 Inn 2 + �88 flo % ( ln2 n 1 + ln2 n 2) 

+ �89 + flo Cv(12~(2) - 14))(ln n~ + In n2)]. (3.7) 

The splitting of the In n~ In n2 and the In 2 nf terms for 
the C A Cv and n I C F part seems artificial. However, in 
Appendix D we will show that the structure of the 
above formula can be derived in the same way as has 
been done in the previous section. An interesting 
feature of the above equation is that 7 (K) only 
contributes to the mixed logarithms ln~n~ln~n2, 
whereas ~7 only determines the coefficients of unmixed 
o n e s  I n  i n k. 

Taking now the inverse Mellin-transform of (3.7) 
we get 

A(x,, x 2, Q2) 

= 6 ( 1  - x d 6 ( 1  - x ~ )  

�9 1 + Cv(4 In 2 6 + 6 In 6 + 2 + 20((2)) 

(~,(Q2)'~2 {C~(8 ln* 6 + 24 In ~ 
) 

+ (26 + 64~(2))In ~ ~ + (15 + 72((2) + 48((3))1n 

+ 2 + 31((2) + 208((2) ~) + CACv( --~4-1n3 6 

+ ( ~ -  8~(2))1n 2 6 + (57 - 24~(3))In (5 + 11~(2)) 

+ n~Ce(~ln a 5 -Z#ln2  6 - 101n 6 - 2((2))} ] 
_1 

a(1 - x D 0 ( 1  - ,~ - x2) + 
( 1  - x2) 
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F /cq(QZ)'~ c 3 ) "< + 41n6) 

+ (~(Q2)'~2 {CrZ(( 9 _ 16r - x2) 
\ 4rt ) 

+ ~ + 36~(2) + 24~(3) + (16 In 2 6 + 24 In ,5) 

�9 ln(1 - x2) + 121n 2 5 + (17 + 80~(2)) In 6) 

+ CaCF( - 11 ln(1 - x2) + ~ -  12~(3) 

- ~ l n  6 ln(1 - x z )  - ~Zln 2 6 + ( z ~  _ 8 ( (2 ) ) In  6) 

+ ny Cr(2 In (1 - xz) - 5 + ~ln 6 ln(1 - x2) 

+ ~ln 2 a - ~ l n  0)} [ + Ex, , - - } x 2 ]  

+ (as(Q:) ,]2 {C~Z'( 32 ln(1 - x,)ln(1 - x2) 

+ 24(ln(1 - xl)  + ln(1 - x2)) + 17 + 80~(2)) 

+ CACv( - ~(ln(1 - xl)  + ln(1 - xa) ) 

+ 26~_ 8~(2)) 

+nfCv(-~(ln(1-x~)+ln(1-x2))-~)}l. (3.8) 

1 

The ln6 terms follow from the condition that Sdx~. 
0 

1 

Sdx2A(xl, x2) is finite. 
0 

4 D i scus s ion  o f  the results 

Here we will discuss the usefulness of the approximate 
expressions for the DY correction terms, which have 
been derived in the previous sections, We will look 
into the range of applicability of the approximation 
and its relevance to the anomalous scaling of the K- 
factor. This phenomenon has been discovered by the 
NA10 group [1, 2] and it shows up at medium values 
of z. 

The approximate formula for the DY correction 
terms are given in (2.58) and (3.8). They have been 
derived in the limit x-+ 1 and xl,  x z --+ 1 respectively. 
We will show that in practice these expressions can 
be applied in a much larger range than only near the 
boundary of phase-space, where z ~ 1. 

Starting with the total cross-section (2.2), we define 
the theoretical K-factor by 

K t h  =" ~ K ("). (4.1) 
n=O 

Where K (") represents the order ~ contribution to 
the K-factor. It is defined as 



634 

4.0. 

3. ~ _ 

o 
b 

% 
+ 

2.C 

I.~ ~ l ~ [ ~ l ~ I i 

0.2 0.4 0.6 0.8 1.0 
T 

Fig .  4.../((0) --A- "~exact'/((1). so l id  line, K (~ + ~xapp.'~(x). d a s h e d  l ine 
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KO.,) _ \ dQ 2 ] W")(z, Q") 

( da(O),~ - w(o)L(.r, Q2)" (4.2) 

cIO" J~,., 

da(.) 
The relation between ~ -  and W (") is given in (2.2). The 

latter is determined by the order a~" term in d(x, Q2) 

( da~~ is the naive DY using (2.3). The quantity \d-d~-]LL 

cross-section with the parton distribution functions in 
the leading log approximation. The nucleon structure 
functions used in the numerator and denominator of 
(4.2) can be found in the first column of Table 1 in [2]. 
The pion structure functions in the numerator and 
denominator are obtained from the NLLA and LLA 
parametrizations respectively. These can be found in 
Table 2 of the same reference. Our figures are presented 
for a CM-energy of ~ = 19.1 GeV, where the data of 
the NA10 group have been taken. 

We want to compare the exact DY correction term 
(see 2.27), which we will call A . . . .  t, with the approxi- 
mated one. The latter, denoted by Z~app, is defined as 

A,r.r,(X, Q2) = A .. . .  ,(x, Q2) _ z~(x, Q2). (4.3) 

The definition of zl(x, Q2) is given in (2.27). It contains 
all terms which are integrable in x = 1. Up to order 
c~ the expression for A(x, Q2) can be obtained from 
(2.22a), (C.6) and (C.7). It is equal to 

~ ,  (o~(Q~)'~ c ,_ ~l(x,u. )=[ , -4n-n;  FL--4(1 +x) ln(1 - x )  

- 8 x  - 1 2 3 .  ( 4 . 4 )  

The coefficients A u and Ai in (2.27) determine 
Aapp(x ' Q2). Up to order c~] they can be found in (2.58). 

In Fig. 4 we have plotted K (~ + Kgx)~c t (solid line) 
and K (~ + K (1) (dashed line). In this figure we see ~ app 

that the difference between these quantities is negligible 
for z > 0.3. This is remarkable, for one would expect 
that the relation: K . . . .  t = K,pp is only valid for z ~ 1. 
The O(~ 2) expression for A(x, Q2) is not yet known. 
However, one can argue that it is still negligible with 
respect to the other contributions to A(x, Q2). This 
can be inferred by studying e.g. the corrections to pro- 
cesses which do not contain soft and virtual contribu- 
tions and therefore only consist of Z~(X, Q2). An 
example is q + q - - . q + q + y *  which has been cal- 
culated in [28]. One finds that the contribution of this 
process to the DY cross-section is negligible and that 
the O(~ 2) expression for zl(x, Q2) is a sum of poly- 
logarithms which go to zero, if x ~ 1. The same observ- 
ation was made in [29]. In this paper one has 
calculated the order c~ ~ QED initial state photonic 
correction to the process e + e---*/~+/z-. This corres- 
ponds to the Abelian part of the DY processin (2.9) 
and (2.10). Here we observe that the terms in A(x, Q2) 
are small with respect to those originating from soft 
photon radiation, which appear in Aap p. Summarizing 
our discussion we conclude that for r > 0.3 we can 
replace A . . . .  t by Aap p. For the study of anomalous 
scaling only the high z region is relevant, so we will 
use Aaop in the subsequent part. 

Using (2.3) and (2.27) W(")(v, Q2) can be written as 

(n) 2 
W a p p ( : ,  Q ) 

, ,  ,24 siQ  " V, 
2 n - 1  1 

�9 ~ .--77A,flnS+l(1-z)+R(")(r, Qe). (4.5) 
j=o j-t- l 

Where the coefficients A,, A,s for n = 1, 2 can be read 
off from (2.58). The expression for w m  is completely ' ' a p p  

known. However, since the C 2 and CaC r contribu- 
tions to A2 are not calculated yet, we are not able to 
determine W~,Zp)p. Therefore one assumes that A2 is 
obtained from A~ by exponentiation, so that A 2 = 
1/2(A02. In this case w ~2~ is given by the O(~ 2) ' '  app 

part of A(x, Q2) in (2.58). In the literature one assumes 
that the contribution to the K-factor can be wholly 
attributed to the A, and the leading ln2"(1 - z )  term 
in (4.5). However, as we can see in Fig. 5, this assump- 
tion is only correct, if r is almost equal to one. (In 
Fig. 5 the numbers 1 (4), 2 (5) and 3 (6) correspond to 
the contributions to K (~) (K (m) coming from the first, 
second and last part of (4.5).) In the medium z region, 
which is experimentally accessible, the leading 
In (1 - z )  terms are nearly completely cancelled by the 
next-to-leading ones and the correction is dominated 
by the first and last terms in (4.5). This holds for K m 
as well as K ~2). From this we infer that almost in the 
whole ~ range the shape of the K-factor is determined 
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Equation (4.5) is split into three parts for each order of cq: 1: A~, 
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x / s =  19.1GeV. 4: A2, 5:1#(1 - z ) ,  6: R(~)(z,Q ~) 

by R(")(q Q2). It also gives an important contribution 
to the overall normalization of the K-factor, in parti- 
cular for r > 0.5�9 The same conclusions hold, when the 
leading log parton distribution functions in ,;40)vv LL of 
(4.2) are replaced by the scale independent ones. The 
importance of the term R~176 Q2) to the phenomenon 
of anomalous scaling will become clear when we 
discuss its analogon in the case of the differential DY 
cross-section. 

In the literature one assumes that the radiative 
correction is dominated by the Ce part of the A, and 
the (leading) l n2" (1 - z )  term in (4.5). In order to 
improve the perturbation series one performs a resum- 
mation of these terms, which is usually done by expo- 
nentiation. Generalizing the exponentiation to the 
total O(a~) term we obtain 

W a p p  ( r  ' Q 2 )  s (n) 2 = W ~ ( r ,  Q ) 
n = 0  

= s R(,)(r ' QZ) + W(O)(r, Q2) exp ~ Cv 

�9 {4In z (1 - z) + 61n(1 - r) + 16~(2) + 2}]  

(as~2{C2(  - 32~(2)1n2 ( 1 -  r) " l + \ 4 u /  

4- (t 1%(3) - 72~(2) 4- 3)In (1 - "c) 

- ~ ( 2 )  ~ + 48~(3)  - 18 ~(2)) 

+ c~ c A ( ~ - ~ -  8 ~(2))ln~(1 - ~) 

+ ( -  24((3) + 88~(2) + ~ ) l n ( 1  - r) 
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+ 8~(2) 2 - ~ ( 3 )  - 196~9 ~(2)) 

4- niCe( - ~ln2(1 - r) - (16~(2) + ~ )  In (1 - z) 

+ ~ ( 3 )  + ~9z~(2))} + \ 4 r e ]  { ' ' ' }  + "'" " (4.6) 

Following [11] we have absorbed the ln(1 - z )  in the 
running coupling c o n s t a n t  ~s(Q2), SO 0~ s is given by 

~s --  0~s(Q2( 1 - -  r)). (4.7) 

The argument of the exponent was already derived in 
[17, 18]. This resummation is only useful if the follow- 
ing conditions are satisfied. 

�9 The perturbation series is dominated by the 
ln(1 - ~) terms. 

�9 A, does not deviate too much (A1)"/n!. 
�9 R(,)(z, Q2) is small. 
�9 Qz(1-r)>>A 2 (See (2.23))�9 

However, for medium r values (r < 0�9 these condi- 
tions are not satisfied, since the sum of the lni(! - r )  
terms is small compared to  R(n)('c,Q 2) (see Fig. 5). 
Notice that the medium z-region is accessible to 
experiment [1, 2]. Further, it is not clear whether A, 
really exponentiates. This question we hope to answer 
in the future when the exact value of A 2 is known. 

We now call our attention to the differential DY 
cross-section (3.1), which is of more relevance to 
experiment than the total one. In the subsequent part 
of this section we will use the differential cross-section 
in the following form (3.1) 

d2o - 2x /z  dZa 
(4.8) a,/;axF + xo ax0dxo 

Proceeding in the same way as at the beginning of this 
section, we will first discuss the validity of the 
approximate DY correction term Z~app(X1, x2), given 
by (3.8), in the experimental r-region. For this purpose 
we compare the O(es) contribution t o  Aapp(Xt, X 2 )  with 
the exact O(cq) correction A .. . .  t(xl, x2), which can be 
found in [7, 16, 27]�9 Let us first define the differential 
K-factor. 

(d2o- ( ' )  ~ 

aK("' = , , a , / ; a x #  w'"'(x ~ x ~ 
( d2a(O) "] = W(O)L(xO ,xo2, Q2)" (4.9) 

The quantities which appear in the numerator and 
denominator of the above equation are the analogons 
of those defined below (4.2). In Fig. 6 we have plotted 

(1) dK (~ . . . .  t and dK (~ (~) versus z for - ~ - a p p  

xF = 0. Form this figure we infer that the difference 
between the exact and approximated K-factor dis- 
appears for r > 0.4. This situation was also observed 
in the case of the total cross-section. Following the 
same arguments as have been given before, we assume 
that the difference between dK(") and ,//4(") will ~- ~ - exac t  ~ ~ a p p  
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vanish in the same r-region for n > 1. After the 
convolution of A(xa,xz)  with the parton structure 
functions, we can write 

w(",(x o, x o, Q~) 

= ..o 
-".2,~ , \  4~ } " 

O~ 2 n 
W(O)tx o x o ,q2, f s(Q ) )  + , , ,  

�9 ~ s z~uln'(1- xO) lW(1-  x o) 
i = 0 j = 0  

+ / ~ , ) ( x  o, x o, Q2). (4.10) 

The coefficients A,, A,, u can be derived from (3.8). 
Notice that the exact z] 2 is not known yet since we 
derived it from A 2 in (4.5), which was obtained by 
exponentiation. In Fig. 7 we have plotted the order 
~ (~2) contributions from the first 1 (4), the second 2 
(5) and the third term 3 (6) of  (4.10) to dK ~) (dK ~z)) 
for xv = 0. As has been observed in the case of the 
total cross-section, the first and the last part of  (4.10) 
constitute the bulk of the radiative correction. The 
logarithms of the type ln~(1 - x~ - x ~ cancel 
each other in the experimentally accessible r-region 
and they only contribute at very high v values. Further, 
we see that/~") determines the shape of the K-factor 
and dominates the correction for ~>0 .7 .  These 
features can also be observed for x v values other than 
zero. In order to show this we adopt the presentation 
of the experimental data in [1 ,2]  and compute the 
cross-section 

d,,'"'= Id dd.fi 
d , f  ~ dxv " (4.11) 
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da~xp/(da(O) (1) (2) + dae~.~ + da~pp), where the denominator is exponent- 
iated according to (4.12) 

The integrals in (4.11) are taken over the x~-  - xv cells 
given in Table 2 of [1]. The parton structure functions 
in (4.11) are the same as those appearing in the 
numerator of (4.2) and (4.9). In Figs. 8 and 9 we have 

+ da . . . .  t) presented the quantities daexp/(da (~ (1) 
and dae,,p/(da (~ + -vapp,dn(l~ ~ for 0.24 < ~ < 0.30 and 
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0.54 < V/z < 0.72 respectively (see also Fig. 6 in [2]). 
In the lowest x/~-bin the two expressions do not over- 
lap, whereas in the highest bin we cannot distinguish 
anymore the approximated from the exact order % 
contribution. Hence we can conclude that for the 
highest v/~-bin the expression dGxp/( dot~ -~appder(1) 'J- 
da~2~) will give a good description of its exact 
counterpart. This is important because in this bin the 
anomalous scaling of the K-factor has been observed 
by the NA10 experiment [1, 2]. As is shown in [2] the 
0 (~) contribution to A(Xl, x2) is unable to explain the 
experimental data for the whole z-range. In the lowest 
x/~-bin the ratio dGxp/(da m) -~1) + da~x,o0 is constant 
(~  1.5) in the range 0.0 < xe < 0.6. For the highest bin 
this ratio changes from 1 to 2 if xF increases from 0.0 
to 0.6. This phenomenon is known as anomalous 
scaling. The agreement between theory and experiment 
improves if we include the approximated O(,2) correc- 
tion (3.8). This can been seen in Figs. 8 and 9, where 

- ( i )  we have plotted the quantity d%x~,/(da(~ . . . .  t +  
d~(2) "~pv)" For the lower z values experiment and theory 
agree fairly well and for the highest x/}--bin the agree- 
ment gets better. A further improvement is achieved, 
in particular for the lowest x/~-bin, if we resum the 
first and second parts of (4.10). 

~ x ~ O b  

= x o, &) , r  app ~.'* 1 ~ 
n = O  

= R " tx ~ x ~ Q b  + ~ x ~ Q?) 
n=l 

6, + 2 + 20((2) } ] 
3 
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- 24{(2) + ~)(Lz + L2) + 8{(2) 2 - 9~(2)) 
1 1 9 3  ~_ l l 0 y / , ) , ~  + C A C v ( ( ~  - -  8~(2))L1L2 + ~ 6 T 3 b~Y 

- 12{(3))(L1 + L2) + 11{(2)) 
+ niC*~(- s-98-L1L2 - ( 4  + a~(2)) 

�9 (LI + L = ) -  2((2))} + (~-~)3 {... } + ...1 (4.12) 

where LI and L 2 are given by 

L l = l n ( 1 - x  ~ L 2 = l n ( 1 - x  ~ (4.13) 

and 6, is the modified coupling constant defined by 

~s= % (  Q2 4 ( t  - x~  x ~  (4.14) 

We have checked that the leading term in the exponent: 
~sLIL 2 agrees with the corresponding one in (25) of 
[13], provided one makes an expansion in the re- 
normalized coupling constant %. As we have pointed 
out below (4.7), the above resummation of the L~ is 
only usef, al if they dominate the radiative correction, 
which occurs if Xl,X2+~ o l ( see  Fig. 7). Outside this 
region the correction is dominated by either zl, of/~(") 
and the leading and subleading terms in L~ cancel each 
other. Therefore in the experimentally accessible z- 
region only the exponentiation of 21 ( = 2 + 20~(2)) is 
useful. This in particular holds for the lowest x/~-bin 
(Fig. 8) where the agreement between experiment and 
theory is rather good. In the highest x/~-bin the 
distinction between the cross-section perturbatively 
corrected up to 0(7~) and the exponentiated* one 
disappears. Here the term /~(") in (4.12) plays an 
important rote. This can be seen in Fig. I0, where we 
show the relative contributions from zl 2 and/~(z~ to the 
quantity Wapp/(W(2) (0) "~ '' appzW(1) ~ for tWO values of z. They 
correspond to the endpoints of the highest ,fz--bin, i.e. 
r = 0.25 and r = 0.55. For r = 0.25 the z~ 2 t e r m  domi- 
nates/~(2) but at r = 0.55 their roles are reversed. For 
both values of z one observes that the zl z contribution 
remains almost constant, whereas at z = 0.55 the/~(z) 
term rises very steeply as a function of x v. This implies 
that the slope of the data in Fig. 9 is determined by/~(2) 
rather than by zl 2. The latter only accounts for the 
normalization. This situation will not change if the 
exact value of Z~ 2 is known. 

In the above we have seen that for high r values 
/~(") (n < 2) give large contributions to the K-factor. 
We expect that for n > 2 the/~(") will further decrease 
the slope, since the perturbation series is very slowly 
convergent. In contrast to z], and the logarithms 
In (1 - x  ~ in (4.10), we do not know how to resume 
iff ("). We believe that the/~") in (4.10) partially explain 

* In this x/~-bin exponentiation according to (4.12) breaks 
down for the highest two x~ values, because the requirement 
Q2 ( ~ _  x0)(1 _ x 0) >> A 2 is no longer fulfilled 
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the phenomenon of anomalous scaling of the K-factor. 
A second important result of our findings is that the 
l n i ( 1 -  x ) / (1 -  x) terms appearing in (2.58) and (3.8) 
constitute a large part of the radiative correction in a 
z-region far beyond the boundary of phase space. 

Finally we want to comment on the relation between 
the A 2 in (4.5) and the zt 2 in (4.10). The ']2 was derived 
from the requirement that the Mellin-transforms of 
the corrections terms in (2.58) and (3.8) should be equal 
in the limit n = n~ : n 2 ~ ~ .  We have checked that 
the differential cross-section integrated over xv and 
the total cross-section give the same numerical results. 

5 Summary and conclusions 

In this paper we have calculated up to order ~2 all 
large logarithms of the type In~(1- x ) / (1 -x )  which 
contribute to the correction term of the total DY 
cross-section. The coefficients of these logarithms are 
derived from the behaviour of the phase space 
integrals and the renormalization group parameters, 
which are known up to order ~2. Furthermore, we 
give a plausible derivation of the large logarithms in 
the correction term of the differential DY cross-section. 
The above calculation is an extension of the work 
done in [17, 18]. In the higher z-region which is still 
accessible to experiment we were able to show that 
the above terms together with the constant part of the 
correction term dominate the radiative correction to 
the naive DY process. After convoluting the correction 
term with the patton distribution functions, the contri- 
bution of the large logarithms can be split into two 
parts, viz. the lnZ(1-z) terms and a piece called 
R~,)(z, Q2). In the experimentally accessible region the 

first mentioned terms cancel each other. Therefore, 
except for the very high r-region, the resummation of 
the In ~ (1 - z) does not improve the perturbation series 
and one is certainly not justified to exponentiate the 
leading logarithm only. 

We have seen that the R(")(x~176 2) account 
for the shape of the K-factor and give a partial 
explanation of anomalous scaling. We believe that 
the agreement between theory and experiment 
will improve, if higher order contributions of 
/~(")(x ~ x ~ 0 2) are included. 

Notice that in our analysis we have used the pion 
and nucleon structure functions of [2]. The pion para- 
meters were determined by fitting the DY differential 
cross-section corrected up to order ~ to the data in 
the lowest x/~-bin. This fitting procedure should have 

z contribution. been repeated to include the order ~ 
However, we have postponed this until the coefficient 
zl z in (4.10) is exactly known, since this is the most 
important part of the correction term for the lower z 
values. Finally, as has been pointed out in [5], it is 
important to measure the nuclear structure functions 
with a higher degree of accuracy. 
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Appendix A 

In this appendix we present the results of the parton 
structure functions corresponding to the fermion pair 
production processes in (2.7) and (2.10). Their calcu- 
lation is very similar to the lowest order one. The 
difference is that the outgoing gluon, which decays 
into the fermions, becomes virtual, so that we have to 
insert the gluon self energy and its absorptive part in 
the appropriate graphs. The unrenormalized structure 
functions are given by 

f ~ "k 2 f Q 2"V 

t / )  
. [ _ _ 1 6 %  112 1 706 1 

~5- 8 L 3 83 "[- 9 ~  - + ( -  - - 4 ~ ( 2 ) ) - -  

+ ~ +  ~( (2)  - ~ ( 3 )  / (A.1) 

~-(z2),S(Q 2, e, 3) 

= 6(1 - x)nsCv ~ 

.[16 _i 761 
L 3 e 3 9 e 2 + (~77373 - ~((2)) _le 

7081 95 1 - ~ z -  + -9 ~(2) + ~ ( ( 3 )  (A.2) 
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~ 0(1 X)FlfCFt~ ) ~l,t 2 ) 

1 - x  e 2 + t  1-~S-x (~ln(1 ~ X~ ~ 4 1 H  X ~ ~ B 

+ l~Z~- (~ ln  ( l - x )  

_ ~8 In (1 - x) - 4 In x In (1 - x) - -~Li2(t - x) 

+ }in ~ x + ~ n  x + ~ - - '~  ~(2)t 

+ ( ~  + 6x)In (1 - x) - ( ~  + 8x)In x - 11@- ~-x / 

(A.3) 
~v(z),V ( Q ~, ~) 

=6(1-x)nyCr ~ \ ~ i t  

. [  16 1 112 1 
383 ~ - -97  +(-~v6+-~((2))le L 

+ ~6~ - ~ ( 2 )  - ~-((3 (A.4) 

W(~)'s(&, ~, 6) 

s Q 2e 
= a(1 - x),,,~c,~ ~ 7 -  a 

16 1 40 1 1_,,12 ~S_~(2))l 
�9 3 e 3 9 e 2 ~ 27 e 

+ 2r176 + x~((3)] 328 (A.5) 

r Q~, ~) 

=O(I_6_x)nfCI~(-~)2fQ2"~"V 161+x2 1 

+ { l + ~ ( ~ l n ( 1  - x ) -  8 1 n x - ~ )  

- ~ ( 1 - x ) } ! + l + x 2  a2 2 
1-~--x (~-ln (1 - x) 

- -  ~-ln (1 -- x) -- 161n xln(1 -- x) --~Li2(1 -- x) 

+ ~-ln2 x + 9 1 n x  + ~ -  a~(2))  

- a~(1 - x) In(1 - x) + ~(1 + x)Li2(1 - x) 

+ }(1 + x)ln z x + }(2 - 3x)lnx + ~ - l n  (1 - x) [ .  

(A.6) 

After coupling constant  renormalization (MS scheme) 
we obtain the renormatized n I CF part of the correction 
term A(x). 
ZI(2)(X, Q2) = l~2)(X, Q2, 8) -- 2~,~22)(x, Q2, e) 

4 / cq ' x  2 1 
-~nlt~-~ ) 7Ao(x ) (A.7) 

Where Ao(x ), see (2.22a), can be derived from (C.6) and 
(C.7). 
Finally we obtain 

a (2)(x, Q2) 

-- ( ~s X~2[0(] e , f l  "~ X2 2 
=nYwvt-4-~) k - - o - - x ) ~ _ x  (41n ( i - x )  

- -  Z ~ l n  (1 - -  x )  - ~ In x In  (1 - -  x )  + ~ L i 2 ( 1  - x )  

+ 21nZx_61nx_ 5 8 - ~ { ( 2 ) )  

+ (1 + x)(-}Li2(1 - x) + 21n2x) 

+ ( _ ~4 + 2x) In (1 - x) 

+ (10 + ~ x ) l n  x + 1 ~  + •  t 

+ 6 (1 - x){~ In ~ 6 - ~ In 2 6 - (10 + ~ ( 2 ) ) I n  5 

- ~ - ~~  ( (2)  + �89 ( (3 ) }  [ 

V+U/ \ #  / 
The last term in the above equation can be removed 
by using the definition of the running coupling 
constant, see (2.23). 

A p p e n d i x  B 

The most general phase space integral for the DI 
process 

7*(q)+q(~)--}q(ff)+g(kl)+ ... +g([q_i) (B.1) 

will be denoted by 

= I + + 

( ~ *~  k j ) .  (B,2) �9 6 (") q + / 3 - - p ' - -  = t 

For  i = 2 and i = 3 we obtain respectively 

Ides71 

= 22- ,  7/(n/2)- 1 g(n/2)- 1 idO(sinO)n-3 (B.3) 
o 

~ dPS~ l 
7~n-3 ~l-(n/2) re re 

- 8 F(n--3)!  dO2(sinO2)"-4SdOl(sinO1)"-3o 

,~ ~ - s  1 

"Sdsl ~ dsg(sls2(~-sl-sz))  t"/g)-z. (B.4) 
0 0 

Where we have integrated over all angles which do not  
appear in the matrix element. Further,  we have defined 

= (/~ + q)2, sl = (ff + ~:1) 2 and s: = (ff + k2) a. 
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If we now define y and z by 

s 1 = ~(1 -- y) (B.5a) 

s2 = gy(1 -- z) (B.5b) 
1 - z y  

(B.4) can be rewritten into [24] 

IdPS~'  
~z 

_~,-38 F(n--1 3)~,_3!dO2(sin02),_,, 

1 1 
~ dO1 (sin 01)n- 3 ~ dz ~ dy(z(1 - z)) "/~) - ~ 

0 0 0 

�9 (y(1 -- y))" - 3 ( 1  - -  zy) ~ - ' .  (B.6) 

It is convenient to introduce the variable x defined 
by: s - - qZ(1 - x)/x. 

The general phase space integral for the DY process 

q(~O + ~(~2)~ 7*(q) + g(fq) + ... + g(fq_ ~) (B.7) 

is given by 

I d P S ?  ~ 

= I d"qd"fq.., d"k,_l 6 + (q2 _ Q2)6 + ( ~ ) . . .  5 + (k~_ ~) 

"3(") ~+ P z - q -  2 kJ " (B.8) 
j = l  

For  i -- 2 and i = 3 we have respectively 

r~ 

�9 ~dO(sinO) "-3 (B.9) 
0 

~dPS ov 
7~n-  3 ~ 1  - ( n / 2 )  n 

d02(sin 02)"-* 
8 F ( n -  3) Jo 

rc ,~ ,~_s I + Q 2  

�9 ~O 1 

.(S 1 S2 _ ~Q2)(,,/2)-2(~ + Q2 _ s1 _ s2)(nnl-2 
(B.IO) 

with ~--- (/~1 + Pz) 2, sl = (q + ~:1) 2 and s2 -~ (q + k2):. 
Making the following substitutions 

Q2 
x = - -  (B.1 la) 

s~ = (1 - y(1 - x))~ (B.1 lb) 

s2= {x  + y(1-- x ) ( 1 -  x)Zy(1-  Y)Z --y0-2_- ~ (B.11c) 

(B.10) becomes 

I d e s ~  Y 

7 ~ " - 3 1 ( ~ ) 2 n - 5 ~ . -  3 

�9 I dOz(sinOz) "-4 f dOa(sinO0 "-31 dz 
0 0 0 

1 
"I dy(y(1 - y))"-  3 (z(1 - z)) ("/~)- 2 

0 

�9 (1 - -  y(1  - -  x ) )  1 -(./2) (B.12) 

A p p e n d i x  C 

The non-singlet splitting functions can be obtained 
from [19-21].  In the limit x-~  1 they become 

Po(x) = C~{ 8 0 ( 1 -  6 - x) } i L : x  ~-6(1 - x ) ( 6  + 81n6) 

(c.1) 

0(1 - -  fi - -  x)  { Ca  C v ( ~  - 1 6 ( ( 2 ) )  Pl(x) = 1 - x 

+ n ~ G ( -  ~)}  

+ 6(1 - x){CvZ (3 - 24((2) + 48 ((3)) 

+ CA C F ( ~  + s~((2) -- 24((3) 

+ (5@ _ 16((2))1n6) 

+ n y C F ( -  ~ - ~( (2 )  - ~ l n  6)}. (C.2) 

In the limit n ~ ~ the anomalous dimension 7 (") (2.14) 
becomes equal to {2.59). The coefficients in (2.50a), 
(2.60b) are then given by 

~(o ~)= 8CF 

y(() = C A CF(5-~9 6 -- 16((2)) -- n f C ~ -  (C.3) 

~7o = - 6 C F 
"71 = C ~ ( -  3 + 24((2) - 48((3)) 

+ CACF( - ~- - ~s ((2) + 24((3)) 
+ nf  CF(~ + ~((2) ) .  (C.4) 

The lowest order  coefficient of the fl-function is 
equal to 

flO 1 1  p 2 . = w ,~A - ~ns- (C.5) 

The non-pole contributions fo and co o can be found 
in [7, 8]. Extending them to include terms of order e 
we find 

I x ) ~ 2 1 + x  z 1 - x  
fo (x)=C F 0 ( 1 - 5 -  ( l - x  In x + 4 x + 6  

3 ( ~ l + x 2 1 - x  
4- e - -  In 2 

1 - x  1 - x  x 

( 3 1  ~ l n l - x  
+ 2 x + 3  2 1 - x ]  ~ x  - - 6 - 4 x  

7 1  3 1 + x  2 ) }  
+ . . . . .  ((2) +6(1 - x )  

2 1 - x  2 l - x  



�9 { - 9 - 4 ~ ( 2 )  + 2 in  z 6 - 3 In a + / 3 ( 9  + � 88  

+ ] In 36 - �88 In 26 + (7 - 3~(2))In 6)} J 

/3( 1+x2  In 2 (1 -x)2  t -4 (1 -x )  
+ \ ~--~7 x 

- 3  1+x2  {(2 \ )  

+ 6(1 - x){ - 16 + 8 ~'(2) + 8 In 26 

+/3(16 - ~-r + ~ln 3 6 - 6{(2)1n 6)} 1. 
J 

(C.6) 

(C.7) 

A p p e n d i x  D 

Here we will present the calculation of the CA Cv and 
nlC v parts of k(x,,x2) in (3.8)�9 

Starting with the unrenormalized DY structure 
function W(xz, x2) in (3.3) we can make the following 
ansatz for the sum of its soft and hard parts in the 
limit xl ,x  2 --, 1. 

l;v(= ~ + " (x~, x~, Q~) 
I" a~ \ Z /'Q2 \~[ - 

t T )  t 
+ a =  +a2~ + a2ot + 6 ( 1 -  xO0(1 - 6 -  x~) i 

t / 3  /3 2 /3 

*(1-x2)"~bzz+bz'  } 
.6 ~ l m ~  { /3~ /3 +b:o +r~,+->~A 

+ 0(1 -- 6 -- Xl)0(l -- 6 -- x2) }11 X1) ~ (1 X2) ~ 

(o.,, 

Here X stands for the colourfactor C,  or n,. 
This ansatz follows from mass-factorization (3.3) 

and renormalization. We have verified that the above 
equation is correct for X = nf. In Sect. 2 we made the 
observation that the expressions for the nfCv and 
CA C~ parts of I~(x) have the same form. Therefore 
we assume that the same holds for ~V(x~,xz). 

The coefficients of the pole terms in the above 
equation can be determined in the same way^as in 
Sect. 2. First we add to (D.1) the virtual part W (2)'v, 
which is given by the unrenormalized time-like 
form factor. 

W(~)'~(x, ,x~,Q ~) 
= 6 ( t  - x,)6(1 --xz){2ReF~)(QZ)}. (D.2) 

For X = nf we have 
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ReF~)(Q 2) 

I'oq'~2[Q2"~*V s 1 59 1 

+ ( - ~  + ~C(2))~ + ~ - ~ ( 2 ) - ~ : ( 3 ) ]  
= J  

(D.3) 

and for X = CA 

Re F~)(Q ~) 

/ c~, "X2/QZ'X~V44 1 332 + 4~(2)) 1 

= t y )  + ( - -  

+ ( ~  - ~ ( 2 )  - 2 < ( 3 ) )  1 - 6--~-~ + ~ ( 2 )  
,0 

+ ~ ( 3 )  - ~ ( : ) : l  
i 

(D.4) 

The renormalized DY structure function is equal to 

+ + x 2  `', 
\ 4 ~ )  " 

(D.5) 
with 

fl(o,,) = - 2 fl(oc2_~ ' (D.6) 

and ITV (1) is the lowest order contribution which has 
to be expanded up to order/3. 

g'(')(x~, x:, & )  

= C , ( ~ ) [ 5 ( 1 -  x,)5(1- x2){(12 + 161n5)~ 

+ 81nZ6 - 16 + 12~(2) + (6 + 81n 6)ln 

+5 (3+21n6)ln2 ~ +(41n26-8+6~(2)) 

.ln ~ + -~ ln36-2~(2 ) ln6+16  

)} - z ~ ( 2 )  - 4 ~ ( 3 )  + 6(1  - X l )  0(1  i - - -~  

�9 ~+41n6  +41n(1 - x2) + 41n 

+/3 In z + 21n61n + 21n(1 - x 2 )  

�9 ln +lnZ6+21n61n(1 -x2)  

+ln2(1-x2) -~(2) )}+[x l*- 'x2]  

+ 0(1 - 6 - x,)0(1 - 6 - x2) 

(1 - xl)(1 - x 2 )  
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.{4+ in,1 _xl,+21n,l_x2, 

Q2 
+ 2 1 n ( ~ - ) ) } ] .  (D.7) 

The triple poles, which are of infra-red origin, are 
cancelled in the combination [TV(2)'s+n+ I} "(2)'v and 
the single (UV) pole in the last part of (D.1) is removed 
by X(2/g)fl~oX)w m of (D.5). This determines the 
coefficients a23 and c2~ respectively. The remaining 
pole terms are cancelled by mass-factorization, so that 
the quantity 

A (2)(X1, X2, QE) 
= l~V(2),ll(x1,x2,Q2 ) - 63(1 - x1)63(1 - x2) 

�9 ~ 2 ~  s+v(n2 c>~ 6 ( 1 - x  ~-/~ ~x ,~2~ 
t. 2 ,X  t"x5 , I f -  1 !  2,X~ 2,~;3. } 

- 6(1 - x2) f~ f . x (x  t, Q2) (D.8) 

is finite. Where oS-s+v (2.47) and ~2u, x ((2.11) and ~" 2.X 
(2.53)) are the X parts of the renormalized DI parton 
structure function. This provides us with the remaining 
coefficients, except for b20 and c20. These are obtained 
from the requirement 
1 1 

d x  1 ~ d x 2A(2)(X1,  x2, Q2) < 00. (D.9) 
0 0 

The coefficients aq, b u and c u are given in Table 2. 
We can now determine all t n i ( 1 - x l ) / ( 1 - x 0  x 

ln~(1-x2)/(1--X2) terms of A(2)(X1,X2). The result 
agrees with (3.8). 

Remark. Notice that (D.1) can be written as 

gca~,s+"(Xx,X~,Q~ ) 

T a b l e  2. The residues of the pole-terms in the CA and n~ parts of 
the unrenormalized DY structure function ~(Xx, X2). (See (D.1).) 

C A n f 

88 
a23 -- ~- 
a22 a~-8~(2) 
a2, --~-7s+22((2)+28((3) 
a2o ? 

b21 a ~ - 8 ( ( 2 )  
b2o - ~ + 22((2) + 28((3) 

C21 - - ~  
C2o ~ - - 8 ~ ( 2 )  

i6 
3 

4o 

aft-v2--4((2 ) 
? 
166 
3 

4o 

�89 

3 
4 0  

Where ( 1 - x l ) - l + ~ ( 1 - x z )  -1+~ has to be inter- 
preted as 

(1 - x 0 - 1  +~(1 - x2)- 1 + ~  

= 63(1 --  X1)63(1 --  X2)I~-~ 2~ 

+ 0 ( 1 -  6 -  x ~ ) 6 0 -  x2)~a ~ t l -  x1)  ~ 

( 1 - x ~ )  

+ 63(1--xl)0(1--3-x2 )! 6~:~11 - X2)e 
- -  X2) 

(1 - x l )  ~ (1 - x 2 )  ~ 
+ o(1 - 63- ~,)o(1 - a - , ~ ) ( ~  ~7~1  ) ~ i -  ~ i )  

(D.I 1) 
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