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An Expansion Method for Boundary Layers on Thin Airfoils 1) 
By Bernard Grossman ~) and Stanley G. Rubin, Polytechnic Institute of Brooklyn, 
Farmingdale, New York, USA 

1. In troduc t ion  

The laminar incompressible flow over a thin airfoil represents a fundamental 
problem of fluid mechanics. The inviscid incompressible flow over two-dimensional 
bodies whose presence only slightly disturbs an initial uniform flow has been studied 
extensively. Modern analyses such as those by Lighthill [1], Jones and Cohen [2] and 
Van Dyke [3] present systematic and orderly treatments of this problem. 

The associated viscous flow problem has been considered by a variety of methods. 
These techniques consist of 'similar' solutions, series expansion methods and approxi- 
mate methods based on integral forms of the equations. Thorough discussion of these 
techniques can be found in Schlichting [4] and Rosenhead [5]. 

The objective of the present study is the development of a systematic method for 
examining the boundary-layer flow over thin symmetric bodies, whose inviscid flow 
field is specified with the use of small disturbance theory; i.e., a perturbation method 
for the treatment of rather general flows having small streamwise pressure gradients. 

The inviscid flow field is determined as a perturbation of the undisturbed stream 
and represented by a series of terms in increasing powers of e, a small thickness 
parameter. The boundary-layer solution is then formulated as a series expansion in s 
and matched, term by term, to the inviscid flow. The boundary-layer solution for any 
order in e is found by a quasi-similarity approximation based on the exact functional 
form of the inviscid flow at the outer edge of the boundary layer. In order that quasi- 
similarity methods apply, only specific forms of the outer flow may be considered 
and these will be discussed in detail in Section 2. On the other hand, more general 
flows can be considered using expansion methods for which the rate of convergence 
is quite rapid. In Section 3 the effects of higher-order terms (in e) on the boundary- 
layer solution are considered. In this connection, the effects of bluntness must be 
examined. 

Perturbation methods, of the type considered here, have previously been used by 
Mager [6~ and Wood ~7] 3) to examine the effects of small deviations from uniformity 
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in the free stream. They both were concerned with small three-dimensional cross- 
flows and only considered the first-order term in the perturbation expansion. Wood 
also discussed the first-order solution for two-dimensional thin airfoils using power 
series expansions to describe a general body shape. He examined the region near a 
blunt leading edge and noted the relation to the flow over a parabola, which has been 
discussed more recently by  Van Dyke [31 . The present paper explores the matching 
of the leading-edge solution, which to first-order for a blunt body is approximated by 
the flow over a parabola, and the thin-airfoil expansion downstream. An example of a 
body with a sharp leading edge is also discussed in Section 3. 

The accuracy of the techniques to be developed in this paper will be illustrated 
by considering several examples and comparing with other known solutions. I t  will 
be shown that  good results are obtainable with one or at most two terms in the 
expansion. The use of this technique for three-dimensional flows, where other two- 
dimensional methods cannot be applied easily, prompted the considerations presented 
herein. One such application is discussed in Ref. [8]. 

2. Inviscid Flow and First-Order Boundary Layer 

The inviscid, incompressible flow over a symmetric thin airfoil is considered first. 
The basic approach to this problem is well documented and may  be found in several 
references, notably Van Dyke [3]. 

The shape of the airfoil as given in Figure 1 is represented by 

Yb=Yb(x)=eF(x), f o r O ~ < x ~ < l ,  (2.1) 

y,v 

INVISCID FLOW 
COORDINATES 

Figure 1 u~ ~ 
Two-dimensional flow coordinate 
systems. L 

y,v 
BOUNDARY LAYER 
COORDINATES 

x~U 

t 
where the thickness parameter  e < 1, and all lengths have been non-dimensionalized 
with respect to the chord length c of the airfoil. In terms of a non-dimensional potential 
function defined by  q = U .  V~ we obtain, as the governing equation for the inviscid 
flow. 

V2~v = 0 .  (2.2a) 

From the tangency condition at the body, 

0~ 
On 0 on Y b = e F ( x )  0 . < x ~ < l  (2.2b) 
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with symmetry  across y = 0, for all other values of x; n is the direction of the outward 
normal to the body. The conditions of uniform flow at infinity is prescribed by 

^ 

i;79) ~ i x, a s  (x ~ + y2)l/~ _+ c o ,  (2.2c) 
^ 

where i x is a unit vector in the stream direction. 
The velocity potential is now assumed to possess an asymptot ic  expansion in 

powers of e of the form 

O O  

y; = y )  
i = 0  

The potential problem (2.2a, b, c) may  be solved using the well-known techniques 
of inviscid, thin-airfoil theory. A detailed description of some of these methods are 
found in Ref. [3]. 

The velocity along the body surface is designated as U e = U~(x, yb(x)), and 
represents the outer limit for the boundary-layer analysis. I t  is seen that  E3] 

Ue = 1 + e q)lx(X, O) + ~ Er O) + F(x) F"(x) + 1/2 F'2(x)] + O(e s) . (2.3) 

As a result of the small disturbance solution of the outer flow, 9t(x, 0) is prescribed. 
The external velocity (2.3), for a large var iety of airfoil configurations, will be of the 
f o r m  

U ~ = I + s [ B  0 1 o g x + B l ( x l o g x ) + C  0 + C  i x +  C2x ~ + . . . + C n x  n ] + 0 ( e  *), 
(2.4) 

where Bo, B 1 and C n are known constants and the coordinate x is now measured along 
the body surface 4). 

At this point, we are considering only those potential flows having velocity 
distributions shown in (2.4). In the subsequent discussion, modifications to include 
terms of the type log (1 -- x) will be discussed. In the following section concerned with 
second-order theory, the effects of leading-edge bluntness leads to the inclusion of 
x -1 terms in (2.4). 

I t  should be noted that  the somewhat artificial external flow U, = 1 -  e x, 
although not generated by  any simple airfoil shape, is a special case of (2.4). For this 
particular surface speed the present perturbation technique reduces to the well- 
known Howarth expansion (see Rosenhead E51). 

Introducing the two-dimensional stream function in non-dimensional form 

u v 

Uoo = ~ r  and Uoo -- ~x (2.5) 

into the governing Navier-Stokes equations (e.g., see Rosenhead [5]), and appro- 
priately developing Prandtl 's  boundary-layer equations (Van Dyke (3]), we obtain the 

4) E q u a t i o n  (2.4) is u n c h a n g e d  to O(e 2) w h e n  t he  car tes ian  coord ina te  x is replaced b y  the  b o d y  
sur face  coordina te  x. Since on ly  t e rms  up  to O(8 ~) are d iscussed herein,  no d i s t inc t ion  be tween  
t he  two will be considered.  
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following boundary- layer  problem: 

~'YY~, + Wx w Y Y  - ~ Y  ~ x y  = - G U , ' ( x )  , (2.6) 

with the surface conditions 

~0(x, o) = ~y(x, o) = o ,  

and the outer matching conditions 

t@(x, Y) ~ Ue(x) as Y -+ o~ .  

Here Y is the stretched coordinate normal  to the body  such tha t  Y = y(Re and the 
free-stream Reynolds number  is defined as Re = ~o Uoo c/ffoo. 

An asymptot ic  expansion of ~o is assumed of the form 

~o(x, Y; e) = ~v~ Y; loge) + e ~ol(x, Y; loge) + 0(e 2) , (2.7) 

k 

where ~o i(x, Y; loge) = ~V'~v i.(x, Y) (loge)" and ~0 i o(X, Y) is designated as ~pi(x, Y) - ,?i .  
~ 0  

This allows for the possible inclusion of logarithmic terms in the expansion. Such 
terms m a y  result from leading-edge effects, the appearance of eigenfunctions in the 
perturbat ion scheme or a combinat ion thereof. Subst i tut ing this expansion into (2.6) 
and retaining terms of 0(1) we find tha t  the solution is the well-known Blasius function 
(cf. Rosenhead [5]), where 

Y 
~00 = ~/2 x l ( 7 ) ;  7 -: �9 (2.8) 

I/2 x 
and 

1"(7) + / ( 7 )  1"(7) = o ,  (2.9) 

with 

1(0) = / ' ( 0 )  = 0 / ' ( o o ) -  1 .  

The Blasius solution m a y  be found tabula ted  on page 223 of Ref. [5]. 
The governing equations to first order in e are obtained in a similar manner.  

Defining a (~, 7) coordinate system, where ~ x, 7 = Y/1/2xx and 90 is given by  (2.8), 
the first-order equations become 

~lq;,l.q 2r- 1(7) ~lyr/  @ 1'(7) ~1~/ -7 2 ~" [ / " (7 )  ~1~ -- / ' (7)  li01~] =- 

- [Bo/~ + B ,  log~ + (B, + C,) + 2 C2 ~ + ... + ,  C. ~"-1] 2 ~ I/2 ~ ,  (2.10) 

with 

~:,(~', O) = V',_,~(~, O) =-: O,  

a n d  

lim ~01~(~, 7) = Bo log~ + B 1 ~ log8 + C o + C t ~ + C 2 ~2 + ... + C, 8" �9 (2.11) 
q-+OO 
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By analogy with the methods used in obtaining 'similar' boundary-layer solutions 
and utilizing the linearity of (2.10), we choose ~v~ to be of the following quasi-similar 
form: 

~o~(~, ~/) = [/2 ~ [B o log~ Mo(~/) + B 1 ~ log~ M~(~) + C O No(~) 

+ C1 ~ Xl(~ ) _{_ Ca ~2 N2(V ) + ... + C. ~" N~(~)J, (2.12a) 

where 

Mo(0 ) = Mr(0) = N~(0) = M'o(0 ) = M~(0) = N',,(0) = 0 ,  (2.12b) 

and 

lim M'o(~) = i;(~/) N'.(~) = 1. 
~/---> OO 

Substituting (2.12a) into (2.10) and noting that ~ and ~ are independent, we obtain 
the following ordinary differential equations: 

M o' + / M  o + / "  M o = 0,  (2.13a) 

! 

M7 + ] M~' -- 2 / '  M 1 + 3 ]" M1 : - - 2 ,  (2.13b) 

N o ' + / N  o ' + / " N  o -  
- -  2 B  o 

Co 
(1 + / "  M o - / '  Mo), 

! tt N ' ~ ' + / N 1 - 2 / ' N I + 3  / N~= - 2 - -  
2 B ~  

C1 

(2.13c) 

and for n >/2  

(1 + / "  M~ - - / '  M~), (2.13d) 

I1! I v v N . + / N ; - 2 / ' N . - - 2 n /  N . + ( l + 2 n ) / " X n = - - 2 n .  (2.13e) 

The solution of these equations, subject to the boundary conditions (2.12b), represent 
the first-order (s) boundary-layer effect. In addition to the solution depicted in 
(2.12a), equation (2.10) has a countable set of eigensolutions (cf. Stewartson [9], 
Libby and Fox [10]) that should be added to (2.12a). However, these solutions are 
singular as ~ ~ 0 and by matching with a local solution at the leading edge it will be 
shown in Section 3 that the eigensolution of 0(~-") first enters into the expansion (2.7) 
when terms of 0(s ~') are considered. Since the lowest value of n is unity [9, 10], we 
would expect contribution in the e~ term. 

I t  is of interest to note that only equations (2.13c) and (2.13d) depend on the 
coefficient B0, B1, C o and C1. Hence, the other equations may be solved in general 
Typical solutions are given in Table A-1. In addition, it can be seen tha t  the solution 
to equation (2.13a) is 

M o = 1/2 [/(~) + ~ / ' (~ ) ] .  (2.14) 

For future reference the non-dimensional shear stress at the wall, ~ = 0 is prescribed 

Z A M P  22/8 
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in general by  

c ]  1 
~ -  ~Reoo = ~vvv(x, O) = ~ovy(x, O) + s Fn, v(x, O) -- V~_ ~ ] "(o) 

+ ~ [B o logx Mg(O) + B~ x logx MI(O ) + C O No(O ) 

+ C~ xN~(0) + . . .  + C~ x ~ N~(O)]. 

, ( 2 . 1 5 )  

I 
Specific applications of this first-order viscous small-disturbance theory now are 

considered. The method is first applied to a thin Joukowski airfoil which is illustrative 
of the class of problems whose velocity at the outer edge of the boundary layer is of 
the form given by (2.4). A second application is that of a slender parabolic-arc airfoil 
where an additional coordinate expansion is necessary in order that the methods 
described herein are directly applicable. 

J oukowski Air]oil 

We consider a thin symmetrical Joukowski airfoil whose shape to first order is 
given by 

y = 2 ~ (1 - x)  l /x  (1 - x)  (2 .16 )  

where here e is 0.769 times the maximum thickness ratio. With (2.16), and from (2.3), 
and Van Dyke [3], the velocity external to the boundary layer becomes 

Ue = 1 + ~ (3 - -  4 X ) .  ( 2 . 1 7 )  

In accordance with (2.4), the constants are prescribed as follows: 

B 0 = B  i = 0 ;  C 0 = 3 ;  C i = - 4 ;  C i = 0 ,  i > ~ 2 .  

From (2.12a), the boundary-layer solution becomes 

~py = 1'(~) + e [3 N0(T) -- 4 x N~(~)], (2.18) 

where N O = M 0 and N i = M l, as defined by (2.12a), (2.13b) and (2.14). (See Re]. [131 
for details.) 

The shear stress along the body from (2.15) is 

C 1 
/ #Re~176 -- ] /2x {1"(0) + s [3 Mo(0 ) -- 4XMl(0)~ } , (2.19) 

where /"(0) = 0.4696, M~ = 0.7044, M~'(O) = 2.890. The velocity profiles and the 
shear stress distribution are plotted for various values of x and s in Figures 2, 3 and 4. 

Figure 2 depicting the velocity profiles shows that  the deviations from the flat 
plate profile increase moderately as the body thickness (e) increases, while Figures 
3 and 4 depict the decrease in uv(x, 0) for increasing values of x. The figures also 
indicate that separation occurs on the airfoil. The location of the separation point is 
seen to propagate upstream with increasing values of e, as would be expected. 
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Figure 2 
Velocity profile, Joukowski 
airfoil. 
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Figure 3 
Non-dimensional skin friction 
vs. x, Joukowski airfoil. 

I.C 

.6 

0 1.0 

/ 0 ((a) 

. . . .  i -~  
�9 \X 

.2 .4  . 6  . 8  

x 

It  is important to note that the potential flow analysis discussed herein is 
obtained for a non-separated flow and therefore, any solutions presented should not 
be valid after separation has occurred. Furthermore, the nature of the flow in the 
vicinity of the separation point is improperly described by the present perturbation 
scheme. However, there is experimental evidence showing that for the slender airfoils 
considered here, the flow solutions derived should be reasonably good upstream of the 
separation point and may be useful in approximating the position of the separation 
point. These facts are again discussed in Section 3 in connection with higher-ordei 
solutions of the Joukowski airfoil. 
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Parabolic-Arc Air/oil 

As a second example ,  consider  a symmet r i c  airfoil  formed b y  the intersect ion of 
two parabol ic  arcs such t h a t  

y =  4 e  ( x -  x ~) . 

F o r  this  case, the  inviscid po ten t i a l  flow solut ion is 

4 ~  
U e = 1 + [2 --  (1 --  2 x) log(1 --  x) + (1 --  2 x) l o g x i .  (2.20) 

W e  f ind t h a t  t yp i ca l  of smal l -d i s turbance  solut ions  a s ingular i ty  appears  a t  the  
leading edge x = 0. 

To ob ta in  U, in the  form given b y  (2.4) so t h a t  ' quas i - s imi la r i ty '  solutions are 
possible, i t  is necessary to e x p a n d  the  log (1 --  x) t e rm in (2.20) for small  values of x 
such t ha t  

X 2 X 3 - -  X n 

(2.21) l o g ( i - - x ) = - -  x 2 3 n 

Subs t i tu t ing  (2.21) into (2.20) we f ind t ha t  

3x22x3 1 U e = 1 +  l o g x - - 2 x l o g x + 2  + x  . (2.22) 
st 2 3 

Therefore,  in accordance wi th  equa t ion  (2.4), B 0 = 4/st, B 1 = --8/st,  C O = 8/st, C 1 = 
4/st and  C, = [ - -4  (n + 1)l/[st n (n --  1)1 for n >~ 2. Using the techniques developed 
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in this section, the velocity profile in the boundary  layer is 

u = ~oy = 1/2 x I'(~]) + - -  [M0(~) log x -- 2 M~(~) x log x 
aN 

+ 2 + x - -  . ( 2 . 2 3 )  

The only ordinary differential equations not  previously discussed are 

- -HI  ~ - -  
N O + / N  O + / " N  O = - ( 1 + / ' M  o - / ' M o ) ,  

N0(0) = N0(0) = 0 ,  N---~(oo) = 1 ,  (2.24a) 

--,,, ---;, / ,  ~ ,, -- 

N 1 + i N  1 - 2  N 1 + 3  ! N l = - 2 + 4 ( l + / " M l - / ' M ' ~ ) ,  

NI(0 ) = N~(0) = 0 ,  N~(oo) = 1 .  (2.24b) 

Numerical  solutions for these equations are presented in Table A-1. We recall tha t  

~70 and 2~ 1 depend explicitly on the form of the external flow. The N,,(,]) (n > 1) are 
universal functions and can be tabulated;  series expansions of the type  (2.23) can then 
be evaluated to any  reasonable degree of accuracy. 

The solution of (2.23) is evaluated by  including a finite number  of terms in the 
coordinate expansion for l o g ( 1 -  x) and is t runcated  after the x 4 term. To this 
approximat ion U, should be accurate to within 5 ~o of its value as given by  (2.20), for 
0.1 ~< x ~< 0.85, 0 ~< e ~< 0.4. The solution is not  valid at  the leading edge where it is 
singular. Velocity profiles at various streamwise locations, and for selected values of e 
are shown in Figure 5. F rom the curve depicting the skin friction (Fig. 6), it can be 
seen tha t  the separation point is within the range of x for which the solution should 

- Y-Y-- U 

J U = Uo+eUt / /I 

Figure 5 
Velocity profile, 0 0.2 0.4 0.6 0.8 1.0 1.2 
parabolic arc. O 
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Figure  6 
Skin  fr ict ion vs. x, pa r abo l i c  arc. 
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be acceptable and that  over a range of values of thickness parameter  of 0.05 to 0.20 
the laminar separation point only varies from 0.83 to 0.71. 

3. S e c o n d - O r d e r  T h e o r y  and E i g e n s o l u t i o n s  

From the previous analysis it is seen that  the potential flow over a thin Joukowski 
airfoil is singular at the leading edge. This condition is typical for blunt-nosed airfoils, 
and the correction to the potential flow is discussed by  Van Dyke [11]. Although the 
leading-edge potential flow does not directly affect the analysis for the flow down- 
stream of x > O(e2), in that  small-disturbance theory is valid on this range, it is found 
that  an eigensolution in the downstream boundary-layer solution leads to an arbitrary 
constant which must be determined by  matching with the leading-edge boundary 
layer. I t  will be shown that  the effect of a blunt leading edge on the boundary layer 
will not appear until order e z loge so tha t  the first-order (e) boundary layer developed 
in the previous section remains unchanged. 

Any singularities occurring at the leading edge of a sharp-nosed airfoil are so 
weak as to have a negligible effect on the flow downstream of x > 0(e -1/~) (see 
Van Dyke [3, 11]). 

The procedure for determining the effect of leading-edge bluntness on the 
potential flow field for a Joukowski airfoil has been considered by  Van Dyke [3] by  
examining the flow near the leading edge, where S = x/2 e ~ is of 0(1). The boundary- 
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layer solution near the leading edge has also been t reated by  Van Dyke  [11]. F rom the 
asymptot ic  matching principle the limiting values as S ~+ oo must  match  the boundary-  
layer solution obtained herein as x ~ 0. 

Consider the stretched coordinates 

Y S -  x (3.1) 
Y--  2e2 ' 2e2 

In  these variables, with the limit e ~ 0, keeping S fixed, the airfoil shape is of the 
form 

? = 1/2 S E1 + 0(~2)]. (3.2) 

The inviseid solution for this parabolic body  gives 

U e = 1/2 S [1 + e + 0(ez)] . (3.3) 

The leading term in (3.2) corresponds to the flow over an infinite parabola. The 
boundary  layer on this body  has been determined by  Van Dyke  [11] using a Blasius- 
Howar th  series-expansion technique (cf. Rosenhead [5]) near the nose and a supple- 
men ta ry  expansion technique valid downstream for large S which he denoted as an 
' inverse Blasius series'. In  terms of the non-dimensional skin friction coefficient, this 
solution, valid downstream of the nose of the parabola, i.e., for large S, is: 

[ 1 0 . ~ 9 ]  
(1/2 Rex)*l~ Cf = 0.469600 1 + 0.60115 ~ -  log 2 S  + 

where Re x = U ,  x/vo~. The constant  0.89 in the above equation was obtained by  
Van Dyke  [11] b y  matching to the series solution in the vicinity of the nose of the 
parabola. Rewriting the above equation in terms of the physical coordinate x, it is 
found that :  

2 e 2 e 2 
(1/2 Rex) lm Cr = 0.469600 [1 - 0.60115 - - -  log e + (0.89 + 0.60115 logx)] .  

x x (3.4) 

This equation represents the leading term of the zero-order asymptot ic  expansion in e. 
The e 2 loge and e 2 term appear  as a result of the stretching. I t  can be seen tha t  the 
higher-order terms cannot  generate any  addit ional contributions of the form e2/x loge, 
e2/x o r  e2/x logx. This fact will be utilized in the following analysis. 

Wi th  consideration of the form of the solution near the nose of the airfoil, the 
s t ream function (2.7) is expanded as 

~0 = ~0 + e ~0, + e ~ loge ~02, + e 2 ~o 2 + . . . .  (3.5) 

The inclusion of the e 2 loge term is necessary in order tha t  (2.15) match  with the 
upst ream solution (3.4). This e 2 loge term ~021 is seen to correspond to the lowest 
eigensolutions discussed previously and the associated constant  mus t  be determined 
b y  matching to the solution valid near the nose. 

We have previously determined tha t  

~o o = 1/2 x / (~); ~0, = 1/2x [3 N0(~/) -- 4 x N, (~) ] .  
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Since no terms of order e ~ logs appear in the outer flow, after substituting expansion 
(3.5) into (2.6) and retaining terms to order e ~ loge, the governing equation for ~021 
becomes 

with the boundary conditions 

~21(~, 0) = ~21y(~,  0) = 0 ,  ~021~/(~ , OO) = 0 .  

In accordance with the solution near the nose of the airfoil, it is assumed that 

~021 - -  ~ KI(~]) �9 

(3.6) 

Substituting into (3.6), the governing equation for K 1 becomes 

K~' + / K 1 + 2 1' K~ -- 1~ K 1 = 0 ,  (3.7) 
with 

KI(0 ) = K~(0) = K~(o<)) = 0 .  

This eigenvalue problem corresponds to the eigenvalue ,~ = - 2  in the analysis of 
Libby and Fox [101. The solution is 

K I ( ~  ) = (X 1 [/] / t ( ~ )  __ / ( ~ ) j  (3 .8)  

where ~1 is a constant whose numerical value will be found by matching to the 
solution near the nose of the airfoil. Since the next eigensolution is of 0(~ -vsT) [101 we 
would not expect any additional eigensolutions to enter into this analysis which 
includes only terms up to 0(e=). The appearance of eigensolutions in higher-order 
terms will depend upon the specific nature of the leading-edge flow. 

Joukowski Air[oil 

For the one specific case of the Joukowski airfoil it is found from (2.3) that the 
velocity at the edge of the boundary layer to order e 2 is 

U~ 1 + e ( 3  4 x ) + e 2  ( 1 9 ) . . . .  + . . . . . .  1 2 x + 8 x  2 (3.9) 
2 x  2 

Retaining terms of order s 2 in the expansion (3.5) of the governing boundary- 
layer equations (2.6) yields 

*f2,;,~,~ + / ~o2~, + / '  *f2" + 2 ~ (/" ~o~ - [' *f2 q ~) = - ~/2 ~ {9 N o N  o + 12 ~ (2 N O N~ 
t 

--  3 N 1 N o --  N O N[' - -  4) + 16 ~2 (3 N1 N~' - 2 N12 + 4) + ~e-1}. (3.10) 

Consistent with the solution near the nose of the airfoil and with the form of the 
outer flow, to order e 2, the stream function ~2 is assumed to be of the following form: 

[ 1  log~ 9 ] 
~o~=V2~ - 2~ G ( ~ ) + ~ K 3 ( ~ ) +  2 - L ~  �9 

(3.11) 
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Subst i tut ing (3.11) into (3.10), we obtain the following sys tem of ordinary differential 
equations:  

KS (3.12a) 
t 

+/K'2' + 2/ '  K 2 -  t"K~ = 2 (1 + 2 / " K 3 -  2/ '  K~), 

K2(O ) = K'2(O ) = O, K'2(oo ) -= 1, 
! 

K~' + ] K~' + 2 / '  K 3 - - / "  K 3 = 0 ,  (3.12b) 

Ks(0 ) = K;(0) = K;(oo) : 0 ,  

L;' + / Lg + 1" Lo = --2 N o N g ,  (3 12c) 

Lo(0) = Lo(0) = 0, Lo(oO) := 1,  

? r U I t  L~' + l L~ - 2 / '  L~ + 3 / "  L~ = 2 N'o N~ -- 3 N1 No -- No N ,  -- 4 ,  (3.12d) 

L d 0 )  = L'I(O) = 0, L'l(OO) : 1 ,  
r 

L:' + ! L~ - 4 1' L~ + 5 1" L ,  = - 2  (3 U~.~7" _ 2 U ' / +  4) , (3.12e) 

L~(0) = L'~(0) = 0, L~(oo)  : 1 .  

Solut ions of (3.12) give L"(0)  : 1.057, L~(0) = 4.33? and L~(0) = 1.365. Equat ion  
(3.12b) is the identical eigenvalue problem as tha t  given by  (3.7) so tha t  

g~ : ~a [~/l'(~) -- ](~7)], (3.13) 

where e3 is a constant .  The solution to (3.12a) is writ ten as 

K~ : K + c% [~ ] '  -- ]] , (3.13a) 

where K is the solution of 

K "  + ] K "  + 2 / ' K ' - - , t " K = 2  ( 1 - - o ~ , / ] " ) ,  

K(0) = K'(0) = 0, K"(0) = 1 .  (3.14) 

The non-dimensional skin friction at the wall becomes 

Rex) 112 Cf  = l"(O) + e [3 Mo(O ) -- 4 x Ni'(O)] + e" log e ; ~  / "(0) (1/2 

+ ~. - ~ -  (1 + ~./"(0)) + ~3 I"(0) + ~ Lg(0) 

- 12 x L~(o) + s x~ L;(o)]. 

The constants ~ ,  ~2 and ~3 will now be determined by  asymptot ical ly  matching 
(3.15) to (3.4). Equat ion  (3.4) represents the one term inner solution which, after being 
wri t ten in terms of inner variables, expanded for small s with S fixed and rewritten 
in terms of outer variables, is matched  to equation (3.15). We thereby,  obtain 

~ -= -- 1.202, ~2 = -- 5.920, ~3 ~ 0.601 . 

Equa t ion  (3.14) m a y  be solved numerically. 
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The skin friction as a function of the streamwise distance x for various values of e 
is shown in Figures 3 and 4. Figure 3 illustrates the effect of airfoil thickness on the 
position of the separation point; as the airfoil thickness increases, the position of the 
separation point moves upstream. The effects of higher-order terms on the skin 
friction are shown in Figure 4. From (3.15) we find that no separation occurs on the 
airfoil surface for thickness ratios less than 6.5~ (e = .05) to 0(e) and less than 5.5~ 
(e = .043) to 0(e~). This result compares favorably with the experimental observation 
of Fage, Falkner and Walker (1929) which shows that a 5~o Joukowski airfoil in a 
laminar flow does not separate (see the discussion on page 109 of Ref. [5t). I t  is seen 
that the e 2 term leads to a substantial correction in the total skin friction in the 
vicinity of the separation point. This is also seen by considering a Joukowski airfoil 
with e = 0.092 corresponding to a maximum thickness of approximately 12%, where 
it is found that the separation point accurate to 0(s) is located at (x/c) = 0.62, whereas 
the 0(e ~) correction reduces the value to (x /c)= 0.49. By other techniques [121; 
namely, a numerical boundary layer solution using the method of Smith and Clutter, 
the separation point is found to occur at x = 0.46. Hence, the skin friction with terms 
of order s ~ predicts the position of the laminar separation point to within 6% of that 
found by more exact techniques. 

Slender Wedge 

As a second example of the higher-order theory, the boundary layer on a slender 
semi-infinite wedge is considered. This problem is particularly significant in that a 
'similar' solution of the boundary layer is available which will provide additional 
insight to the accuracy of the methods described in this paper. 

The well-known result for the inviscid flow over this body is 

U~ = U l x ~l(2-r (3.16) 

where U 1 is a constant and x is measured along the wedge surface ; the included half- 
angle is zr ~/2. Consistent with the analysis presented herein it is assumed that 

e = ~/~/2 • 1. (3.17) 

The velocity external to the boundary layer, after expanding for small values of e 
becomes 

~2 
U~ _ 1 + e logx + - - -  ( 2 1 o g x + l o g ~ x ) +  (3.18) 
U1 ~ 2 ;r ;~- . . . .  

I t  is important to note that the general thin-airfoil techniques presented in the 
beginning of this paper can be used to find the inviscid flow solution for a thin finite 
wedge. Since the solution (3.16) relates to an infinite wedge, some limiting process 
mu~t be considered. This discrepancy is resolved by considering a finite wedge of 
length a, where a is very large, and also restricting x to be much less than a. From 
Van Dyke [31 

x 2 + y2 1 --2 (x'-- x) dx' _ 1 l o g  ( 3 . 1 9 )  
(Fix - 2 zr (x'  - x )  ~ + y2 2 zr (a  - -  x )  2 + y~ 

0 
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Substituting (3.19) into (2.3) and assuming a >> (x ~ + y 2 ) m  then 

U e--~ 1 -  e loga+ e logx+. . .  
yg 

Now defining U 1 = 1 -- e/Jr loga, we have 

u. ~ ul  [1 + k log x + o(~)],  
7~ 

which is the leading term of the expansion for small fi of the local solution for an 
infinite wedge (3.16). U1 may now be eliminated from the above equation by non- 
dimensionalizing all velocities with respect to U 1 Uoo. 

This technique is somewhat analogous to that  used by Van Dyke [3] in matching 
the solution near the nose of a sharp airfoil to the local solution for an infinite wedge. 
However, we are not considering the local solution at this point. 

The boundary-layer solution may now be found as outlined previously. The first- 
arder boundary layer leads to 

~ = / 2  x l o g  x M . ( 7 /  + - ~7o(7) , (3 .20/  

where M o is governed by  (2.20a) and is given as 

M o = 1/2 [/(7/ + 7/ '(7)1; (3.21) 

3~" o is determined by 

No' + l No + 1"-~o = - 2  [1 - l '~ + l 1 2 1 . t " ]  , (3.22) 
with 

N0(0)  = ~ ; ( 0 )  = ~o(OO) = o.  

The next term of the expansion of ~ is of the order e ~. Consistent with (3.18), 
it is assumed to be of the form: 

~o 2 = V 2 x ~ y  L0(7) + ~r~-/~0(7) log x + ~ - ~  /~1(7) l~ x2 �9 (3.23) 

Substituting (3.5), (3.23) and (3.20) into (2,6) and retaining terms of 0(e2), the follow- 
ing ordinary differential equations result 

L o ' + ] L o + /  /~o 2 1 ' K  o - 2 / ' k  0 + 2 M  0N o - 2 N  o M  o, (3.24a) 

with L0(0 ) = /~'o(0) = /~'0(~) 0,  

= -, 2 / , ,~1+2M,o~ -NoMo Ko' + //~o + / "  k 0 2 1 ' K  1 - -  

M ~r," _ 4 (3.24b) + 2 M o M g - -  o-,o , 

with/~o(0) = Ko(0) = 0, /~o(OO) = 1, 

B2~ 'r + ] B2~ + ]" I ~  = -- 2 M o M "  , (3.24c) 
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w i t h / ~ ( 0 )  =/ (~(0)  = 0, K~(oo) = 1. 

The streamwise veloci ty becomes 

E 2 [ 
u = 1'(~) + --~ Clog x M'o(~) + )o(~)] + ~ Z;'o(~) 

- ,  log~x ~ ; ( ~ )  ] 
+ log x Ko(fl) + --~-- 

and the non-dimensional skin-friction coefficient is 

2 1/2~- ! "(0) + --z cl~ x Mo'(0 ) + No'(0)] 

Berna rd  G r o s s m a n  and  S tan ley  G. R u b i n  Z A M P  

(3.25) 

~ [  "(/ " l~ 27f(~ } " 2  (3.26) + ~ . 0  + log x Kg(O) + .... 

The 'exact '  solution to this problem is the Falkner-Skan result, which as given in 
Rosenhead [5] is 

{ xm ~,/2 
~0 = 1/2 X \ ~ + - - i - - /  F(~) , (3.27) 

with 

jv n ~ . . . . . .  
yg 

,~ = Y(2 x)-l~ [(m + 1) .mJ1/'~, (3.28) 

and F is the solution of 
2 e  

F" (~ / )  § F(~/) F"(~/)  + - [1 --  F'(~/) 2] = 0 ,  (3.29) 
z 

with 

F(0)  = F ' (0 )  = 0 ,  F'(oc,) = 1 .  

The skin-friction coefficient becomes 

( ~ ~/2 ~ 
Cf VR-eo ~ = (2 x) -'/2 (1 - e /z) - ' / '  x ~ ' - , /~  ] F"(0) . (3.30) 
2 

I t  is seen tha t  the solution for small wedge angle determined in this analysis may  
have been determined directly from the Falkner-Skan result (3.27) and (3.29) by  
expanding about  e = 0. This technique is presented in Ref. [13] and by  comparing 
with those results it is seen tha t  

No(r/) = 1/2 [t t ]'(~]) - - / (~ )  q- 2 z K(fl)] , (3.31a) 

/~o(~) - -1 /8  [V 2 [(~]) + ~1 ]'(~) -- /(~]) + 4 z [(~ K'(~) - K(~)] + 4 z 2 M(~])], (3.31b) 

/~0(fl) = 1/4 [~]2 ] ,,(fl) + 3 ~]/'(~]) + 1(~]) + 2 z (~] K'(~) + K(~)) ] ,  (3.31e) 
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and 

Kl ( r / )  = 1/4 [~/2/,,(r/) + 3 r / l ' ( z / )  + 1 (~ ) ] ,  (3 .3 ]d)  

where the functions of K and M are solutions of 

n "  + l K "  + I "  K = - 2/:~ [1 - l '2] , (3.31e) 

with 

K(0) = K'(O) = K'(oo) == O, 

and  
8 

M "  + I M "  + I " M  . . . .  I ' K ' -  2 K K "  (3 .3 ]0  

with M(0) : M'(0) = M'(oo) = O. 
Solutions for (3.31e) and (3.31f) are tabulated in Table A-2. I t  is found that  

K"(O) = 0.8269 and M"(O)= 1.2337. The Libby-Fox [10] eigensolutions are also 
possible solutions for ~oi(x, y), but since the leading edge is sharp in the case of the 
wedge, they would only appear in higher-order boundary-layer considerations (in 
Reynolds number). 

Velocity profiles and skin-friction coefficients are determined with (3.25) and 
(3.26). These results are plotted in Figures 7 through 9 for various values of x, the 
distance measured along the wedge, and a wedge angle of 9 degrees. Figures 7 and 8 
depict the excellent agreement between the velocity profile calculated to order e and 
the Falkner-Skan solution from equation (3.27). The skin-friction coefficients plotted 
in Figure 9 for the e and e ~ analyses are compared with the Falkner-Skan skin-friction 
coefficient, equation (3.30) and provide excellent agreement to order e, with a slight 
improvement when the e z terms are included. Figure 10 depicts the error in skin 
friction at x = 1.0 for a range of values of e. I t  appears as if this method is quite 

Figure  7 
Veloci ty profile a t  x ~ .5 s lender  
wedge.  

,~ t / ' r /20 
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Figure 8 
Velocity profile at  x = 2.0 
slender wedge. 
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Skin friction vs. x,  slender 
wedge. 0 
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satisfactory for e < 0.4 or wedge angles of less than 20 degrees at this streamwise 
location. From Figure 9, with e/~ = .05, it is seen that this error is fairly uniform over 
a wide range of x. 

4. Summary 

A simple expansion method has been developed to calculate the laminar, 
incompressible boundary layer on thin airfoils. The results for the thin wedge illustrate 
the accuracy obtained by the techniques described herein and comparison with the 
'exact'  solution of Falkner-Skan is excellent. I t  has been found that excellent agree- 
ment for the velocity profile is obtained with only an order e analysis, and a slight 
improvement in the values of skin friction results with the order e 2 terms. The theory 
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is good for wedge angles of less than 20 degrees at an intermediate streamwise location. 
The prediction of the location of the laminar separation point on the Joukowski airfoil 
confirms this result as agreement with a more exact numerical calculation is quite 
good. The method is applicable to any arbitrary airfoil shape having a blunt or sharp 
nose. 

The techniques presented herein should be particularly useful in three-dimensional 
boundary-layer calculations where the linearized inviscid flow can be prescribed in 
terms of basic functions of x. The particular case of the flow transverse to a cruciform 
surface formed by the intersection of two thin wedges is considered in Ref. E81 and El31. 

Appendix 
Numerical  Solutions or Ordinary Differential Equations 

This appendix presents in tabular form solutions to the ordinary differential 
equations of the analysis. Typically the equations are third-order linear ordinary 
differential equations with variable coefficients. The boundary conditions are split 
over an infinite domain; that  is, two conditions at ~ (the independent variable) equal 
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to zero and another condition applied as ~ --~ e~. As a consequence of the prescribed 
exponential decay of vorticity, all solutions are constrained to approach their 
asymptotic value, for large ~, exponentially fast. Consider a typical equation 

MI'(~ ) + ](~) M~'(~) - 2 ]'(~) M~(~) + 3/"(~) MI(~) : - -  2 (A.I) 

with the boundary conditions 

M~(0) = M;(0) = O ,  M ; ( ~ )  = 1 

where/0~) and/'(~]) are known functions. 
The equation is solved by assuming a solution of the form 

M~07) = C~ Mlc(~ ) + M l p ( ~  ) 

where C 1 is a constant, and Mlc and M~p 
particular solutions to (A.1). Therefore, 

M "  / M "  2 / ' M '  " , ic -~ l c  - -  lc + 3 / MI~ = 0 

with 
! /f 

M~(0) = M,(0)  = O, M l c ( 0  ) = 1, 

and 

(A.2) 

are respectively complementary and 

(A.3) 

M~(10) = 1 = C 1 M~c(10 ) + M~p(10) 

C 1 = [ ]  - M;p(10)]/M~c(lO ). 

It  is important to note that for all of the equations considered here, the comple- 
mentary and particular solutions have both exponentially decaying and algebraically 
growing parts but not algebraic decay; therefore, integration of M~c and Mlp could 
be terminated at ~7 = 10. Clearly this procedure would be considerably more complex 
if algebraic decay occurred. The final solution for Ml07) is 

[ 1 - M~/10) 
M~c(10) ] Mlc(~) + Mlp(~) MI(~) 

as the algebraic growth has been filtered out. The method used to numerically 
integrate the equations was usually a Runge-Kutta technique with a step size of 
A~] = 10 -3. 

o r  

t 
M~'p + / Mlp - 2 l '  M ~  + 3 ]" M~p . . . .  2 ,  (A.4) 

with Mlp(0 ) = M~#(0) = 0, M~p(0) = 1. 
Equations (A.3) and (A.4) are initial value problems and can be integrated 

nmnerically using standard techniques. The numerical solutions to (A.3) and (A.4) are 
substituted into (A.2) to determine the solution for MI(~). The one remaining 
asymptotic boundary condition Ml(oo ) = 1 must now be satisfied. The free constant 
in equation (A.1) is used to satisfy this condition at ~ - 10. Namely, 
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n M;(,~) M;(,~) 57;(n) ~(,~) N;(n) 

.2 0.1408 0 .5380 0 .4039  - 0 .1015 0 .8206 

.4 0.2811 0.9960 0.7665 - 0 .1274 1.484 

.6 0.4192 1.374 1.085 - 0 .0875 1.999 

.8 0.5527 1.672 1.354 0 .0042 2.373 

1.0 0 .6782 1.892 1.570 0 .1317 2 .620 

1.4 0.8911 2.106 1.827 0 .4303 2 .779 

1.8 1.033 2.069 1.857 0 .7016 2 .599 

2.2 1.096 1.841 1.714 0 .8876 2.212 

3.0 1.071 1.317 1.284 1.014 1.439 

4.0 1.012 1.036 1.032 1.006 1.048 

6.0 1.000 1.000 1.007 1.000 1.006 

8.0 1.000 1.000 1.000 1.000 1.000 

M~(0) = 0.7044,  M~(0) = 2.890,  N ; (0 )  = 2.120,  N~(0) = - 0 .7062,  N~(0) = 4 .498.  

T a b l e  A-2  

K a n d M ,  K "  + / K  ~ + / " K  = - 2 / ~  (1 - / ' ~ ) ,  M ~ + I M "  + / ~ M  = -- 8 / ~ / ' K '  - 2 K K  ~ . 

K K" K "  M M '  M ~ 

0.0 0 .0000 0 .0000 0 .8269  0 .0000  0 .0000 - 1.2337 

�9 5 0 .0900 0 .3329 0.5015 - . 1 5 3 7  - . 6 1 1 8  - 1 .1929 

1.0 0 .3049  0 .4984 0 .1603 - . 6 0 0 4  - 1 .1510 - 0 .9039  

1.5 0 .5608 0 .4999  - 0 .1389  - 1 .2649 - 1 .4519 - 0 .2463 
2.0 0 .7848 0.3827 - - 0 . 3 0 0 9  - 1.9883 - 1 .3769 0 .5235 

2.5 0 .9373 0 .2280  - 0 .2933 - 2 ,5889  - 0 .9919  0 .9256 
3.0 1.0185 0 .1056 - 0 .1892 - 2 .9696 - 0 .5412 0.8062 

3.5 1.0523 0 .0380  - 0 .0873 - 3.1535 - 0 .2238 0.4567 

4.0 1.0633 0 .0106 - 0 .0298 - 3.2213 - 0 .0705 0 .1819 

4.5 1.0661 0.0023 - 0 .0076 - 3 .2405 - 0 .0170  0.0528 

5.0 1.0666 0 .0004 0.0015 - 3.2447 - -0 .0031  0 .0114 

5.5 1.0667 0.0001 - 0 .0002 - 3 .2454 - 0 .0004 0 .0019 

6.0 1.0667 .0000 - . 0 0 0 0  - 3 .2455 - . 0 0 0 0  0 .0002 

6.5 1.0667 .0000 - . 0 0 0 0  - 3.2455 .0000 .0000 

7.0 1.0667 .0000 - . 0 0 0 0  - 3.2455 .0000 .0000 

7.5 1.0667 - . 0 0 0 0  - . 0 0 0 0  - 3.2455 - . 0 0 0 0  .0000 

8.0 1.0667 - . 0 0 0 0  .0000 - 3 .2455 - . 0 0 0 0  .0000 
8.5 1.0667 - . 0 0 0 0  ,0000 - 3.2455 .0000 .0000 

9.0 1.0667 - . 0 0 0 0  .0000 - 3.2455 - . 0 0 0 0  .0000 

9.5 1.0667 - . 0 0 0 0  .0000 - 3 .2455 - . 0 0 0 0  .0000 
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Z u s a m r n e n f a s s u n g  

Zur Untersuchung der lalninaren inkompressiblen Grenzschicht an diinnen Profilen wird eine 
einfache Expansionsmethode angegeben. Diese Methode verbindet die Entwicklung fiir kleine 
St6rungen mit den ,quasi-~hnlichen, Theorien der Grenzschicht. Verschiedene geometrische 
Formen wurden behandelt, einschliesslich eines Joukowski-Profils, eines Parabel-Profils und eines 
schlanken Keils. Die erhaltenen Profile und l~eibungswerte sind in guter ~bereinstimmung mit 
Resultaten aus anderen Quellen, selbst Iiir ziemlich dicke Profile. Die Anwendung der Methode 
d~irfte besonders nt~tzlich werden im drei-dimensionalen Fall, wo andere zwei-dimensionale 
Methoden nicht einfach t~bertragen werden k6nnen. 

(Received : April 2, 1970; revised: September 28, 1970) 

On Local G6rtler Instability 
By Murray Tobak,  Ames Research Center, NASA, Moffett Field, California, USA 

1.  I n t r o d u c t i o n  

The ins tabi l i ty  of boundary- layer  flows over concave walls to per turbat ions  in the 
form of longi tudinal  vortices was first demons t ra ted  theoretically by  G6rtler Eli in 
1940. Ever  since detailed studies of the t rans i t ion  from laminar  to tu rbulen t  flow 
revealed the necessary invo lvement  of three-dimensional  disturbances,  G6rtler 's 
analysis, descriptive as it  is of a three-dimensional  instabil i ty,  has held an impor tan t  
place in the development  of ideas concerning the na ture  of l aminar  boundary- layer  
instabil i ty.  

Although the predictions of the theory have been confirmed under  experimental  
condit ions approximat ing  those assumed in the formulat ion E2-4] m a n y  of its 
implications have not  been as fully explored because certain of the theoretical 
assumptions l imit  its applicabi l i ty  to an as yet unde te rmined  degree. One such 
assumption is tha t  the wall, of infini te  streamwise extent,  have a constant  curvature  
everywhere along its length. In  practice, wall curvature  normal ly  is present over only 


