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An Expansion Method for Boundary Layers on Thin Airfoils’)

By Bernard Grossman?2) and Stanley G. Rubin, Polytechnic Institute of Brooklyn,
Farmingdale, New York, USA :

1. Introduction

The laminar incompressible flow over a thin airfoil represents a fundamental
problem of fluid mechanics. The inviscid incompressible flow over two-dimensional
bodies whose presence only slightly disturbs an initial uniform flow has been studied
extensively. Modern analyses such as those by Lighthill [1], Jones and Cohen [2] and
Van Dyke [3] present systematic and orderly treatments of this problem.

The associated viscous flow problem has been considered by a variety of methods.
These techniques consist of ‘similar’ solutions, series expansion methods and approxi-
mate methods based on integral forms of the equations. Thorough discussion of these
techniques can be found in Schlichting [4] and Rosenhead [5].

The objective of the present study is the development of a systematic method for
examining the boundary-layer flow over thin symmetric bodies, whose inviscid flow
field is specified with the use of small disturbance theory; i.e., a perturbation method
for the treatment of rather general flows having small streamwise pressure gradients.

The inviscid flow field is determined as a perturbation of the undisturbed stream
and represented by a series of terms in increasing powers of g a small thickness
parameter. The boundary-layer solution is then formulated as a series expansion in &
and matched, term by term, to the inviscid flow. The boundary-layer solution for any
order in ¢ is found by a quasi-similarity approximation based on the exact functional
form of the inviscid flow at the outer edge of the boundary layer. In order that quasi-
similarity methods apply, only specific forms of the outer flow may be considered
and these will be discussed in detail in Section 2. On the other hand, more general
flows can be considered using expansion methods for which the rate of convergence
is quite rapid. In Section 3 the effects of higher-order terms (in &) on the boundary-
layer solution are considered. In this connection, the effects of bluntness must be
examined.

Perturbation methods, of the type considered here, have previously been used by
Mager [6] and Wood [7]3) to examine the effects of small deviations from uniformity

1) This research was supported by the Air Force Office of Scientific Research under Contract
No. AF 49(638)-1623, Project No. 9781-01, and under Grant No. AFOSR 70-1843.

2) Currently at Grumman Aerospace Corporation, Bethpage, New York. Part of this work is
based on a dissertation submitted to the Polytechnic Institute of Brooklyn in partial fulfill--
ment of the requirements for the degree of Doctor of Philosophy (Astronautics).

3} The authors would like to thank the reviewer who made them aware of these related investi-
gations.



110 Bernard Grossman and Stanley G. Rubin ZAMP

in the free stream. They both were concerned with small three-dimensional cross-
flows and only considered the first-order term in the perturbation expansion. Wood
also discussed the first-order solution for two-dimensional thin airfoils using power
series expansions to describe a general body shape. He examined the region near a
blunt leading edge and noted the relation to the flow over a parabola, which has been
discussed more recently by Van Dyke [3]. The present paper explores the matching
of the leading-edge solution, which to first-order for a blunt body is approximated by
the flow over a parabola, and the thin-airfoil expansion downstream. An example of a
body with a sharp leading edge is also discussed in Section 3.

The accuracy of the techniques to be developed in this paper will be illustrated
by considering several examples and comparing with other known solutions. It will
be shown that good results are obtainable with one or at most two terms in the
expansion. The use of this technique for three-dimensional flows, where other two-
dimensional methods cannot be applied easily, prompted the considerations presented
herein. One such application is discussed in Ref. [8].

2. Inviscid Flow and First-Order Boundary Layer

The inviscid, incompressible flow over a symmetric thin airfoil is considered first.
The basic approach to this problem is well documented and may be found in several
references, notably Van Dyke {3].

The shape of the airfoil as given in Figure 1 is represented by

Vo=9px) = Fx), for0 <x <1, (2.1
y'v
INVISCID FLOW
COORDINATES
v
BOUNDARY LAYER
COORDINATES
XU
Figure 1 v,
Two-dimensional flow coordinate /‘ XU
systems. t

where the thickness parameter ¢ < 1, and all lengths have been non-dimensionalized
with respect to the chord length ¢ of the airfoil. In terms of a non-dimensional potential
tunction defined by g = Us P we obtain, as the governing equation for the inviscid
flow.

Vg =20. (2.2a)
From the tangency condition at the body,

—— =0ony,=¢Fx), 0<x<1, (2.2b)
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with symmetry across y = 0, for all other values of x; # is the direction of the outward
normal to the body. The conditions of uniform flow at infinity is prescribed by

Vo — Zx, as (22 + y3)12 > 00, (2.2¢)

where zA'x is a unit vector in the stream direction.
The velocity potential is now assumed to possess an asymptotic expansion in
powers of ¢ of the form

ol yie) = 2o y) e

The potential problem (2.2a,b,c) may be solved using the well-known techniques
of inviscid, thin-airfoil theory. A detailed description of some of these methods are
found in Ref. [3].

The velocity along the body surface is designated as U, = Ufx, y,(x)), and
represents the outer limit for the boundary-layer analysis. It is seen that [3]

Uo=14e@,(x 0) + & [@y,(x, 0) + F(x) F"(x) + 1/2 F'?(x)] + O(e*) . (2.3)

As a result of the small disturbance solution of the outer flow, ¢,(x, 0) is prescribed.
The external velocity (2.3), for a large variety of airfoil configurations, will be of the
form

U=1+¢[Bylogx + By(xlogx) + Co+ Cyx + Cox® + ... + C, x*] -+ 0(e?) ,
(2.4)

where By, B, and C, are known constants and the coordinate x is now measured along
the body surface?).

At this point, we are considering only those potential flows having velocity
distributions shown in (2.4). In the subsequent discussion, modifications to include
terms of the type log (1 — ) will be discussed. In the following section concerned with
second-order theory, the effects of leading-edge bluntness leads to the inclusion of
x~1 terms in (2.4).

It should be noted that the somewhat artificial external flow U, = 1 — ¢ %,
although not generated by any simple airfoil shape, is a special case of (2.4). For this
particular surface speed the present perturbation technique reduces to the well-
known Howarth expansion (see Rosenhead [5]).

Introducing the two-dimensional stream function in non-dimensional form

u v
- d— = — 2.5
Uoo ':UY an Uoo wx' ( )

into the governing Navier-Stokes equations (e.g., see Rosenhead [5]), and appro-
priately developing Prandtl’s boundary-layer equations (Van Dyke [3]), we obtain the

4) Equation (2.4) is unchanged to O(e?) when the cartesian coordinate # is replaced by the body
surface coordinate x. Since only terms up to O(g?% are discussed herein, no distinction between
the two will be considered. '
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following boundary-layer problem:

Yyyy T ¥y — Yy ¥y = — U, Ue,(x) s (2.6)

with the surface conditions

P, 0) = yy(x, 0) = 0,
and the outer matching conditions
pylx, Y) > Ufx) as Y ->00.

Here Y is the stretched coordinate normal to the body such that ¥ = y)/Re and the
free-stream Reynolds number is defined as Re = go U ¢/tieo-
An asymptotic expansion of p is assumed of the form

plx, Y; &) = 9x, Y;loge) + epl(x, Y; loge) + O(e?) , (2.7)
3

where yi(x, Y; loge) = thi,,(x, Y) (loge)® and y, o(x, Y) is designated asy,(x, Y) =vp,.
n=0

This allows for the possible inclusion of logarithmic terms in the expansion. Such
terms may result from leading-edge effects, the appearance of eigenfunctions in the
perturbation scheme or a combination thereof. Substituting this expansion into (2.6)
and retaining terms of 0(1) we find that the solution is the well-known Blasius function
(cf. Rosenhead [5]), where

- Y
Yo=V2xf(n); n= Yoy (2.8)
and
") + ) f"(m) = 0, (2.9)
with
f0)=7(0)=0  foo)=1.

The Blasius solution may be found tabulated on page 223 of Ref. {5].

The governing equations to first order in ¢ are obtained in a similar manner.
Defining a (£, ) coordinate system, where &€ = x, y = Y/)/2 x and y, is given by (2.8),
the first-order equations become

Vugyy T I gy + 0wy + 281770 wig — ') wayel =

— [Bolé + Bylogf + (By+ C)) + 2Co &+ - +nC, E1 28 Y2, (2.10)

with

and

lim y, (6, 7) = Bologé + By Elogé + Co+ C & + C, & 4 - 4 C, 8. (2.11)

H—>00
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By analogy with the methods used in obtaining ‘similar’ boundary-layer solutions
and utilizing the linearity of (2.10), we choose y, to be of the following quasi-similar
form:

= Y2 & [B,logé My(r) + By & logé My(n) + Co No(n)
+ CLEN) + Co & Ny(n) + -+ + C, & N, ()], (2.12a)

M(0) = M,(0) = N,(0) = My{0) = M,(0) = N,(0) =0, (2.12b)

lim Mo(n) = M;(n) = N,(n) = 1.

n—>o0

Substituting (2.12a) into (2.10) and noting that £ and # are independent, we obtain
the following ordinary differential equations:

My + My +1" My =0, (2.132)
M +fM] 2 My+3f" My=-2, (2.13b)
m " ” _ZB " "M
N§ + fNg + " No= =t (L4 [ Mo~ |' M) , (2.13¢)
0
" 4 ’ ’ ” 2B ”
NY+fNy =2 Ny 431" Ny= 2= “CH (L4 "My~ My, (213d)
1

and for # > 2
Ny +fN,—2['N, = 2nf' N+ (1+2n)f"N,=~2n. (2.13¢)

The solution of these equations, subject to the boundary conditions (2.12b), represent
the first-order (¢) boundary-layer effect. In addition to the solution depicted in
{2.12a), equation (2.10} has a countable set of eigensolutions {cf. Stewartson [9],
Libby and Fox [10]) that shoutd be added to (2.12a). However, these solutions are
singular as § — 0 and by matching with a local solution at the leading edge it will be
shown in Section 3 that the eigensolution of 0(&-7) first enters into the expansion (2.7)
when terms of O(e?") are considered. Since the lowest value of » is unity [9, 10], we
would expect contribution in the &2 term.

It is of interest to note that only equations (2. 13c) and (2.13d) depend on the
coefficient By, B,, Cy and C,. Hence, the other equations may be solved in general.
Typical solutions are given in Table A-1. In addition, it can be seen that the solution
to equation (2.13a) is

My =1/2 [f(n) +n 1" ()] (2.14)
For future reference the non-dimensional shear stress at the wall, 5 = 0 is prescribed

ZAMP 22/8
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in general by

C
f VReOO ~1/Jyy(x 0) = wopy(®, 0) + epryy(x, 0) = Vz £7(0)
+ —l/“zi_; [Bylogx M(0) + By xlogx M{(0) + Cy Ng(0) (2.15)

+ G aN"(0) + ...+ C, 22 N'(0)] .

Specific applications of this first-order viscous small-disturbance theory now are
considered. The method is first applied to a thin Joukowski airfoil which is illustrative
of the class of problems whose velocity at the outer edge of the boundary layer is of
the form given by (2.4). A second application is that of a slender parabolic-arc airfoil
where an additional coordinate expansion is necessary in order that the methods
described herein are directly applicable.

Joukowski Airfoil

We consider a thin symmetrical Joukowski airfoil whose shape to first order is
given by

y=2&(l—2x) )x({l—x) (2.16)

where here ¢ is 0.769 times the maximum thickness ratio. With (2.16), and from (2.3),
and Van Dyke [3], the velocity external to the boundary layer becomes

U=1+¢e(3—4x%). (2.17)
In accordance with (2.4), the constants are prescribed as follows:
By=B,=0; C4=3; C,=—4;C,=0,1>22,
From (2.12a), the boundary-layer solution becomes
= }'(m) + & [3 No(n) — 4 % Ny(n)] , (2.18)

where Ny = M, and N, = M, as defined by (2.12a), (2.13b) and (2.14). (See Ref. [13]
for details.)
The shear stress along the body from (2.15) is

V s U0 e [3M(0) —4x MI(O)]}, (2.19)

where f”(0) = 0.4696, M = 0.7044, M} (0) = 2.890. The velocity profiles and the
shear stress distribution are plotted for various values of x and ¢ in Figures 2, 3 and 4.

Figure 2 depicting the velocity profiles shows that the deviations from the flat
plate profile increase moderately as the body thickness (¢) increases, while Figures
3 and 4 depict the decrease in u,(x, 0) for increasing values of x. The figures also
indicate that separation occurs on the airfoil. The location of the separation point is
seen to propagate upstream with increasing values of ¢, as would be expected.
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Figure 3
Non-dimensional skin friction
vs. #, Joukowski airfoil. OO o

It is important to note that the potential flow analysis discussed herein is
obtained for a non-separated flow and therefore, any solutions presented should not
be valid after separation has occurred. Furthermore, the nature of the flow in the
vicinity of the separation point is improperly described by the present perturbation
scheme. However, there is experimental evidence showing that for the slender airfoils
considered here, the flow solutions derived should be reasonably good upstream of the
separation point and may be useful in approximating the position of the separation
point. These facts are -again discussed in Section 3 in connection with higher-order
solutions of the Joukowski airfoil.
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Parabolic-Arc Aivfoil
As a second example, consider a symmetric airfoil formed by the intersection of
two parabolic arcs such that

y=4¢e(x—x%.

For this case, the inviscid potential flow solution is
4¢ )
U,=14+—[2—-(1—-2x)log(l —x)+ (1 —2x)logx]. (2.20)
4

We find that typical of small-disturbance solutions a singularity appears at the
leading edge x = 0. '

To obtain U, in the form given by (2.4) so that ‘quasi-similarity’ solutions are
possible, it is necessary to expand the log (1 — #) term in (2.20) for small values of x
such that

log(1 — x) = o — 2.21
og{l—x)=—x« 2 3 " (2.21)
Substituting (2.21) into (2.20) we find that
4¢e 3 x? 243
Ue=1—|—-—[logx—leogx+2+x—7—T—--- . (2.22)
7T

Therefore, in accordance with equation (2.4), By = 4/n, B; = —8/n, Cy = 8/xn, C; =
4/ and C, = [—4 (n + 1)}/l #n (n — 1)] for » > 2. Using the techniques developed
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in this section, the velocity profile in the boundary layer is
——— , 4¢ ’ ’
w=yy=Vy25 1 {') + = [My(n) log x — 2 My(n) x log «

et N ha 1
+ 2800 + W 2 = 57 0L

%" N;(n)]} ) (2.23)

The only ordinary differential equations not previously discussed are

N{ NG+ 1" No=— (141" My— ' M),

Ny0) = Nof0) =0, Nyfoo) =1, (2.24a)

N/ + [N/ =2/ N +3f"Ny=—2+4 (1 +["M,—} M),

N,(0) = N,(0) =0, Nifoo) =1. (2.24b)

Numerical solutions for these equations are presented in Table A-1. We recall that

No and 2{7—1 depend explicitly on the form of the external flow. The N, () (# > 1) are
universal functions and can be tabulated; series expansions of the type (2.23) can then
be evaluated to any reasonable degree of accuracy.

The solution of {2.23) is evaluated by including a finite number of terms in the
coordinate expansion for log(l — x) and is truncated after the x* term. To this
approximation U, should be accurate to within 5%, of its value as given by (2.20), for
0.1 <x < 0.85,0 < & < 0.4. The solution is not valid at the leading edge where it is
singular. Velocity profiles at various streamwise locations, and for selected values of ¢
are shown in Figure 5. From the curve depicting the skin friction (Fig. 6), it can be
seen that the separation point is within the range of x for which the solution should

5
I
1" 7k Yo
q
3 —
U= U°+ € Ul
€=0.05
2 t—
1= U AT X=0.7
U AT X=03
Figure 5 0 | L 1 1 ]
Velocity profile, o] 0.2 0.4 0.6 0.8 1.0 1.2

parabolic arc. u
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Cfllir21Re,) 2

Figure 6
Skin friction vs. %, parabolic arc.

be acceptable and that over a range of values of thickness parameter of 0.05 to 0.20
the laminar separation point only varies from 0.83 to 0.71.

3. Second-Order Theory and Eigensolutions

From the previous analysis it is seen that the potential flow over a thin Joukowski
airfoil is singular at the leading edge. This condition is typical for blunt-nosed airfoils,
and the correction to the potential flow is discussed by Van Dyke [11]. Although the
leading-edge potential flow does not directly affect the analysis for the flow down-
stream of x > 0(¢?), in that small-disturbance theory is valid on this range, it is found
that an eigensolution in the downstream boundary-layer solution leads to an arbitrary
constant which must be determined by matching with the leading-edge boundary
layer. It will be shown that the effect of a blunt leading edge on the boundary layer
will not appear until order &% loge so that the first-order (¢) boundary layer developed
in the previous section remains unchanged.

Any singularities occurring at the leading edge of a sharp-nosed airfoil are so
weak as to have a negligible effect on the flow downstream of x > 0(¢=¥%) (see
Van Dyke [3, 11]).

The procedure for determining the effect of leading-edge bluntness on the
potential flow field for a Joukowski airfoil has been considered by Van Dyke [3] by
examining the flow near the leading edge, where S = x/2 &% is of 0(1). The boundary-
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layer solution near the leading edge has also been treated by Van Dyke [11]. From the
asymptotic matching principle the limiting values as S —> co must match the boundary-
layer solution obtained herein as x — 0.

Consider the stretched coordinates

_ Y x
-7 S =
Y 22

S (3.1)

In these variables, with the limit & — 0, keeping S fixed, the airfoil shape is of the
form

y=}2S[1+ O0@)]. (3.2)
The inviscid solution for this parabolic body gives
U=V2S[1+e+ 0] . (3.3)

The leading term in (3.2) corresponds to the flow over an infinite parabola. The
boundary layer on this body has been determined by Van Dyke [11] using a Blasius-
Howarth series-expansion technique (cf. Rosenhead [5]) near the nose and a supple-
mentary expansion technique valid downstream for large S which he denoted as an
‘inverse Blasius series’. In terms of the non-dimensional skin friction coefficient, this
solution, valid downstream of the nose of the parabola, i.e., for large S, is:

1 0.89
(1/2 Re)¥2 C; = 0.469600 [1 +0.60115 — < log 25 + ‘Té‘“] )

where Re, = Uc #[vo. The constant 0.89 in the above equation was obtained by
Van Dyke [11] by matching to the series solution in the vicinity of the nose of the
parabola. Rewriting the above equation in terms of the physical coordinate x, it is
found that:

2 2 2

(1/2 Re)"2 C, = 0.469600 [1 — 0.60115 —— log & + —— (0.89 + 0.60115 log#)] -
X X

(3.4)

This equation represents the leading term of the zero-order asymptotic expansion in e.
The &? loge and &2 term appear as a result of the stretching. It can be seen that the
higher-order terms cannot generate any additional contributions of the form £?/x loge,
e2/x or &%/x logx. This fact will be utilized in the following analysis.

With consideration of the form of the solution near the nose of the airfoil, the
stream function (2.7) is expanded as

Y=1o+ ey + e logeyy, + ey, + ... . (3.5)

The inclusion of the £2loge term is necessary in order that (2.15) match with the
upstream solution (3.4). This &2 loge term y,, is seen to correspond to the lowest
eigensolutions discussed previously and the associated constant must be determined
by matching to the solution valid near the nose.

We have previously determined that

wo=V2x[(n); w1 =Y2x [3 No(n) — 42 Ny(n)] .



120 Bernard Grossman and Stanley G. Rubin ZAMP

Since no terms of order &2 loge appear in the outer flow, after substituting expansion
(3.5) into (2.6) and retaining terms to order 2 loge, the governing equation for g,
becomes

Varggyg T 100 Yoy + 770 ory + 28 [17(0) ore — ') Yorg, 1 = 0, (3.6)
with the boundary conditions

yu(&, 0) = '/’21¢7(5» 0)=0, Ya1,4(&,00) = 0.
In accordance with the solution near the nose of the airfoil, it is assumed that

Po1 = —V-Zgé 1(n) -
Substituting into (3.6), the governing equation for K, becomes

K'+{K/ +2f{K,—f"K,=0, (3.7
with

K,(0) = K(0) = K;(00) = 0.

This eigenvalue problem corresponds to the eigenvalue A = —2 in the analysis of
Libby and Fox [10]. The solution is
Ki(n) = aq [ 1'(m) — £ (m)] (3.8)

where «; is a constant whose numerical value will be found by matching to the
solution near the nose of the airfoil. Since the next eigensolution is of 0(£-187) [10] we
would not expect any additional eigensolutions to enter into this analysis which
includes only terms up to 0(e?). The appearance of eigensolutions in higher-order
terms will depend upon the specific nature of the leading-edge flow.

Joukowsks Adrfoil

For the one specific case of the Joukowski airfoil it is found from (2.3) that the
velocity at the edge of the boundary layer to order &2 is

1 9
Ue:1+s(3—4x)—|—62(—~—2—;+"2“--—12x+8x2). (3.9)

Retaining terms of order &2 in the expansion (3.5) of the governing boundary-
layer equations (2.6) yields

w2mm +f%m;+f,‘/’2n + 2& (f”w2§_fw2'i7£) = Vévf {9N0N(/), + 125 (2 N(’)N],.
— 3N, N/~ NN/ —4) + 16 2 (3N, N/ ~2N}2+ 4) + &1, (3.10)

Consistent with the solution near the nose of the airfoil and with the form of the
outer flow, to order 2, the stream function vy, is assumed to be of the following form:

log & 9
£ Ky(n) + 2

v = V2E [—i&(m T

’: Lyfn) =128 L) + 88 Lo |

(3.11)
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Substituting (3.11) into (3.10), we obtain the following system of ordinary differential
equations:

KV 4 K42 Ky — " Ky=2(1+2["Ky—2f Ky), (3.122)
Ky(0) = K;(0) =0, Kyfoo) =1,

Ky + Ky +2f Ky—{"Ky=0, (3.12b)
K(0) = K3(0) = Ky(oo) =0,

Ly +fLg+f"Ly=—2N,Ng, (3.12¢)
Ly0) = Lg(0) =0, Lgfoo) =1,

LY+ fL] =2/ Li+3f"Li=2NgN; = 3N, Ng — N, Ny — 4, (3.12)
Ly(0) = Ly(0) = 0, Lyfoo) =1,

LY 4 fLl —4f Li+5f"Ly=—2(3N, N/ —2N;244), (3.12¢)
Ly(0) = Ly(0) =0, Lyfoo)=1.

Solutions of (3.12) give L"(0) = 1.057, L{(0) = 4.337 and L;(0) = 1.365. Equation
{3.12b) is the identical eigenvalue problem as that given by (3.7) so that

Ky=a3(nf'(n) — ], (3.13)
where o, is a constant. The solution to (3.12a) is written as
Ky=K+anf —/1, (3.13a)

where K is the solution of
R—W—)—fﬁ”—f—ZfI—E, '}c//'K: 2 (1 —OC3](}(") ,

KO0)=K'©0)=0, K'0)=1. (3.14)

The non-dimensional skin friction at the wall becomes

(112 Re)¥ C; = 7(0) + & 13 M3(0) — 42 NJ(0)] + e2log & 2 1(0)

+ [(— —217) (1 + ay 7(0) + (l—oii) as 17(0) + % Lo | G

— 12 x Lj(0) + 8 22 L;(0)] .

The constants «,, o, and «; will now be determined by asymptotically matching
(3.15) to (3.4). Equation (3.4) represents the one term inner solution which; after being
written in terms of inner variables, expanded for small £ with S fixed and rewritten
in terms of outer variables, is matched to equation (3.15). We thereby, obtain

oy = —1.202, ay=—5920, o5=0.601.

Equation (3.14) may be solved numerically.
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The skin friction as a function of the streamwise distance x for various values of ¢
is shown in Figures 3 and 4. Figure 3 illustrates the effect of airfoil thickness on the
position of the separation point; as the airfoil thickness increases, the position of the
separation point moves upstream. The effects of higher-order terms on the skin
friction are shown in Figure 4. From (3.15) we find that no separation occurs on the
airfoil surface for thickness ratios less than 6.5%, (¢ = .05) to 0O(¢) and less than 5.5%,
(¢ = .043) to O(e?). This result compares favorably with the experimental observation
of Fage, Falkner and Walker (1929) which shows that a 5%, Joukowski airfoil in a
laminar flow does not separate (see the discussion on page 109 of Ref. [5]). It is seen
that the 2 term leads to a substantial correction in the total skin friction in the
vicinity of the separation point. This is also seen by considering a Joukowski airfoil
with ¢ = 0.092 corresponding to a maximum thickness of approximately 12%,, where
it is found that the separation point accurate to 0(g) is located at (x/c) = 0.62, whereas
the 0(e?) correction reduces the value to (x/c) = 0.49. By other techniques [12];
namely, a numerical boundary layer solution using the method of Smith and Clutter,
the separation point is found to occur at ¥ = 0.46. Hence, the skin friction with terms
of order &2 predicts the position of the laminar separation point to within 69, of that
found by more exact techniques.

Slender Wedge

As a second example of the higher-order theory, the boundary layer on a slender
semi-infinite wedge is considered. This problem is particularly significant in that a
‘similar’ solution of the boundary layer is available which will provide additional
insight to the accuracy of the methods described in this paper.

The well-known result for the inviscid flow over this body is

U, = U, 2P1e-H (3.16)

where U, is a constant and x is measured along the wedge surface; the included half-
angle is 7 $/2. Consistent with the analysis presented herein it is assumed that

e=np2L1. (3.17)
The velocity external to the boundary layer, after expanding for small values of &
becomes

G,

£
=14+ -—logx
U, +7t g4+

&2

) (2logx + log?x) + ... . (3.18)

It is important to note that the general thin-airfoil techniques presented in the
beginning of this paper can be used to find the inviscid flow solution for a thin finite
wedge. Since the solution (3.16) relates to an infinite wedge, some limiting process
must be considered. This discrepancy is resolved by considering a finite wedge of
length a, where a is very large, and also restricting ¥ to be much less than a. From
Van Dyke [3]

a

1 _ ’ d ’ 1 2 2
0L, = __2,(_’1&1‘)_&‘ L gAY (3.19)
2x (& — x)2 + 92 27 (@ — %)% + 2
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Substituting (3.19) into (2.3) and assuming a > (%% + y?)'2, then
U~1-— iloga+ilogx+
7 7
Now defining U, = 1 — ¢/ loga, we have
U, ~ Uyl + = log x + O],
7

which is the leading term of the expansion for small § of the local solution for an
infinite wedge (3.16). U, may now be eliminated from the above equation by non-
dimensionalizing all velocities with respect to U, Us.

This technique is somewhat analogous to that used by Van Dyke [3] in matching
the solution near the nose of a sharp airfoil to the local solution for an infinite wedge.
However, we are not considering the local solution at this point.

The boundary-layer solution may now be found as outlined previously. The first-
order boundary layer leads to

S I | 1 -~
w25 [ togx Myln) + Nt | 3.20
where M, is governed by (2.20a) and is given as
My=1/2[f(n) +nf'n)]; (3.21)
N, o is determined by
NI 4N+ (" Ny=—2[1—f2+1/2ff"], (3.22)
with

> ’

Ny(0) = Nj(0) = Ny(oo) = 0.

The next term of the expansion of y is of the order ¢2. Consistent with (3.18),
it is assumed to be of the form:

Yo=V2x [—:6—2 Loln) + 712— Ko(n) logx + ?lﬂ? K, () logxz] . (3.23)
Substituting (3.5), (3.23) and (3.20) into (2.6) and retaining terms of 0(¢?), the follow-
ing ordinary differential equations result

LV 4 fL! + " Ly=2f Ky —2§" Ko+ 2 M, N, — 2N! M,, (3.24a)

with L(0) = L(0) = Lg(e) = 0,

KI' +fKo+1"Ko=2f K, —2}" Ky + 2 M2 —~ Ny M/

+2MyM! — My N! — 4, (3.24b)
with Ky(0) = K4(0) = 0, K(c0) =1,

K/ +[K! 4 Ky = —2M, M", (3.24¢)



124 Bernard Grossman and Stanley G. Rubin ZAMP
with K, (0) = K(0) = 0, K(co) = 1.

The streamwise velocity becomes

) . , ~, 2 [~
w=1'0n) + < Dogx o) + Ny + = | Zo
~, log*x =,
+ log x Ky(n) + T Ki(n) |, (3.25)
and the non-dimensional skin-friction coefficient is
c, — 1 , e N
—E’: Y Rew = V2—x~ {f (0) + o [log x M (0) + N, (0)]
e T - Ingx -
+ r Ly (0) + log x K (0) + 5 K[ (0) . (3.26)

The ‘exact’ solution to this problem is the Falkner-Skan result, which as given in
Rosenhead [5] is

o xm 1/2 N
=2 F 3.27
vevzw (L) F@, 6.27
with
£ e\ !
m = -— (1 — —) ,
7 7
7= Y(2x)2[(m+ 1) xm]"*, (3.28)
and F is the solution of
~ N 2¢& L~
F"(g) + Fn) F'(n) + - S - Fn?=0, (3.29)
with

F(0)=F'(0)=0, F'(oo)=1.

The skin-friction coefficient becomes

o 3¢/2n

%ﬂ VRew = (2%)12 (1 — efn) 2 x (TZ/’J) F(0) . (3.30)

It is seen that the solution for small wedge angle determined in this analysis may
have been determined directly from the Falkner-Skan result (3.27) and (3.29) by
expanding about & = 0. This technique is presented in Ref. [13] and by comparing
with those results it is seen that

No(n) = 1/2 [ f'(n) — f() + 2 K(n)] , (3.31a)
Lo)=1/8 12 f () + 1 f () — Fn) + 47 [( K'(n) — K ()] + 422 M(z)], (3.31b)
Koln) = 14 [ ") + 30 f'(g) + ) + 2 (n K'(m) + K())] , (3.31¢)
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and

Ka(n) = 14 [ f"(n) + 39 ' (n) + F(n)], (3.31d)
where the functions of K and M are solutions of

K"+ K"+ f"K=—-2[zg[1—{?, (3.31e)
with

and

3
M”/—}—fM”—}—f”M:——*—V f’K’_ZKK” (331f)
T

with M(0) = M'(0) = M'(oc) = 0.

Solutions for (3.31e) and (3.31f) are tabulated in Table A-2. It is found that
K"(0) = 0.8269 and M"(0) = 1.2337. The Libby-Fox [10] eigensolutions are also
possible solutions for y,(x, ¥), but since the leading edge is sharp in the case of the
wedge, they would only appear in higher-order boundary-layer considerations (in
Reynolds number).

Velocity profiles and skin-friction coefficients are determined with (3.25) and
(3.26). These results are plotted in Figures 7 through 9 for various values of x, the
distance measured along the wedge, and a wedge angle of 9 degrees. Figures 7 and 8
depict the excellent agreement between the velocity profile calculated to order ¢ and
the Falkner-Skan solution from equation (3.27). The skin-friction coefficients plotted
in Figure 9 for the ¢ and &2 analyses are compared with the Falkner-Skan skin-friction
coefficient, equation (3.30) and provide excellent agreement to order ¢, with a slight
improvement when the &2 terms are included. Figure 10 depicts the error in skin
friction at x = 1.0 for a range of values of . It appears as if this method is quite

5

€:T/20

ORDER (€)

7
=z

=,
= ORDER (1} BLASIUS
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Figure 7
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—1
wedge. 2 .4 6 .8 1.0
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X

satisfactory for & << 0.4 or wedge angles of less than 20 degrees at this streamwise
location. From Figure 9, with ¢/ = .05, it is seen that this error is fairly uniform over
a wide range of x.

4. Summary

A simple expansion method has been developed to calculate the laminar,
incompressible boundary layer on thin airfoils. The results for the thin wedge illustrate
the accuracy obtained by the techniques described herein and comparison with the
‘exact’ solution of Falkner-Skan is excellent. It has been found that excellent agree-
ment for the velocity profile is obtained with only an order ¢ analysis, and a slight
improvement in the values of skin friction results with the order &2 terms. The theory
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is good for wedge angles of less than 20 degrees at an intermediate streamwise location.
The prediction of the location of the laminar separation point on the Joukowski airfoil
confirms this result as agreement with a more exact numerical calculation is quite
good. The method is applicable to any arbitrary airfoil shape having a blunt or sharp
nose.

The techniques presented herein should be particularly useful in three-dimensional
boundary-layer calculations where the linearized inviscid flow can be prescribed in
terms of basic functions of x. The particular case of the flow transverse to a cruciform
surface formed by the intersection of two thin wedges is considered in Ref. [8] and [13].

Appendix
Numerical Solutions or Ordinary Differential Equations

This appendix presents in tabular form solutions to the ordinary differential
equations of the analysis. Typically the equations are third-order linear ordinary
differential equations with variable coefficients. The boundary conditions are split
over an infinite domain; that is, two conditions at # (the independent variable) equal
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to zero and another condition applied as # — co. As a consequence of the prescribed
exponential decay of vorticity, all solutions are constrained to approach their
asymptotic value, for large #, exponentially fast. Consider a typical equation

M7 (n) + () M () — 21 (n) My(m) + 3 () Ma(m) = — (A1)
with the boundary conditions
My(0) = My(0) =0,  Mifec) =1

where f(n) and f'(5) are known functions.
The equation is solved by assuming a solution of the form

My(n) = Cy My () + My, (n) (A-2)

where C, is a constant, and M,, and M,, are respectively complementary and
particular solutions to (A.1). Therefore,

M;’:+fM;’C—2f’M;c+3f”Mlc: 0, (A.3)
with

M, (0) = M (0)=0, M{(0)=1,
and

M{,+[My,—2{ M, +3f" My,= -2, (A.4)

with M, ,(0) = M ,(0) = 0, M ,(0) = L.

Equations (A.3) and (A.4) are initial value problems and can be integrated
numerically using standard techniques. The numerical solutions to (A.3) and (A.4) are
substituted into (A.2) to determine the solution for M,(%n). The one remaining
asymptotic boundary condition M, (o0} = 1 must now be satisfied. The free constant
in equation (A.1) is used to satisfy this condition at = 10. Namely,

M;(10) = 1= Cy M, (10) + M, ,(10)
or
Cy = [1 — M,,(10)]/ M, (10).

It is important to note that for all of the equations considered here, the comple-
mentary and particular solutions have both exponentially decaying and algebraically
growing parts but not algebraic decay; therefore, integration of M;, and M,, could
be terminated at # = 10. Clearly this procedure would be considerably more complex
if algebraic decay occurred. The final solution for M, () is

M)~ | Tl | M) + M0

as the algebraic growth has been filtered out. The method used to numerically
integrate the equations was usually a Runge-Kutta technique with a step size of
Ay = 1073,
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Table A-1
Differential equations of section 2
7 M) M) No) Ni(n) N(n)
2 0.1408 0.5380 0.4039 -0.1015 0.8206
4 0.2811 0.9960 0.7665 -0.1274 1.484
.6 0.4192 1.374 1.085 —0.0875 1.999
.8 0.5527 1.672 1.354 0.0042 2.373
1.0 0.6782 1.892 1.570 0.1317 2.620
14 0.8911 2.106 1.827 0.4303 2.779
1.8 1.033 2.069 1.857 0.7016 2.599
2.2 1.096 1.841 1.714 0.8876 2.212
3.0 1.071 1.317 1.284 1.014 1.439
4.0 1.012 1.036 1.032 1.006 1.048
6.0 1.000 1.000 1.007 1.000 1.006
8.0 1.000 1.000 1.000 1.000 1.000
MY(0) = 0.7044, MY(0) — 2.890, Na(0) = 2.120, NY(0) = — 0.7062, Ny(0) = 4.498.
Table A-2
Kand M, K" + fK" + " K =-2[n(1 - f'%, M" +fM" + "M = — 8[nf ' K' -2 K K”".
n K K’ K" M M’ M”
0.0 0.0000 0.0000 0.8269 0.0000 0.0000 —~1.2337
5 0.0900 0.3329 0.5015 —.1537 —.6118 - 1.1929
1.0 0.3049 0.4984 0.1603 —.6004 —1.1510 - 0.9039
1.5 0.5608 0.4999 —0.1389 —1.2649 —1.4519 —0.2463
2.0 0.7848 0.3827 - 0.3009 —1.9883 - 1.3769 0.5235
2.5 0.9373 0.2280 - 0.2933 — 2.5889 —0.9919 0.9256
3.0 1.0185 0.1056 —0.1892 - 2.9696 —0.5412 0.8062
3.5 1.0523 0.0380 —0.0873 —3.1535 —0.2238 0.4567
4.0 1.0633 0.0106 - 0.0298 —3.2213 —0.0705 0.1819
4.5 1.0661 0.0023 ~0.0076 ~ 3.2405 - 0.0170 0.0528
5.0 1.0666 0.0004 —0.0015 —3.2447 —-0.0031 0.0114
5.5 1.0667 0.0001 —0.0002 — 3.2454 — 0.0004 0.0019
6.0 1.0667 .0000 - .0000 — 3.2455 —.0000 0.0002
6.5 1.0667 .0000 -.0000 — 3.2455 —.0000 .0000
7.0 1.0667 .0000 - .0000 —3.2455 —.0000 .0000
7.5 1.0667 —.0000 —-.0000 — 3.2455 - .0000 .0000
8.0 1.0667 - .0000 .0000 --3.2455 —.0000 .0000
8.5 1.0667 - .0000 .0000 —3.2455 —.0000 .0000
9.0 1.0667 - .0000 .0000 —3.2455 —.0000 .0000
9.5 1.0667 - .0000 .0000 — 3.2455 -.0000 .0000
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Zusammenfassung

Zur Untersuchung der laminaren inkompressiblen Grenzschicht an diinnen Profilen wird eine
einfache Expansionsmethode angegeben. Diese Methode verbindet die Entwicklung fiir kleine
Storungen mit den ¢quasi-dhnlichen» Theorien der Grenzschicht. Verschiedene geometrische
Formen wurden behandelt, einschliesslich eines Joukowski-Profils, eines Parabel-Profils und eines
schlanken Keils. Die erhaltenen Profile und Reibungswerte sind in guter Ubereinstimmung mit
Resultaten aus anderen Quellen, selbst fiir ziemlich dicke Profile. Die Anwendung der Methode
diirfte besonders niitzlich werden im drei-dimensionalen Fall, wo andere zwei-dimensionale
Methoden nicht einfach iibertragen werden kénnen.
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On Local Gortler Instability
By Murray Tobak, Ames Research Center, NASA, Moffett Field, California, USA

1. Introduction

The instability of boundary-layer flows over concave walls to perturbations in the
form of longitudinal vortices was first demonstrated theoretically by Gortler [1] in
1940. Ever since detailed studies of the transition from laminar to turbulent flow
revealed the necessary involvement of three-dimensional disturbances, Gortler’s
analysis, descriptive as it is of a three-dimensional instability, has held an important
place in the development of ideas concerning the nature of laminar boundary-layer
instability.

Although the predictions of the theory have been confirmed under experimental
conditions approximating those assumed in the formulation [2-4] many of its
implications have not been as fully explored because certain of the theoretical
assumptions limit its applicability to an as yet undetermined degree. One such
assumption is that the wall, of infinite streamwise extent, have a constant curvature
everywhere along its length. In practice, wall curvature normally is present over only



