
Arch. Math. Logic (1988) 27:107 114 

Archive for 

Mathematical 
Logic 

�9 Springer-Verlag 1988 

On the Lattice of Extensions 
of the Modal Logics KAltn 

Fabio Bellissima 

Universitfi di Siena, Dipartimento di Matematica, 
Via de1 Capitano 15, 1-53t00 Siena, Italy 

Introduction 

Some results concerning the lattice of normal modal logics A(K) (see for 
instance [B1, B2]) show the extreme complexity of this structure and the 
consequent impossibility of a complete description of it. On the other hand, many 
other results which appear in the literature give descriptions of significative parts 
of A(K) (see [B 3, Ma, Ra]). In our paper we concentrate the attention on the lattice 
of the extensions of the logics KAltn, originally introduced in [-Se]. We recall that 
KAIt. is the normal modal propositional logic characterized by the axiom 

Alt, = L p o  v L ( p o - - .  p 1) v . . . v L ( p  o ^ . . .  ^ Pn - x ~ P , )  , 

and a Kripke frame F = ( W , R )  is a frame of KAIt, iff for each 
w ~ W I{v ~ W: w R v } l  < n (the formula Alt. has not to be confused with the formula 
I,, see [Fi], which holds at those points which have at most n mutually 
incomparable successors). Because of this semantical content, which represents a 
sort of local finiteness, the set of extensions of KAIt, can be intuitively regarded as 
the set which follows, in order of complexity, that of finite logics. This intuitive idea 
is confirmed at the end of Sect. 1, where we prove that, for each n~o,  each 
extension of KAIt. is Kripke-complete and canonical; this result shows that, even if 
the incompleteness phenomena make the Kripke semantic unadequate for the 
study of the whole lattice A(K), this semantic is adequate to the study of a class of 
logics bigger than that of finite logics (relatively to which the Kripke and the 
algebraic semantics are equivalent, thanks to the perfect correspondence between 
finite Kripke frames and dual spaces of finite modal algebras). In Sect. 2 we give a 
complete description of A(KAitl), from which it results that this structure has the 
following properties: it is denumerable; contains only one pretabular logic; its 
non-finite logics, all having f.m.p., form a linear order of type (~o + 1, > ). From 
this last property it follows that, for each n, there exists a logic having exactly n 
non-finite extensions. All these properties disappear passing from KAItl to KAIt, 
when n > 2 (Sect. 3); in fact in A(KAIt2) we find a continuum of logics without f.m.p. 
and infinitely many pretabular logics. 
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1. Preliminaries and Basic Results 

For the basic logical and algebraic notions we refer to [vB] (Chaps. 1-6) and to 
[BS]. We recall only those definitions that may be not completely standard. Our 
modal language contains a denumerable set of propositional variables {Po, Pl,.. .} 
and the symbols --7, ~ ,  ^ ,  v ,  ~--~, _1_, L, M (negation, conditional, conjunction, 
disjunction, biconditional, falsity, necessity, and possibility). Well formed for- 
mulas are denoted by ~, fl, etc. Given a normal modal logic L we denote by A(L) 
the lattice of the extensions of L, i.e., A(L)= ({L' : L___ L'}, __c ). We recall that, if we 
denote by * the well-known correspondence between logics and varieties of modal 
algebras, then A(L) and the lattice A(L*) of the subvarieties of L* are anti- 
isomorphic. 

A descriptive frame is a couple (F, W )  where F = (W, R )  is a Kripke frame (i.e., 
W # 0 and R ____ W 2) and W___c ~(W) satisfies the following conditions: i) it contains 
the empty set and is closed under boolean operators and L-operator (L(X) 
= {w ~ W: for each v e W, wRy implies v ~ X}); (ii) if w # v then w e X and v r X for 
some X e W; (iii) for each w, v e W, if not wry then, for some X ~ W, w ~ L(X) and 
v r X; (iv) if X___c W has the finite intersection property then n X  =~ 0. A valuation V 
on F is a valuation on (F, W )  if, for each propositional variable p, V(p) e W. Hence 
(F, W )  ~ fl[w] if (F, V) ~ fl[w] for each valuation V on (F, W).  We denote 
{~: (F, W )  ~ ~} and { a : F ~  ~} respectively by Th((F, W) )  and Th(F). 

Given a logic L we set: 

TF(L) = {<F, W> : <F, W> ~ L}, 

KF(L) = { F : F ~  L}, 

fTF(L) [fKF(L)] = {F z TF(L) [e KF(L)] :F is finite}, 

[if F is finite, then <F, W> is descriptive iff W = ~(W), and Th(F)= Tb(<F, W>); 
thus we can indicate both ITF(L) and fKF(L) by fF(L)], 

GKF(L) [fGF(L)] = {F e KF(L) [z fF(L)] : F is generated} 

(F is said to be generated if there exists a w ~ W such that for each v e W either v = w 
or wR + v, where R + is the transitive closure of R.) 

Proposition 1.0. For each logic L, 

L = n {Th(<r, W>): <F, W> ~ TF(L)}. 

A logic L is said to be: Kripke complete (K-complete) if 
L = n{Th(F) : F e KF(L)}; with the Finite Model Property (f.m.p.) if 
L = n {Th(F): F e fF(L)} (in such a case the variety L* corresponding to L is said to 
be generated by its finite members); tabular (or finite) if L=Th(F)  for a finite F; 
pretabular if it is not tabular and each of its proper extension is tabular; canonical if 
L = Th(Fr), where F L is the frame of the canonical model for L. 

From the Generated Subframe Theorem it follows that 

Proposition 1.1. i) I f  L is K-complete then L = {Th(F):F e GKF(L)} and i i) /f  L 
has fm.p. then L = {Th(F) : F z fGF(L)}. 
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Let F = (W, R)  (or (F, W)  = ( (W,  R), W)) and let w ~ W. S*(F, w) and S.(F, w) 
are defined as follows: S*(F, w)= {w}, S*+ I(F, w)= {v~ W: for some 
u ~ S*~,  w), uRv}, Sn(F, w) = U S*(F, w) for m < n. A point w is said to be terminal if 
S* = 0. Given a formula fl, we denote by d(fl) its modal degree, i.e., the maximum 
number of nested modal operators in ft. 

Proposition 1.2. Let fl be any formula such that d(fl)= n, and let w, w' be points 
respectively of F and F' (or of (F, W )  and (F', W') ) .  I f  f is an order-isomorphism 
from F ISn(w,F ) onto F' IS.(w',F' ) such that (i) f(w)=w' and (ii) v eV(pi) /ff 
f(v) ~ V'(pi) for each Pi which occours in fl and each v ~ S,(w, F), then (F, V) ~ ill-w] 
/ff (F, v ' )  ~/~[w']. 

Lemma 1.3. I f  (F, W)  ~ TF(KAItn) then Th((F, W)) = Th(F). 

Proof. First we show that 

if (F, W)  e TF(KAIt,) then for each w e W IS*(F, w)l < n. (1) 

Suppose IS*(F, w)l > n + 1 and let X = {Vo, ..., vn} ~ S*(F, w). Since X is finite, W r X 
= ~(X) and hence we can find a valuation V such that, for each i ~ co, V(pi) ~ W and 
for each i<n V(pl)nX={vl}. In such a case ( F , V ) ~ A l t , [ w ]  and hence 
(F, W )  r TF(KAItn); thus obtaining (1). Now suppose F ~ fl, i.e., (F, V) ~ fl[w] for 
a V on F and w ~ W. Let d(fl) = m; by (1) we obtain that ISm(F, w)l < ~ n r for r < m, 
i.e., it is finite. So there exists a V' such that, for each i t  co, V'(pi)EW and 
V'(pi)nSm(F, w) = V(pi)nSm(F, w). Therefore, by Proposition 1.2, (F, W)  ~ ft. Since 
the converse holds in general, the proof is concluded. 

Theorem 1.4. For each n e co, /f KAIt,__c L then L is (i) Kripke-complete and (ii) 
canonical. 

Proof. (i) follows from Proposition 1.0 and Lemma 1.3. As regard (ii), let Me be the 
canonical model for L. It is straightforward to show that Th(MI) = Th((FL, WL)), 
where WL = {X~ = {w ~ WL:~ ~ w}, for ct ~ Wff}. Therefore (ii) follows from Lem- 
ma 1.3 and the Foundamental  Theorem for Modal Logic. 

2. The Lattice of Extensions of KAit 1 

For each teco and ( n , s ) ~ c o  2 we define Ft= (Wt, Rt) and Fm, r= (Wm, r, Rm, r) as 
follows (see Fig. 1): 

W t = { w  0 . . . . .  wt}, Rt={(Wn+l,  W n ) : O ~ n ~ t - - 1  } , 

Wm, r =  {W0, .. .  , Win+r} , Rm+r = ((w., wn+ x ) : 0 - -  < n<_m+r-- l}  k..){(Wm+ r, Wm) } . 

We observe that for each t ~ co and i < t Ft ~ L i + 11 ^--7/2/Iv]  iff v = wi. 

Lemma 2.0. i) GKF(KAItl) = I({F t : t ~ co} u {Fro, r : (m, r)  ~ co2} u {(co, Suc)}), 
where Suc = {(n, n + 1 ) : n ~ co} and I(X) denotes the class of frames isomorphic to a 
frame of X. 

ii) For each (m, r ) ~  co2, Fm, r is p-morphic image of (co, Sue). 
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Fig. 1 
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Proof. i) Straightforward. 
ii) The function 

~ w ,  if n<m 

g(n) = ~ wv otherwise, 

where v e {0 . . . . .  m + r} and v-- n modulo r + 1, is a p-morphism from <~o, Suc) onto 
F i n ,  r" 

Theorem 2.1. I f  LeA(KAIt0  then L has the f.m.p. 

Proof. Let KAltl =L and L~fl.  By Theorem 1.4 L is K-complete and hence, by 
Proposition 1.1(i), there exists an F e G K F ( L )  such that F~:fl. Suppose F be 
infinite: by Lemma 2.0 (i) we obtain that F ~ <o~, Suc) and then <~, Suc) e GKF(L) 
and <~o, Suc) ~ fl, i.e., there exists V on co and n e co such that <o), Suc, V) ~ fl[n]. 
We may suppose, without loss of generality, that n = 0. Let m, r be such that m-t- r 
>d(fl); by Lemma 2.0(ii) there is a p-morphism g from <co, Sue> onto F . . . .  and 
hence, by p-Morphism Theorem, Fm, r e GKF(L). Moreover, g I {0 . . . .  , m + r} is 
injective, and so, if we take a V' on F such that, for each Pi which occours in fl and 
each q < m + r, Wq e V'(pi) iff q e V(pi), we have, by Proposition 1.2, that 
<~ . . . .  v'>pe/~[Wo] 

Theorem 2.2. Lo=KAl t  I + ( L p ~ M p )  (or, equivalently, KAIt 1 +(---iLl))) is a 
pretabular logic. 

Proof. It is straightforward to show that 

L o = Th(<r Suc>). (1) 

Now, let Lo _--- L. We distinguish into two cases: either there exists an n such that for 
each Fm, r e fGF(L) I W.,, J < n (Case A), or not (Case B). In Case A we have that 
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fGF(L) is, up to isomorphism, finite and so F = Z {Fm, r : Fm, r e fGF(L)} is finite and, 
by Theorem2.1 and Disjoint Union Theorem, L=Th(F) .  In Case B, since 
sup {m + r: Fro, r e fGF(L)} = co, we have that (co, Suc)  e GKF(L); in fact, if I is a set 
of indices for the frames of fGF(L), then the function g from F = X {Fi : i e I} onto 
(co, Suc)  such that g((wn, i ) )=n for each i e l  is a p-morphism. Hence, by (1), 
L = L  o 

Description of A(KAlt0  

By means of the results of this section we may completely describe A(KAltl) (see 
Fig. 2). The denumerably many extensions of Lo are of the form 
Th(Z{Fm, r:meI, r e J  } for 1,J finite subsets of co. On the other hand, if 
L e A(KAlt0 and does not extend Lo, then there exists a t e co such that F t e fGF(L). 
We distinguish into these cases: 

CaseA. sup{ t :Fte fGF(L)}=n .  If L is not finite (SubcaseA1) then 
(co, Suc)  e GKF(L) and hence, since for each t < n F t is subframe of F,, we have that 
L = Th((co, Suc))nTh(F.) .  Thus fGF(L) = fGF(KAlt 0 -  {F t : t > n + 1 } and then 
L = KAltl + (L n § 1-1- ~ L n § 2_1_); in Fig. 2 we have denoted such a logic by L,  + t- If 
L is finite (Subcase A2), then L = T h ( Z  {Fm, r :me I, re J})nTh(Fn), for I, J finite 
subsets of co. 

L o ' 

L2 q 

\ \ \ 
Fig. 2 \ , .  

.L 
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IFrn,r : m r I. r r J I) ~ iThlFo, o]n ~ ThlF1) 

r J I) n Th ( F o ) /  

' ~ r  Th (Fo,o) nTh (F 1 ) Th(F 1 ) 

i Th(ZlFm,r:meI.rcJ~ Th(F~) 
I ~ I 
I ~ I / / 

/ / / 
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Case B. sup{ t :F teGKF(L)}  =~o. In such a case we have that L=KAlt~;  it is 
in fact straightforward to show that KAlt~ is complete with respect to each class 
{F t: t e I} such that sup(I) = 09. 

It may be opportune to remark the following characteristic of A(KAIt0: 

Corollary 2.3. For each n there exists an L having exactly n non-finite proper 
extensions. 

Proof. L=L.=KAl t I+(L"_I_  ~--~L"+I_I_). In fact the set of non-finite proper 
extensions of L .  is {L i : 0 < i < n -  1 }. 

(Figure 3 represents 
= ML_I_ ̂  M3L_L, 

rx= Ax}. 

3. The Extension of KAltn, n__> 2 

Because of Theorem 1.4, and since all the logics without f.m.p, or having infinitely 
many pretabular extensions which appear in the literature are out of A(KAltn), it 
was plausible to look for the analogous of the results of Sect. 1 for A(KAltn). But, 
contrarily to that, we have the following negative results: 

Theorem 3.0. There is a continuum of extensions of KAlt 2 without f.m.p. 

Proof. Let X = {Xo, x 1 . . . . .  x , ,  ... } be an infinite subset of~o such that Xo = 0, xl  = 2, 
and xl + 1 > 2xi + 1 for i > 1. We define Fx = (Wx, Rx)  as follows: 

R x =  {n,n+ 1):  n e ~o}w{(n, w * ) ' n e X } ,  

Fx where Xo=0, x1=2 ,  and x i + x = 2 x i + l . )  Set 
,4x={MX+IL-L:xEX}u{--1MY+IL-L:yeX} and 

The only point of W x which satisfies ~ is 0; in fact, since w* is the only point 
which satisfies L / ,  we have that F x ~ M L I  [w] iff w e X, and Xo, X l are the only 
consecutive elements of X whose difference is 2. Moreover there holds that 
F x ~ d x [ 0  ] and therefore we obtain that FxCTh(Fx). Now we show that if F is 
finite, then, for each w of W, F ~  dxl-w ] (observe that, since each formula of d x is 
variable-free, valuations are unessential). Suppose F ~ d x [ w  ]. Since for each 
natural m there exists an m' such that M " L I  e d x, then, as F is finite, it follows 
that, roughly speaking, there exists a loop between w and a terminal point u; in 

w* 
@ 

0 1 2 3 Z., 5 

Fig. 3 x~ x~ x 2 
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detail, if F ~ A x[W] then: (a) there exists a set {Vo . . . . .  v,} _-__ W (n > 0) such that vnRvo 
and viRvi + 1 for each i < n -  1 ; (b) there exist i < n and q ~ ~ such that vie S*(F, w) 
(we may assume i=  0); (c) there exist j < n, h ~ co and a terminal point u of W such 
that u ~ S*(F, vj). Now, let r = q + j  + h; we have that F ~ MrL_I_ [w] and also that 
F ~  M r +kt"+ 1)L_I_ [w] for each k ~ co. But, for each r and n, there exists a k such that 
r + k(n + 1) r X, i.e., such that-7 M'  + ktn+ 1)L_I_ ~ A x" Therefore F ~ A x[W] for each w. 
Now, since Fx ~ Th(Fx) we obtain that each F of fF(Th(Fx)) satisfies --1 a, which, 
together with Fx ~ a[0], implies that Th(Fx) is without f.m.p. Moreover, if Y 4: X, 
then, from Fy ~ ~[0], it follows that there is a fl ~ A x such that ~ f l  r Th(Fy), and 
therefore Th(Fx) 4: Th(Fy). 

Theorem 3.1. There are infinitely many pretabular extensions of KAIt 2. 

Proof. For  each n E ~  let Gn=(Wn, R . )  be as follows: 

R . =  {(re, m+  1}:mEcn}u{(s .n,  w*):s~o~}. 

The following formulas belong to Th(Gn): 

-3LI--* V ( MmL-L ^ A -nMrL• (1) 
l < m _ < n  l < r 4 : m < n  

A (MmLI~Mm+~LI ) '  (2) 
l < m < n  

(-3 L •  ^ --7 M L I ) ~ A 1  h , (3) 

Alt2, (4) 

(M(LI  ^ p) ^ M(L.L ^ q))---+ M ( L I  ^ p ^ q). (5) 

Suppose F = ( W, R} ~ GKF(Th(G~)). From (1) and (2) we have that, for each w E W, 
either F ~ L_l_ [w] or there exists m, 1 _< m_< n, such that F ~ M r L I  iff r = m modulo 
n. By (3), we obtain that 

0 if F~L_I_[w], 

/ 2 if F~ML_I_[w], 
I S I ( F ' w ) I = ~ ' - "  1 otherwise, 

and, finally, from (5) and the fact that F is generated it follows that if F ~ L Z [ w ]  
and F ~ L_l_ [-w'] then w = w'. Therefore, if F is infinite, then F - Gn, while, if it is 
finite, then either F_=Fo= ({Wo},0) or F----Frn for an r~c~, where 

. . . . .  ( r . n ) - l } u { w * }  

and 

R, ,= { (x ,x  + l } :O=< x<(r .  n ) -  Z}u{ (r.  n -  l, O} }u{  <s. n, w*} :O< s-<r--1} . 

(Figure 4 represents the case r = 3, n = 2.) 
Now let Th(G,) c__ L. If GKF(L) contains an infinite frame, then contains G.  and 

hence L = Th(G,); otherwise we have that sup {]Wr.I : Frn ~ GKF(L)} is finite. In 
fact, if it is infinite, we have that the function g from Z {Fi: i ~ I} (where I is a set of 
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Fig. 4 

W ~ 

indices for GKF(L)) onto Gn such that g((x,i))=x and g(w*,i)=w* is a 
p-morphism, and thus G,  ~ GKF(L). Hence suppose sup {I W~n[ :Frn ~ GKF(L)} 
= r * . n ;  since for each r<r* Fr, is p-morphic image of Fr. n and F o =  ({Wo} , 0) is 
generated subframe of Fr.,, we have, by Theorem 1.4 and Proposition 1.1(i), that 
L=Th(Fr. , ) ,  thus showing that Th(Gn) is pretabular. But, if n+n' then 
Th(G.) + Th(G,,), and so the proof is concluded. 
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