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Abstract. The stochastic Ising model is used as a tool to prove theorems 
concerning analyticity of the correlation functions and strong cluster proper- 
ties of the Gibbs states. 

0. Introduction 

The stochastic Ising model has been used as a model for the time evolution of the 
configuration of spins in the classical Ising model. From a physical point of view 
the model has the unfortunate feature that the dynamics do not come from a 
Hamiltonian and are not well motivated. Nevertheless it is possible to learn 
something about a Gibbs state by studying the semi-group of the stochastic 
Ising model which has that Gibbs state as its stationary measure. The results 
proved in this paper demonstrate this technique. 

Let Z a be the d-dimensional integer lattice and let {JR : R a finite subset of Z a} 
be a potential which satisfies 

J R = J e + k  for all R C Z  d and k ~ Z  a (o.i) 

and 

(0.2) 
R~O 

Let E =  { -  1, 1} zd be the set of configurations of spins and give E the product 
topology. The elements of E are denoted by letters such as ~/or a, and we denote 
the spin at k in the configuration t/by t/k. Let ~ be the Bard sets of E and if F e Z  a 
let ~ r ( ~  v) denote the a-algebra generated by {tlk:k~F} ({t/k: kCF}). We say a 
probability measure # on ~ is a Gibbs state for the potential {JR} if a regular 
conditional probability distribution of # on ~{k} given ~{k} is given by 
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We are going to study mixing properties of the Gibbs states as well as the 
analytic dependence of their correlation functions on the potential. For example 
let the potential {JR} be fixed and let #~ be a Gibbs state for the potential {fiJg}. 
Theorem (3.8) implies that if 

(0.4) fl<~z/4 ~ IJRI, 
R ~ 0  

then #~ is unique and for all finite ACZ d, S I-I rlfl#~(q) can be continued ana- 
d ¢ A  

lytically to the region l f l6G: f l [<I I / ,~  Idail. As to the mixing properties, an 
t t l x ~ v  1 

application of Theorem (4.24) shows that if (0.4) holds and the potential has finite 
range, then there is an ~> 0 such that for all finite A o C Z d there is a constant 
A(Ao) for which 

(0.5) sup [[p(B[~A)-#(B)[[ < A(Ao)e -~ ,  
B e t a  o 

where A0 CA and fi is the distance from A 0 to the complement of A. The inequality 
(0.5) of course implies that there is an exponential decay of correlations. 

Both the analyticity and mixing results are true if (0.4) is replaced by other 
conditions [see Theorem (3.10) and (4.24)]. For example, if f e~ (E)  (the con- 
tinuous functions on E) let HfH be the supremium norm of f .  For keZ  d and 
f e~(E) let 

(0.6) A k f(~/) = f(atl)-- f(q), 

where d/ is the configuration obtained from I/ by reversing the spin at k. If the 
potential has finite range and if 

(0.7) ~ ]lAkOo({'}[')l[<l, 
k*O 

then not only is the Gibbs state unique, but (0.5) holds. 
As we mentioned the toot used to prove these theorems is the stochastic 

Ising model, which we now describe. Let @ = {f  ~ ~(E) :Ak f -  0 for all but finitely 
many k}. Let 

(0.8) c~(~)=2~k((--~k} t~), 

and let 5¢ be the operator on ~ given by 

(0.9) ~ f (~ / )=  Z Ck(tl)Akf@ " 
k ~ Z  d 

Under the condition (0.2) alone, it is not known whether ~ admits a closure which 
generates a strongly continuous positive contraction semigroup {Tt:t=>0} on 
C~(E). However, if ~ ]JR] < ZC/4 or if ~ ]]Ako0({'}l')]l <oo holds, then not only 

R ~ 0  k ~ 0  

is there one such semi-group, but there is only one (see [5, 6, 3] and Theorems (1, 8) 
and (A.2)). Whenever there is exactly one such semi-group {Tt:t>=0} for a given 
choice of potential {JR}, we call it the stochastic Ising model with potential {JR}. 
For a description of the corresponding Markov process see [3] or [5]. If { T~:t_>_ 0} 
is the semi-group for the stochastic Ising model with potential {JR} and # is a 
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Gibbs state with potential {JR} then # is Tcstationary. That is for all feCg(E) 
and all t > 0 

(0.10) j" Tyf(r#)dlx(q)= ~ fOT)d#x(~l) 
(see [4]). 

It is easy to understand, in general terms, why the stochastic Ising model is a 
powerful tool in the study of the equilibrium state. The point is that it is easier 
to see how the semi-group {Tt: t>0 } depends on the JR's than it is to understand, 
directly, the dependence of the Gibbs states on the potential. (This circumstance 
is not at all surprising, since the correspondence between {JR} and {T~:t>0} is 
one to one far more often than that between {JR} and the Gibbs states.) If one 
knows, in addition, that {T t: t > 0} tends to equilibrium fast enough, then one can 
show that the nice dependence of {Tt:t > 0} on {JR} is inherited by the equilibrium 
state. These are the basic facts of which we are going to take advantage. 

In Sections 1 and 2 we prove some general facts about interacting stochastic 
processes. In those sections the flip rates, Ck'S, are not required to have the form 
(0.8) for some potential {JR}. Section 3 contains the analyticity results and Sec- 
tion 4 contains the mixing results. In the latter two sections we always assume that 
the ck's are given by (0.8). 

I. The Perturbation Technique 
In this section we show that the generalized stochastic Ising model [i.e. Ck'S not 
required to satisfy (0.8)] can sometimes be thought of as a perturbation of the 
process in which each of the spins flips independently of the others. 

The results in this section are a generalization of the results in Sections 6 and 7 
of [3], and the reader is referred to [3] for many of the details 

I f F  is a finite subset of Z d and le] < 1 let 

/ . ~  if F=0 
Z F ( ~ ) = .  (~+qj)/(l+[~[) Ivl if V 4 0 .  

Here ]FI denotes the cardinality of F. Note that for a given e, {z}:F finite} is the 
set of eigenfunctions for £z°~= ~ c~,A k, where c~(q)= 1 +aqk" Let 

k 

For SsL= we denote Ilfll:= ~ IZ(F)I. If v= is the product measure 
F 

(t.1) v== ,~zd I - -~- I1  {1 +c~ a{_l , + --~--. 5{+,}) 

(¢  is the unique stationary distribution for £~f~), then for f e L ,  we have 

(1.2) f ( F ) = ( 1  -[~[)-IFI S ~(~t) f(~t)dv'(rt). 
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Thus each fsL~ has a unique representation in terms of the Z~, and the series 
converges uniformly. In fact if f~L~, then 

(13) fffN <Itf[[~- 

Now consider flip rates which are of the form 

(1.4) ck@= 1 +~k+~IkZ 7(k, 6)Z;. 
G 

For f ~ L ,  and 2 a complex number not in {-2k:  k= 1, 2,... } define 

-2sAk)  
(t5) A;~f = ~ ~ ~ ~ "f(k, G ) - -  

G F k~Z a l-lC(F\{k})nG 2+2[F[ 

( 7"' -, 

where IF(.) is the indicator function of F. 

(1.6) Lemma. I f  there is an a ~ O such that 

~lT(k, G)[<a(l +[c~l) for aII k e Z  a, 
G 

then for all complex 2 =I = - 2, - 4 . . . .  we have 

0.7) t/&ftl:_-<,~tlftl.:up 77~" 
Proof. IIA~f I1~ 

2 E 2 E 17(k, G)I 2Iv(k) !fm)i (_21~I / i"L (1-1~l_'ti"\{'~'><-!"i 
G F k.c{F\{k}>. I,~+21Fll 1+1c<1\1+1:~1) \1+1~1) 

Summing over H first and using the equality 

( 2let _t 'm (1--1~ttIF'~Gi-i"i 

and then summing over G and using the hypothesis we obtain 

llAftl < a ~  2IF(k) 
l).+2Ifll I f ( f ) l ,  

from which the result is obvious. 
The only difference between the proofs of Lemma (7.1) and Theorem (7.t0) 

of [3] and the proof of Theorem (1.8) below is contained in the previous temma. 

(1.8) Theorem. Let Ck be as in (1.4) and suppose that the hypotheses of Lemma (1.6) 
hold with a < 1. Then there is a unique positive strongly continuous contraction semi- 
9roup {T~:t > O} on (g(E) whose 9eneration agrees with 5f = ~ ckA k on ~.  Moreover 

if for f EL~ we define H f by 

(t.9) I I f  = ~ ~ (Ao)" f  dv ~, 
E n=O 
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then there is a 7>0,  dependin9 only on a, and for each f~L~ a constant D(f), 
dependin 9 only on a and f, such that for all t ~ 0 

(1.10) HT~f-Hfll <D(f)e -y~. 

Proof. The proof follows almost verbatum the proofs in Section 6 and 7 of [3]. 
We indicate here only the necessary changes. 

Let 5e~= ~ ( 1  +e~Ik)Ak. Then since 
k 

the resolvent, R~, of £0 ~ is given as follows. If f =  ~] f(F)x)~L~ and 2#0 ,  - 2 ,  
F 

- 4 ,  - 6, ..., then 

1 f(F) z~. R~f  = ~ 2+2[Fl 

Since 

~(k, G) . . . . . . . . . .  
tlk ~G ?(k, G)Z~(rl)A kZ~(tl) = -- 2 ~ ~ I FtK~ ZGttl~ Zv\{klttl) , 

and 

o o  t 
ZFga= Rc~'~G2 XrFaa>-\l+lc~]) \1+[~1/ 

we see that for f s L ~  

( S e - S f ~ ) R 1 f = A j .  

The proof now follows exactly along the lines of [3]. 

(1.11) Remark. (1.10) implies that the semi-group has a unique stationary meas- 
ure, p, and (1.9) implies that for feL~ 

(1.12) 5 f d#= .[ ~ (Ao)"f dv ~. 
n=O 

2. The Theorems of  Dobrushin and Sullivan 

In this section we prove a theorem which is related to a theorem of Dobrushin [1] 
and is a particular case of a theorem due to Sullivan [6]. The reason for including 
another proof here is that it can be greatly simplified in the case which we are 
considering. 

Recall that Akf is given by (0.6). Since the operators A k are analogous to partial 
derivatives with respect to the k th variable, we will often write f k  for Akf. For 
fE  C~(E) let 

(2.1) [l[fl[[-- ~ [If, klF_<-~. 
k 
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Let cgl(E)= { f s  ~(E): Ill fill < ~}.  It is known (see [3]) that if 

(2.2) sup [llCkl I +[IIckll[]= c <  oo, 
k 

then there is exactly one positive, strongly continuous contraction semigroup 
{T,:t>0} on cg(E) whose generator agrees with GP= ~CkA k on ~.  Moreover, if 

k 

we denote the generator of Tt by ~ ,  then the domain of 2 includes ~ ( E ) ;  and if 
U~Cg(E), 

(2.3) lilT, fill <eC'lllflll. 
(2.4) Theorem (Dobrushin-Sullivan). Let {Ck: k e Z  e} C C+(E) satisfy (2.2). Let 

7= inf inf(ck(~)+Ck(ktl)) - sup ~ [ICk,jII. 
k n k j#:k 

Set ~q~ = ~ ckA k on ~ and let {Tt:t >= O} be the associated Feller semi-group on Cg(E). 
k 

Then 

Illr,~olll<e-~'lll~oll], t > O and (p6~g(E) . 

in particular, if 7 > O, then there is a unique probability measure # on E such that 

II r~q~- ff ~od~ll ~ Me-~qllq~lll, 

where M =  sup Ilckll. 
k 

t__>o 

Proof. From (4.11) in [3], we know that (2.3) holds. Thus if 2> C and f = R ~ ( p  for 
some ~osCgl(E), then tI[f[l[ _-< I[kolI[/(2- C) and 

2 f  - Z c i fJ=~°" 
J 

Thus 

).f.~(,) = ~0.~ + F. cj(~,) f...~(,) + 2 cj.~(n) 2j(n) +(ckf.~).~. 
j # k  j+-k 

Since E is compact and fk(kt/)= -- fk0/), we can find ~l*sE such that 

f.~(,*)-- max  If.~(~)l • 

Note that fkj(t/*) < 0 for all j and 

(ck f.k).~(~*) = c~.~(~*) f.~(k~ *) + c~(~*)o£~.~(~ *) 

= - f,k(tl*) (C,,R(tl*) + 2Ck(t/*)) 

= - ( c k ( ~ * )  + c k ( k . * ) )  [IZ~ll • 

Hence 

)~JtfkJJ < lJ(P,ktJ - - (ck(r /*)+c~*))  tlfkH + ~ ttcj,kll IIfjII 
j#:k  
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and so 

2111 f Ill < [lko[lt - in f (Ck(~l) + Ck(k~))[[1 f Ill 

+ ~ Z Ilcj,kl/IIfjII 
j k * j  

-< II1 q~lll - 7111fill. 
Thus if 2>  m a x ( -  ~, C), then lll R~otll-_< Ilkolll/(A +T). Using the well-known formula 

Trio= lira e -~  ~ (22tR~)"q~/n! 

one easily gets 

Ill T,~olll _-< e-  rt Ilkolil • 

Finally, if ~ > 0 and q~E~(E), then 

- - -  = ~ T ~ o  & 

and so 

Hence 

I[Ttq)-~otI<Me-rqllrplll for t > s .  

The last part of the theorem follows immediately from this. 

3. Analyticity of the Correlation Functions 

Let U be a connected open set in the complex plane and let {JR(Z): R a finite 
subset of Z ~} be a collection of analytic functions which satisfy (0.1) and (0.2). 
Assume also that there is at least one real z6 U and that JR(Z) is real for real ze U. 
Then for real z 6 U  there is at least one Gibbs state, #~, corresponding to the 
potential {JR(Z)}, and we know that whenever one of the perturbation techniques 
of section one can be applied there is exactly one such Gibbs state. The goal of 
this section is to obtain conditions under which, for all f ~ ,  ~ f d # z  can be 
continued analytically to an open set containing the intersection of U and the 
real axis. 

(3.1) Lemma. Let U be a connected open subset of 112 containing at least one real 
number. For k~ Z ~ and finite G C Z d, let 7(', k, G) be a function on U with the property 
that for some c ~ ( - 1 ,  1) and ae[O, 1) 

(3.2) ck(z, 7) = 1 + ~ k  + ~k ~ ~(z, k, G) Z~(~) 
G 

is non-negative for real z s  U and 

(3.3) sup sup ~ 17(z; k, G)I <a(1 + Ic~l). 
z~U k G 
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I f  z e U  is real let Tt (z) be the Feller semi-group determined by ~(~)= ~ Ck(Z, ")A k. 
k 

By Theorem (1.8) there is, for each real z~ U, a unique probability measure, l~, 
such that 

T t f  dp~= ~ f d#~ for all f~Cg(E). 

I f  in addition to (3.3) we assume that 

(3.4) 7( z ; k, G) is an analytic function of z ~ U for all k e Z d and G C Z d and for each k, 
[?(z; k, G)I converges uniformly in ze  U, 

G 

then for all f e 9,  ~ f d#~ may be continued analytically to U. 

Proof. Since N CL,, it follows from Theorem (1.8) that i f f ~ N  and z~ U is real then 

(3.5) .f f Z dv 
n=0 

where A~o ~) is defined by (1.5) using 7(z; k, G). But from (3.4) it is easily checked that 
the right side of (3.5) is an analytic function of z~ U. 

(3.6) Theorem. Let U and {Jg(z)} be as in the first paragraph of this section. 
Assume that there is an c ~ ( - 1 ,  1) and an a~[0, 1) such that if y(z; k, G) is given by 

(3.7) y(z:k, G)=(1-1c~]) -IGI ~)~(tl)[tanh([ \l~gk ~ JR(rl) jeR\{k}~I Y]j)-°~]dvCt(y]), 

then 7(z; k, G) satisfies (3.3) and (3.4). Then for all real z~ U there is a unique Gibbs 
state, #~, with potential {JR(z)}, and if f e D ,  ~ f dp~ can be continued analytically 
to U. 

Proof. For  z~ U let 

Ck(Z, q ) = 2 ( l + e x p [ 2  R~k JR(Z)i~ t/J]) -1 

If z~ U is real let #~ be the stationary measure for the semi-group determined by 
~Ck(Z, ")Ak. Then by Theorem (1.8) and (0.10), #~ is the unique Gibbs state for 
k 
the potential {JR(Z)}. The rest now follows from Lemma (3.1). 

(3.8) Theorem. Let U and {JR(Z)} be as in the first paragraph of this section. Assume 
that ~ [JR(Z)l converges uniformly for z~ U and that 

R~O 

(3.9) sup ~ [JR(Z)[<x/4. 
z~U R~O 

Then for each real ze  U there is a unique Gibbs state, kt~, with potential {JR(Z)} 
and for each f ~ 9,  ~ f d#~ can be continued analytically W U. 

Proof. We take ~ = 0  in (3.7) and check that there is an a~ [0, 1) such that (3.3) 
and (3.4) hold. The analyticity of each 7(z; k, G) follows from the dominated con- 
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vergence theorem since for each ~/, ~ JR(Z) I-[ ~1~ is an analytic function which is 
R~k j~R\{k} 

bounded by ~/4. 
The verification of (3.3) and the uniformity statement in (3.4) is deferred to 

Theorem (A.2) of the Appendix. 

(3.10) Theorem. Let U and {JR(Z)} be given as in the preceding, and assume, in 
addition, that 

(i) the series 

(3.11) ~ ]JR(Z)[3 IRI 
R ~ 0  

converges uniformly for ze U, 
(ii) Jtm(z) + 0 for any ze U and 

-½d~[1-(  l - e x p ( - }  ~ IJR(Z)I3IR')) t r i o  

(3.12) sup IRI>2 < 1 .  
=~v IJ{m(z)t 

Then for each real ze U there is a unique Gibbs state #~. Moreover, there is an 
open set Vc=U such that Uc~{reals}C=V and for all f e n  the map z ~  S fd#z, 
ze Uc~ {reals}, admits an analytic continuation to V. 

The proof of Theorem (3.10) is deferred to Theorem (A.14) in the appendix, 
where it is shown that each real z o e U is contained in an open set Uzo C U on which 
(3.3) and (3.4) hold. 

4. A Strong Cluster Property 

Let {JR} be a potential such that there is only one Gibbs state, #, corresponding 
to {JR}. Dobrushin has shown (see [2]) that this is equivalent to the condition 
that for all f e @  and all sequences {An} of finite subsets of Z a such that A n c__ A,, +1 
and U An = Zd 

n 

(4.1) tim IIE"[ f I ~ " ] - E U E f ] H  = 0 .  

Our goal in this section is to find conditions on the potential {JR} which guarantee 
that the convergence in (4.1) is exponentially fast. 

The technique is to represent EU[f [ ~ - ]  (Q as the expectation o f f  with respect 
to the stationary measure of the semi-group generated by the bounded operator 
~/:~An,{ given by 

(4.2) LfA"'¢f(~/)= ~ c~(a(A,, 4, ~l))Akf07), 
k~A. 

where o-(An, 4, r/) is the element of E given by 

I/k if keA. 
a(An'~'t/)k= Ck if k¢A..  
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If/-/1"'¢(-) is the probability measure on { -  1, l p  ~ with 

(4.3) ~'~({3/})= [Z(A,, 4)]-1 exp [ - • JR 1-I a(An, 4, r/)j], 
L ROVIng- ~ j~R J 

where Z(A,, 4) is the normalizing constant, then for all f ~ ( { -  1, 1} A- 

(4.4) ~ f d f " ' e=E~Ef[~"  ](~), 

and 

(4.5) ~ 5~A"'~f(r/)d/{"'¢(q)=0. 

Since ~a,.~ is a bounded operator, there is no doubt that it generates a unique 
semi-group {7~t "'~ : t>0} and that 

(4.6) ~ f d~"'¢= ~ 7~t"'¢ f dl? "'~ 

for all f e  Cg(E). 

(4.7) Theorem. Suppose c~ is a positive number with the property that for all A, 
~ E, and f e  N(A) - { f~ ~ : A k f - 0 for k (~A}, there is an A(f)  < oo, not dependin9 

on A, such that: 

(4.8) HT~'ef - ~fd~ '¢ lJ~A( f ) e  -~t, t>O. 

Then { Tt : t > 0} admits exactly one stationary distribution # and Jor f e ~ :  

(4.9) IIT~f- ~ f d#tl<A(f)e -~t, t>O. 

Assume in addition that there is an M <  oo such that 

(4.10) Ajck--O if l j - k l > M ,  

or equivalently, that 

(4.11) J R = 0  if O ~ R ~ [ - M , M ]  a. 

Then if A C.A and Q is the distance between A and the complement of z{, one has for 
f e ~(A) and ~ c E: 

(4.12) ]I f dl~- j' f dlP'¢l <2(A( f )+  IHflll)e -~'Q/~M , 

where C=max(/IColl, llleol[I) and V~(0, 1) solves 

(1 +c~/C)7 + (~7 + 1 = 0 .  

Proof That (4.8) implies (4.9) is an easy consequence of the fact that TtA"'~f-~ Tt f as 
A J Z  d (see [3] or [5]). To prove the second assertion, note that: 

(4.13) I~ f d # -  ~ f dtff';I 

<= [~ f d # -  T tf(tl)l + [Ttf(rl)- Tfi'e f(tl)l + IT ~'¢ f ( t t ) -  ~ f dtzX'¢I 

< 2A(f)e-~t + ITt f (tl)- TtX'¢ f (~)l . 

To bound IT, f ( t t ) -  Ti Z¢ f(~)] we observe that 

To f ( - ) -  7;Z'* f ( ' ) =  0 
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and 

~ ( T , f ( . ) -  T, ~'~ f(.))=SFT, f - ~ ' ¢ T ,  y'~ f 

= ~a,~(Tt f - Ti~,¢ f )  + ( ~ -  fX,~) Ttf. 

Thus 

r,S- r? f= i z,f ds, 
0 

and 

(4.14) 
t 

IT~f(t/)- T~%~f(t/)l<2~ ~ Ilc~ll [IAkT~fNds, 
0 kCA0 

where Ao = {je Z a = the distance from j to the complement of A is at least M}. We 
need the following lemma. 

(4.15) Lemma. Assume that (4.10) holds and let fEN(A) and C be as in (4.12). Set 
A(N)= {k~ Z d : dist (k, A) < N M}. Then 

(4 6) z k~(N, j=0 J! /[llf[ll" 

We postpone the proof of the lemma and complete the proof of the theorem. 
Let [~/M] be the integral part of o/M and set N = [0/M] - 1. Then A o ~ A (m 

and the right side of (4.14) is bounded by 

(4.t7) 2C~ Z l[AkT~fi[ds<2C, eC'-- ,.., dsl[lfl[I 
0 k,4A(N ) 0 j = 0  • 

<-_ 2e c' (Ct)N +÷ 111 fill .  
( s+2)!  

Combining (4.13), (4.14), and (4.17) we have 

(COle~M] + I 
(4.18) [~ f d/~ - ~ f d/~'e[ < 2A(f)  e -  ~t + 2[1[ fill eC' ([~/M] + 1)t" 

Setting t = V([0/M] + t)/C and using the bounds k ! > kke - k and [o/M] + t > o/M, 
we get the desired conclusion. 

Proof of Lemma (4.15). Let f be as in the statement of the lemma and note that 

(4.19) ~-AjT~f(tl)=CSAjTtf(tl)+ ~k (AsCk(tl))AkTJ(fl)' 

and 

(4.20) AjTof(t l)=Aif(t l) .  
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The solution of (4.19) with initial data (4.20) is 
t 

(4.21) z~r~f(~)= r, zjf(~)+ S r~_s Z(Zjc~(,))Z~f(j.))ds. 
0 k 

Note that i f j¢A we have A j f - O  and hence 

(4.22) [[AjTtf(.)l I =< i ~ ItAjCk(')lt IIAkT~f(')[[ ds. 
0 k 

Thus 

(4.23) 
t 

II~T~f(.)ll~ j '~ Z ]l~tjck(.)ll [l&Tj(,)llds 
j C A ( N )  0 k jCA~ ~r) 

t 

---< S ~ ~, [[a~Ck(')[[ tlAkT~f(')[[ds. 
0 k~A( N - i )  j 

Since ~ IIAjCk[ [ <= C we have 
J 

t 

Y~ lfajT, f(.)ll<:C5 Y, tlajTsf(.)lids. 
j~-a (~v~ 0 jCd(N-  1~ 

The proof is now completed by induction, beginning with (2.3). 

(4.24) Theorem. Let {JR} be a potential satisfying (0.I), (4,11), and one of the 
following: 

b) ~ IJRI<~/4 
R ~ O  

Then there is exactly one Gibbs state # with potential {JR}. Moreover, there is a 
7>0 such that for each f e n  there exists a constant A(f)<oe  with the property 
that if f ~  ~(A) then 

llEU[fl ~ ]  -E'~[f]  ll < A(f )  e-'Q , 

where 71 3 A and 0 is the distance from A to the complement of A. 

Proof. We need only check the hypotheses of Theorem (4.7). To do this, note that 
Theorems (2.4) and (1.8) apply to finite as well as infinite systems, and the con- 
clusions of Theorems (2.4) and (1.8) imply the hypotheses of Theorem (4.7). Thus 
we need only check the hypotheses of Theorems (2.4) and (1.8). The inequality a) is 
easily seen to imply the hypotheses of Theorem (2.4) and Theorems (A.2) and 
(A.14) in the appendix show that Theorem (1.8) is applicable under conditions b) 
and c). 

(4.25) Remark. Dobrushin [2] has proved uniqueness of the Gibbs state under 
condition a) of Theorem (4.24), but the other conclusion of Theorem (4.24) does 
not follow merely from uniqueness of the Gibbs state and finiteness of the range 
of the potential. The two dimensional nearest neighbor ferromagnetic potential 
at the critical temperature provides a counter-example. 
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Appendix 

For - t < a < l  let ~ and £,~ be as in section one. For a > l  let 

L:= (f~Lo : Z  If(V)l~< I ' l -  II f li, <oo} .  

(A.1) Lemma. L, is a Banach algebra for all ~> -1 .  

Proof. That L~ is a Banach space is obvious. Thus we need only check that 
IIf.gll=<=llfll=tlglt~. Consider first the case lal<t. Let f, geL~, f=  Zf(F)z~ 

F 
and g = ~ O(F) Z~. 7hen 

F 

f .g = ~ ~ f(F)O(G))~))~ 
F G 

(~]i-, (l_l~i]iFn~i-i-i 

IIf.gll~ E E E If(F)l 1#(G)I( 21<~1 ]'" [a-I~<l] ' '~ '- ' ' '  
V ~ .cV<~G \1 +1=17 \1+1=17 

= Y, If(F)l Y~ I0(G)I = I If  t1:< IIolI~<- 
F G 

Now consider ~ > 1. 

f . g  = ~, ~, f(F)O(G);~°Aa. 
F G 

Thus 

ttf'gll~_- < ~ ~ lf(F)l I~(G)I alF,,~l 
F G 

=< ~ Z If(F)l IO(G)I~ IFl+i`~i = l i f  I1~< tlgll<<. 
F G 

(A.2) Theorem. Under the hypotheses of Theorem (3.8) both (3.3) with a = 0  and 
(3.4) hold. 

Proof. Let a = t a n  sup ~ IYR(z)I. Because of(3.9), a <  1. 
zEU R~O 

Now if Io91 < rcl2 then 

(A.3) tanh(co)= ~ 22"(22"-1)B2"coz'-l/(2n)! 
n = l  

and 

tan(m)= ~, 22"(22"-l){Bz.lcn2"il/(2n)!, 
n = l  

where the B2,'s are the Bernoulfi numbers. Thus it follows from Lemma (A.1) 
applied to Lo, and the bound 

~o  JR(Z) z°\(°l o < arc tan (a), 

Therefore 
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that for all z~ U 

tanh(R~O JR(z) z°\(o)I ° <a , 

i.e. that (3.3) holds. With regards to (3.4), we have already seen in the proof of 
Theorem (3.8) that each 7(z; k, G) is analytic in ze U. The uniform convergence of 

IT(z; k, G)I follows easily from Lemma (A.1) and Equation (1.3), since we are 
G 
assuming that ~ IJR(z)l converges uniformly for ze U. 

R~0 

Let Is[ < 1 and f e l  t +21~1. Then feL~ and t[f [l~ < IIf lit +21=1 • (A.4) Lemma. 

Proof. 

z°(n) = I-[ Z l-I 
j~F HcF  j~H 

= 2 zh(l+N)"l(-~) : l - I " l  
HEF 

Thus 

f = Z f (F)x  ° = ~ ~ f(F) (1 + lat) l ' l ( -  a) irj- InI Z~. 
F F H c F  

Both conclusions of the lemma follow now from 

llflI~ < ~ ~ tf(F)J(1 +lat) lm lc~[ IFI-I"I 
F H c F  

= ~ If(f)l  (1 + 21~1) IFt = II fi l l  +21=1 • 
F 

(A.5) Lemma. I f  h>lv[ then 

(A.6) t a n h ( v + h ) = l + 2  ~ ( - - l ) k e  -2k(v+h)  . 
k = l  

Proof. Since h >  Iv[ the summation on the right side of (A.6) converges. The proof 
is accomplished by performing the summation and using the definition of tanh. 

(A.7) Lemma. I f  V(t/)= ~ JR)(°\~o~(tl)eL3 and g>[ lVl l  3 then there is an 
R~O 

c~e(0, t) such that 

(A.8) tanh(V(tl) + H) = a + ~ 7(G) Z~(t/) 
G 

and 

(1.9) 2 I~(G)l<2 ~, e-Z~t(e2kllVIIl+2'=~-- 1). 
G k = i  

Proof. Since Ir(rl)l~llrll3<H, it follows that l > t a n h ( V ( t l ) + H ) > 0  for all t/. 
Letting : be as in (1.1) we have 

S tanh (V(tl) + H) dv~(tl) - o~ 
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is positive for c(= 0, negative for ~ = 1 and continuous as a function of ~. Thus 
there is an ~ ( 0 ,  1) such that 

(A: 10) ~ tanh (V(t/) + H) dv~(r/) - ~ = 0. 

Now using Lemma (A.5) we have 

(A.11) tanh(V(r/) + H) 

=Y~+(1-~+2 ~ (--1)ke-2k~+2 ~ (--1)ke-2kH(e-2kV(~)--l)) " k = i  k=l 

Lemmas (A.1) and (A.4) imply that 

2e-2n 
(A.12) 1 - ~ -  l+e_2n +2  (--1)--2kH(e--2kV(n)--I)EL~. 

k=l 

Also the integral of (A.12) with respect to v ~ is zero. Hence when (A.12) is expanded 
in terms of ~ ' s  the constant term is zero. Thus 

(A.13) 1 - ~ -  1 +e_2~2e-Z~ +2k= 1~ (-- 1)ke-ZkIt(e-ZkV(')-- 1) 

=2  kV (--1)ke-Z~(e-ZkV(')--l)~ 1--g 2e-2It 
- 1 + e  - z ~  

<2 ~ e- 2kH(e2kllVll~-- l) 
k=l 

N2 ~ e - 2 k H ( e  2kllvlll+2~ - -  1). 
k=l 

(A.14) Theorem. Under the assumptions of Theorem (3.10) each real zoeU is 
contained in an open set Uzo C U on which (3.3) and (3.4) hold. 
Proof. Fix a real ZoE U, set H=Jto)(Zo) and 

jR={JoR(ZO) if [R,=>2 
if IRI=I.  

We do the proof under the assumption that H > 0. 
One easily checks from (3.12) that 

(A.15) H >  ~ IJRI3 IRI-1, 
R~0 

and thus the hypotheses of Lemma (A.7) are satisfied. 
We also have from (3.12) that 

(A.16) k=l~e-2kH(exp[ 2k~R9o IJRI31RI-i]- 1) = b <  1. 

Now the continuity of each JR(Z) together with (3.11) implies that 

l jR(Z) I 3IRI--1 _~_ iJto)(Z)_ Jto)(Zo) I 
R~0 

IRI->_2 
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is cont inuous on U; and thus, from (A.15), we see that there is an open 0 C  U 
containing z o such that  

(A.17) v =  sup ~ IJg(Z)t31Rl-l+IJ{o~(Z)--J{o~(Zo)l<H. 
z~U R~O 

IRI>2 

Now let 

(1 - b) (1 + exp [ 2 ( v -  H)]) 2 
V~o= z~(J: R~oZ IJR(Z)--JR(Zo)I 31R1-1< - S e x ~ ~  J" 

Again because of the continuity of each JR(Z) and (3.11), U~o is open and clearly 
contains z0. 

We now let e be as in the conclusion of Lemma (A.7) and a = (1 + b)/2 and check 
that (3.3) and (3.4) hold on U~o. Because of (0.1) it suffices to check them for k=0 .  
Let  

J (i) H 
R ~ 0  j~R\{O} 

Then Co(z, q) = 1 + ~t/o + t/o(tanh(V(z, t/) + H) - ~). But (A.17) implies that for all 
z~ U~o, H>IV(z, 01. Therefore  by Lemma (A.5), just as in (A.11), we have 

(A.18) tanh(V(z, ~ / ) + H ) - ~  

2e-En 
= 1 - ~ -  1 + e 2 - ~  + 2 ~ ( -  1)ke-2k~(exp[ -- 2kV(z, r/)] - 1) 

k = l  

= tanh (V(z o, t/) + H) - ~. 

+ 2 ~ ( - 1)ke - 2kn(exp[ -- 2kV(z, t/)] - exp[  - 2kV(z o, t/)]). 
k = l  

According to Lemma (A.7) the ~ norm of the first term on the right side of  (A.18) 
is bounded  by 

2 ~ e-ZkR(exp[2ktl V(z o, ")111 +2~] -- 1). 
k = l  

By using Lemmas (A.1) and (A.4) and the increase of II V(z, ")ll,~ as a function of 
7 >  1, it is easily checked that the c~ no rm of the second term is bounded  by 

4 ~ k exp [-2k(v- H)] II V(z , . ) -  V(zo, .)ll 3, 
k = l  

which is less than ( 1 - b ) / 2  for zeU~o. Applying these two bounds to (A.18) we 
obtain 

1 
(A.19) ]-~-~ lltanh(V(z, . )+H)-c~t l~ 

1 
+ 2 ~ e- 2~(exp[2kllV(zo, ")111 + 2 J -  1) ) < 

= 1 + ~ \  2 k=l 

1 - b  
< --~2-- +2 e-2k~(exp[2kllV(zo, .)[11 +2=] - 1)/(1+~).  

k = l  
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Since V(zo, .) does not have a constant term when expanded in terms of the 
Zv°'s, it follows that (exp[2k]l V(z o, ")111 +2~]- 1)/(1 +0c) is an increasing function 
of 0~. Thus, using (A.16), we may bound the right side of (A.19) by 

1 - b  
T + e x p [ -  2kH] (exp[2kljV(zo, .)113]- t ) = a ,  

k=l  

proving (3.3). 
To prove (3.4) note that (A.17) implies that for z~ U~oC 

(1.20) t t> ~ IJR(z)131Rl-l+lJ~o~(Z)--H I 
R~O 

IRI->_2 

>= ~oJ,(z)  [ I  nJ - I 4 "  
jeR\{0} 

The analyticity of 7(z,0, G) follows from (3.11), (3.7), (4.20), and the dominated 
convergence theorem. The uniform convergence of ~ IV(z, 0, G)[, z~ Uzo is proved 

G 
as in Theorem (A.2) using the first equality in (A.18). 
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Note Added in Proof The authors have recently received a preprint of [7] which contains another 
proof of Theorem (3.8) together with analogous results for other models. 


