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Applications of the Stochastic Ising Model
to the Gibbs States*
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Abstract. The stochastic Ising model is used as a tool to prove theorems
concerning analyticity of the correlation functions and strong cluster proper-
ties of the Gibbs states.

0. Introduction

The stochastic Ising model has been used as a model for the time evolution of the
configuration of spins in the classical Ising model. From a physical point of view
the model has the unfortunate feature that the dynamics do not come from a
Hamiltonian and are not well motivated. Nevertheless it is possible to learn
something about a Gibbs state by studying the semi-group of the stochastic
Ising model which has that Gibbs state as its stationary measure. The results
proved in this paper demonstrate this technique.

Let Z* be the d-dimensional integer lattice and let {Jx : R a finite subset of Z%}
be a potential which satisfies

(0.1) Jg=Jg,, forall RcCZ® and keZ’
and

02) 3 Wil<w.
R>0

Let E={—1, 1}*" be the set of configurations of spins and give E the product
topology. The elements of E are denoted by letters such as 5 or ¢, and we denote
the spin at k in the configuration # by #,. Let # be the Borel sets of E and if FC Z*
let B#7) denote the o-algebra generated by {n,:keF} ({n,: k¢F}). We say a
probability measure ¢ on 4 is a Gibbs state for the potential {J;} if a regular
conditional probability distribution of u on %, given #* is given by

03) Qk({nk}lﬁ")=[1+eXp[2 Y JxI1 njﬂ“.

Rak JjeR
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We are going to study mixing properties of the Gibbs states as well as the
analytic dependence of their correlation functions on the potential. For example
let the potential {Jp} be fixed and let y; be a Gibbs state for the potential {#Jg}.
Theorem (3.8) implies that if

04) B<m/4 3 al,

R>0

then y, is unique and for all finite ACZ¢ H 1;dpgln) can be continued ana-
Iytically to the region { BeC:|pi<II / Z |J R} As to the mixing properties, an

application of Theorem (4.24) shows that if (0.4) holds and the potennal has finite
range, then there is an «>0 such that for all finite A,CZ* there is a constant
A(A,) for which

(0.5)  sup (BB — wB)| £ A(Ag)e ™,

where A,CA and ¢ is the distance from A, to the complement of A. The inequality
{0.3) of course implies that there is an exponential decay of correlations.

Both the analyticity and mixing results are true if (0.4) is replaced by other
conditions [see Theorem (3.10) and (4.24)]. For example, if fe%(E) (the con-
tinuous functions on E) let ||f]| be the supremium norm of f. For keZ? and
fe¥(E) let

0.6) A fm)=fGn— S,

where . is the configuration obtained from #n by reversing the spin at k. If the
potential has finite range and if

07 Y lidweo({-3)I<1,
k¥0
then not only is the Gibbs state unique, but (0.5) holds.
As we mentioned the tool used to prove these theorems is the stochastic
Ising model, which we now describe. Let @ = { f e 4(E): 4, f =0 for all but finitely
many k}. Let

08) cm=2ed{—n17"),
and let ¥ be the operator on & given by

09) Zft= Y cdmaf@).

keZd
Under the condition (0.2) alone, it is not known whether . admits a closure which
generates a strongly continuous positive contraction semigroup {7,:t=0} on
%(E). However, if ) |[Jgl<n/4 or if Z [ 4,00({ -} )| <oo holds, then not only

RaO
is there one such semi-group, but there 1s only one (see [3, 6, 3] and Theorems (1, 8)

and (A.2)). Whenever there is exactly one such semi-group {T;:¢=0} for a given
choice of potential {Jg}, we call it the stochastic Ising model with potential {Jg}.
For a description of the corresponding Markov process see [3] or [5]. If {T;:£ =0}
is the semi-group for the stochastic Ising model with potential {J;} and pis a
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Gibbs state with potential {Jg} then p is T-stationary. That is for all fe%(E)
and all t=0

0.10) | T, f(mdu(m)= | f()dun)
{see [4]).

It is easy to understand, in general terms, why the stochastic Ising model is a
powerful tool in the study of the equilibrium state. The point is that it is easier
to see how the semi-group {7;:£20} depends on the Jygs than it is to understand,
directly, the dependence of the Gibbs states on the potential. (This circumstance
is not at all surprising, since the correspondence between {Jg} and {T:t=0} is
one to one far more often than that between {J,} and the Gibbs states} If one
knows, in addition, that {T;:r= 0} tends to equilibrium fast enough, then one can
show that the nice dependence of {T,:¢ 0} on {Jg} is inherited by the equilibrium
state. These are the basic facts of which we are going to take advantage.

In Sections 1 and 2 we prove some general facts about interacting stochastic
processes. In those sections the flip rates, ¢,’s, are not required to have the form
(0.8) for some potential {Jz}. Section 3 contains the analyticity results and Sec-
tion 4 contains the mixing results. In the latter two sections we always assume that
the ¢;’s are given by (0.8).

1. The Perturbation Technique

In this section we show that the generalized stochastic Ising model [ie. ¢.’s not
required to satisfy (0.8)] can sometimes be thought of as a perturbation of the
process in which each of the spins flips independently of the others.

The results in this section are a generalization of the results in Sections 6 and 7
of [3], and the reader is referred to [3] for many of the details

If F is a finite subset of Z¢ and |af <1 let

. B 1 if Fzﬁ
XF('?)'—{H(a+,7j)/(1+|a|)lFl if F=+60.

Here |F| denotes the cardinality of F. Note that for a given a, {y:F finite} is the
set of eigenfunctions for #*= )" ¢§4,, where ci{(n)=1+an,. Let
k

ia={f:f=;f(F)x§ where ;lf(F)i<oo}.

For f ef,a we denote | f],= | f {F)]. If v* is the product measure
F

1+o 1l—o
(I.I) Vaz H( 2 5{_1}+ 2 5{+1}>

jezé

(v* is the unique stationary distribution for #%), then for f eiu we have

(12)  fE)=(1—1a)™ ' § xtn) £ dvim) .
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Thus each fel, has a unique representation in terms of the ), and the series
converges uniformly. In fact if feL,, then

@3 MfI=0f 1.

Now consider flip rates which are of the form

(L4) cm=1+om+m Y vk G) & .
G

For fel, and / a complex number not in {—2k:k=1,2, ...} define

19 4f=ITFT ¥ k0 A

G F keZi HC (F\{)nG
20\ /1 — jo\| WG~ ]
1+io’c’|) (ﬁ‘m)

1- _H lX[(F\{k})AG}uH(

where I{-) is the indicator function of F.
(1.6) Lemma. If there is an a =0 such that

S ylk, G Sa(l+|af) forall keZ?,
G
then for all complex A+ —2, —4, ... we have

A7) N Aufll=allflasup |-

nzl
Proof. |4, 1|,

2n
A+2n

20K 1F(F) [ 2le) \VE 1 af\|E G 1H]
SEX % bkGlhE 1+|0<|<1+|06|> <1+|06|)

G F k HCF\{)nH

Summing over H first and using the equality

2o i 14| <1~!a!)1FnGI—IHI B
HC;nG(1+iO(|> 1 Jo B

and then summing over G and using the hypothesis we obtain

R T

from which the result is obvious.
The only difference between the proofs of Lemma (7.1) and Theorem (7.10)
of [3] and the proof of Theorem (1.8) below is contained in the previous lemma.

(1.8) Theorem. Let ¢, be as in (1.4) and suppose that the hypotheses of Lemma (1.6)

hold with a<1. Then there is a unique positive strongly continuous contraction semi-

group {T,:t = 0} on G(E) whose generation agrees with & = Z ¢ A, on 9. Moreover
*

if for fef,a we define I1f by

19) /=] f:o (o) f dv*,
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then there is a y>0, depending only on a, and for each f eia a constant D(f),
depending only on a and f, such that for all t 20

(1L10) |Lf—-IfISD(f)e™ ™.

Proof. The proof follows almost verbatum the proofs in Section 6 and 7 of [3].
We indicate here only the necessary changes.

Let &%= Z(l +om) Ay. Then since

Ly =—2FyF,
the resolvent, R}, of £ is given as follows. If f=} f {F) xﬁeﬁa and A=0, —2,
F
—4, —6,..., then

L ____1_ 7 o
Rif =31y O

Since
Mx Z Wk, G) xgm) Ay x5 ()= — Z 1+’ I IF(k) XG(W)XF\{k)(")
G
and
L. Yo |H}| lal)fﬂG |H ,
o= 2, Hraon (1 + sas) (1 +1af ’

we see that for fel,
(Z—-ZLIRf=A,f.
The proof now follows exactly along the lines of [3].

(1.11)  Remark. (1.10) implies that the semi-group has a unique stationary meas-
ure, y, and (1.9) implies that for fel,

(112) | fdu=| i (Ao f dv*.

2. The Theorems of Dobrushin and Sullivan

In this section we prove a theorem which is related to a theorem of Dobrushin [1]
and is a particular case of a theorem due to Sullivan [6]. The reason for including
another proof here is that it can be greatly simplified in the case which we are
considering.

Recall that 4, fis given by (0.6). Since the operators A, are analogous to partial
derivatives with respect to the k™ variable, we will often write Sy for 4, f. For
JFeB(E) let

@1 Wfi= ; Sl =00
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Let €'(E)= {fe G(E):|| fll < oo}. It is known (see [3]) that if
22) sup Lileell +liedl]= C< o0,

then there is exactly one positive, strongly continuous contraction semigroup
{T;:t=0} on %¥(E) whose generator agrees with & = chAk on 9. Moreover, if

we denote the generator of T, by %, then the domain of % includes ¥X(E); and if
Je¥(E),

23) NTANZe NS
(24) Theorem (Dobrushin-Sullivan). Let {c,:ke Z*}C C*(E) satisfy (2.2). Let
v= infinf(c0n) +en)) = sup > el
n kK j¥k
Set ¥ = Z ¢ 4, on D and let {T;:¢=0} be the associated Feller semi-group on €(E).
k
Then
ITollse™lloll, t=0 and ¢@e%b(E).
In particular, if y>0, then there is a unique probability measure y on E such that

ITo— §odull<Me ™ |lgll, ¢20

where M= sup | ¢l
k

Proof. From (4.11) in [ 3], we know that (2.3) holds. Thus if 1> C and f =R, ¢ for
some @e % (E), then || fI| Zlloll (4~ C) and

Af - Zcff,f:‘f’
Thus
j’f,k(n):(p,k_*_ ; ;(k’?) f} k(n)+ Z s k(ﬂ) f;(n)+(ckfk)

Since E is compact and f,(;11)= — f(n), we can {ind n*<c E such that
fadir*)= max | fn)l .
Note that f, (#*)<0 for all j and

(e [ )= o™ flen™®) + ™) faln™)
= — [ (e 1)+ 2¢,(n*))
= — (™) + el N1 fill -

Hence

ALl SNl =™ + eI Lll+ X Hegd I1f5

j¥k
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and so
Aol — ignf (edm) + el A1

+ 2 2 el 1A

ALY
el =l
Thus if A>max(—7y, C), then || R, ol £l (2 +7). Using the well-known formula
To= lime ™ Y (FtR)'¢/n!

Aroo n=0

one easily gets

I Tell<e™ " lioll .
Finally, if >0 and ¢ %*(E), then
T,
and so
Lo

7&—” <M Tl < Me " llgl]

Hence
1To—Toll SMe ol for tzs.

The last part of the theorem follows immediately from this.

3. Analyticity of the Correlation Functions

Let U be a connected open set in the complex plane and let {Jp(z): R a finite
subset of Z% be a collection of analytic functions which satisfy (0.1) and (0.2).
Assume also that there is at least one real ze U and that Jy(2) is real for real ze U.
Then for real zeU there is at least one Gibbs state, p,, corresponding to the
potential {Jx(z)}, and we know that whenever one of the perturbation techniques
of section one can be applied there is exactly one such Gibbs state. The goal of
this section is to obtain conditions under which, for all fe9, | fdu, can be
continued analytically to an open set containing the intersection of U and the
real axis.

(3.1) Lemma. Let U be a connected open subset of € containing at least one real
number. For ke Z* and finite GC Z°, let y(-, k, G) be a function on U with the property
that for some ae{~1,1) and ac[0,1)

(32) clz, =1+ +n, ; Yz, k, G) x&(n)

is non-negative for real ze U and

(3.3) supsup Y ly(z; k, G| <a(l+]al).

zeU k G
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If zeU is real let T, be the Feller semi-group determined by ¥ =3 ¢\(z, -} 4,.
P

By Theorem (1.8) there is, for each real ze U, a unique probability measure, p,,
such that

§Tfdu,= | fdu, foral fe#(E).
If in addition to (3.3) we assume that
(3.4) (z; k, G)is an analytic function of ze U for all ke Z* and G C Z* and for each k,
% [7(z; k, G)| converges uniformly in ze U,
then for all fe 9, | f du, may be continued analytically to U.
Proof. Since & Cﬁa, it follows from Theorem (1.8) that if fe % and ze U is real then

(5 [ fdu=| Sf: ALY fdv*,

where AP is defined by (1.5) using y(z; k, G). But from (3.4) it is easily checked that
the right side of (3.5) is an analytic function of ze U.

(3.6) Theorem. Let U and {Jg(2)} be as in the first paragraph of this section.
Assume that there is an ae(—1, 1) and an a[0, 1) such that if y(z; k, G) is given by

(3.7) ¥z:k, G)=(1 )% { x&(m) tanh(Z Jetn) T] nj)—d]d\’“(n),

Rak JeR\{k}

then y(z; k, G) satisfies (3.3) and (3.4). Then for all real ze U there is a unique Gibbs
state, j,, with potential {Jp(z)}, and if f€D, | f dp, can be continued analytically
to U.

Proof. For zeU let
iz, n)=2<1+exp{2 Y Jr(@ ] ’TJDGI

\ R3ak JeR

=1+ank+nk{tanh( Y Jr@ 1 nj> —-os}.

Rsk R\

If ze U is real let u, be the stationary measure for the semi-group determined by
Y ¢z, -)4,. Then by Theorem (1.8) and (0.10), g, is the unique Gibbs state for
K

the potential {Jg(z)}. The rest now follows from Lemma (3.1).

(3.8) Theorem. Let U and {J(2)} be as in the first paragraph of this section. Assume
that Y. |Jg(z)| converges uniformly for ze U and that
R>0

(39) sup Y gp@l<n/4.

zell R30

Then for each real zeU there is a unique Gibbs state, u,, with potential {Jg(z}}
and for each fe 2, | f du, can be continued analytically to U.

Proof. We take a=0 in (3.7) and check that there is an ae[0, 1) such that (3.3)
and (3.4) hold. The analyticity of each y(z; k, G} follows from the dominated con-
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vergence theorem since for each n, 3 Jx(z) [] # ;1s an analytic function which is

Rsk jeR\(l3
bounded by /4.
The verification of (3.3) and the uniformity statement in (3.4) is deferred to
Theorem (A.2) of the Appendix.

{3.10) Theorem. Let U and {Jy(z)} be given as in the preceding, and assume, in
addition, that

(i) the series
@G1) Y a3

R20

converges uniformly for ze U,
(i) Jio(2)*0 for any ze U and

—itn 1-(1—exp<-§ Y 1JR(Z)|31R'>>%
R30
312) su IR|22 <1.
( ) zeg IJ{O}(Z)P

Then for each real ze U there is a unique Gibbs state p,. Moreover, there is an
open set VU such that Un{reals}CV and for all feP the map z— | fdy,,
ze Un{reals}, admits an analytic continuation to V.

The proof of Theorem (3.10) is deferred to Theorem (A.14) in the appendix,
where it is shown that each real z,e U is contained in an open set U, C U on which
(3.3) and (3.4) hold.

4. A Strong Cluster Property

Let {Jz} be a potential such that there is only one Gibbs state, u, corresponding
to {Jx}. Dobrushin has shown (see [2]) that this is equivalent to the condition
that for all fe 2 and all sequences {A,} of finite subsets of Z* such that 4,C A, .,
and [ ) 4,=2°

(1) Jim | E*L £ 1%~ E'[f]]=0.

Our goal in this section is to find conditions on the potential {J,} which guarantee
that the convergence in (4.1) is exponentially fast.

The technique is to represent E“[ f |%'"](&) as the expectation of f with respect
to the stationary measure of the semi-group generated by the bounded operator
F*4 given by

42 2™ f= k;; clo(A,, &) A f ()
where a(A,, £, 1) is the element of E given by

if ked,
O-(Am éa n)k: {Z:: If ké/.t
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If 1%} is the probability measure on {—1, 1} with
@3) @A) =[2Z(4,, 6] exp { - 2 Jrllo4,¢ ’1);},

Red,+8 jeR

where Z(4,, £) is the normalizing constant, then for all fe@({—1, 1}
@4 [ fddt=ETf1910),

and

@45) 2" fmdem=0.

Since #* is a bounded operator, there is no doubt that it generates a unique
semi-group {T*»*:¢>0} and that

@.6) | fduti= [ T f dyins
for all fe €(E).

(4.7) Theorem. Suppose o, is a positive number with the property that for all A,
EcE, and fe @M= {fcD: A, f =0 for k¢ A}, there is an A(f)< o0, not depending
on A, such that:

48 TS~ [ faslsA(f)e ™, 120.

Then {T,:t =0} admits exactly one stationary distribution u and for fe 9D :
49 TS~ [ fdulSA(f)e™™, t20.

Assume in addition that there is an M <co such that
4.10) Aje=0 if |j—k=M,

or equivalently, that

(4.11) Jx=0 if 0eRL[—M,MI*.

Then if ACA and g is the distance between A and the complement of A, one has for
feD(A) and EcE:

@12) |f fdp— | f P <2AAS)+ I fle e,
where C=max(||col, llcol) and ye(0, 1) solves
(I+0/C)y+Lny+1=0.

Proof. That (4.8) implies (4.9) is an easy consequence of the fact that T, f —T, f as
A,7Z° (see [3] or [5]). To prove the second assertion, note that:

(413) |f fdu— | fdut
<|f fdu—TfO)I+IT, £ ()= TS £ ) +1T24 £ (n)— | f dp™]
S2A(f)e ™ +T, £ (1)~ T £ ().
To bound |T, f () — ’EX@ f ()] we observe that
T f () =T f()=0
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and

(LfO-TRf(N=ZLTf~LIT f

SN

=LUTf =T N)+(L - LTS
Thus
Tf-Thef= [T — LT 1 ds,
0
and

(4.14) lﬂf(n)—ﬁ’éf(n)lﬁik; leall 14x T S 1 ds

where A, = {je Z%= the distance from j to the complement of A is at least M}. We
need the following lemma.

(4.15y Lemma. Assume that (4.10) holds and let fe %(A) and C be as in (4.12). Set
AN ={ke 7% : dist(k, A)X NM}. Then

N J
a1 3 iansis(e- ¥ S,
j=0 I:

kgA(N?

We postpone the proof of the lemma and complete the proof of the theorem.
Let [o/M] be the integral part of o/M and set N=[g/M]—1. Then 4,0 A%
and the right side of (4.14) is bounded by

4 4 C
@17 2C] Y 14T f|ds<2C j(eCs (J-)-)d Al
0 kAW i=0 It
t(CI)N+2
<2 s,
Combining (4.13), (4.14), and (4.17) we have
(Ct)[e/M]H

. e -t e N
@18) 1 fdu= ] f 49 S240Ne +2A1f e o

Setting ¢=1y([o/M]+1)/C and using the bounds k!=k*e * and [o/M]+1=0/M,
we get the desired conclusion.

Proof of Lemma (4.15). Let f be as in the statement of the lemma and note that

(4.19) ; iLfm=24; f(n)+,§(A;ck(??))AkYZf(jn),

and
@200 4, T, fim=4;1m).
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The solution of (4.19) with initial data (4.20) is
i

@21) A Tf=TA4;fM+ [T, Y (4;cdm) 4T, f (m))ds .
0 %

Note that if j¢ A we have 4; f =0 and hence

@22) I4TLONS ]S 1Al 14T f ()] ds.
0O k

Thus

42 ¥ I4TIOlsS

JgAN

Zk: I 45T f ()l ds

JEAD

O oy vn O Camaney, .

[IA

2N NAT (i ds.

kgd(N - 1)
Since ). [|4;¢ll < C we have
7
1
> MLTSOISC] Y 4T f ()] ds.
jeA® 0 jeal¥ -1
The proof is now completed by induction, beginning with (2.3).

{4.24) Theorem., Let {Jz} be a potential satisfying (0.1), (4.11), and one of the
Jollowing :

Y HA,‘(l-i—exp
k=0
b) RZO [Tl <m/4
c) IJ(0)|>“%/%<1_{1’CXP<‘% > IJRI3|R|)

<1,

2 Z JRXI% ])*1

R30

Rs0
[Riz2

Then there is exactly one Gibbs state u with potential {Jz}. Moreover, there is a

y>0 such that for each fe2 there exists a constant A(f)<co with the property
that if fe (A) then

IELf1 B~ E*[f1I SA(f)e e,

where AD A and g is the distance from A to the complement of A.

Proof. We need only check the hypotheses of Theorem (4.7). To do this, note that
Theorems (2.4) and (1.8) apply to finite as well as infinite systems, and the con-
clusions of Theorems (2.4) and (1.8) imply the hypotheses of Theorem (4.7). Thus
we need only check the hypotheses of Theorems (2.4) and (1.8). The inequality a) is
easily seen to imply the hypotheses of Theorem (2.4} and Theorems (A.2) and
(A.14) in the appendix show that Theorem (1.8) is applicable under conditions b)
and ¢).

(4.25) Remark. Dobrushin [2] has proved uniqueness of the Gibbs state under
condition a) of Theorem (4.24), but the other conclusion of Theorem (4.24) does
not follow merely from uniqueness of the Gibbs state and finiteness of the range
of the potential. The two dimensional nearest neighbor ferromagnetic potential
at the critical temperature provides a counter-cxample.
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Appendix

For —1<a<1 let ¥%and I, be as in section one. For a>1 let
L={felo: LI Ol"=|f l<eo}.
VA

(A.1) Lemma. L, isa Banach algebra for all a> —1.

Proof. That L, is a Banach space is obvious. Thus we need only check that
1f-gl.=0f1.llgll,. Consider first the case |oj<1. Let f,geL, f=73 f(F)xk
F

and g= Y §(F)y3. Then
F

fg= ; ; TR 3G yirs

R H /1 12\ FnG]
=3T3 f(F)é(G)X?mmuH(—Z-a—) G 1"‘})

F G HCFnG 1+{<1{ +{(xi
Therefore
' . i 2lo )IHI (1_,|a|)IFﬁGI—IHI
1£0LsYY T fEnel (o) (G

)
F
; (F)IZIQ(GI—IIflI lgll, -
Now consider a>1.

f9=2% (4G 1846 -

Thus
1fgll.< ;gaﬂms 16(G)) ¥ 46!

= ;;fﬂﬂi GG = £, g -

(A.2) Theorem. Under the hypotheses of Theorem (3.8) both (3.3) with a=0 and
(3.4) hold.

Proof. Let a=tansup Y |Jg(z)l. Because of (3.9), a< 1.

zeU R30

Now if || < /2 then

(A3) tanh{w)= i22"(22"—1)82,,@2""1/(211)!
n=1

and

tan ()= Z 227227 —1)(B,,| 0"~ /(2n)!,
where the B,,’s are the Bernoulli numbers. Thus it follows from Lemma (A.1)
applied to LO, and the bound

<arctan(a),
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that for all ze U
”tanh( ¥ JR(Z)X?{\{O})H . Sa,

R0

ie. that (3.3) holds. With regards to (3.4), we have already seen in the proof of
Theorem (3.8) that each y(z; k, G) is analytic in ze U. The uniform convergence of
Y Iy(z; k, G)] follows easily from Lemma (A.1) and Equation (A.3), since we are
G

assuming that ) |Jg(z)| converges uniformly for ze U.
R0

{A.4) Lemma. Let jo|<1 and fEI:1+2|a|- Then fef,“ and | f =1 1420
Proof.

Q)= TTe+n—a= Y [ @+n)(—o)Fi-iHi

jeF HCF jeH
= 3 A0+ o) (=) T
HCF

Thus
f= ;f(m%: ;HZF FE) (4 o) (— o P11

Both conclusions of the lemma follow now from

1SS Y IFEN A+ o) o 71 -1
F HCF

- ;1 FENE+20) ™ =111l 4200 -

(A.5) Lemma. If h>|v| then

(A6) taph(v+h)=1+2 Z (= 1)ke=2Ko+h)

k=1

Proof. Since h> o] the summation on the right side of (A.6) converges. The proof
is accomplished by performing the summation and using the definition of tanh.

(A7) Lemma. If V(= Y Jeiduolmels and H>|V|; then there is an
Ra0
oe(0, 1) such that
(A8) tanh(V(n)+H)=a+ ) WG)x&n)
G

and
(A9) YINGIS2 Y e (e lieami ).
G k=1

Proof. Since [V |Vis<H, it follows that 1>tanh(V{n)+H)>0 for all .
Letting v* be as in (1.1) we have

[ tanh (V(n)+ H)dv(n) — «
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is positive for a=0, negative for =1 and continuous as a function of «. Thus
there is an @e(0, 1) such that

(A:10) | tanh(V(n)+ H)dv{(n)—a=0.
Now using Lemma (A.5) we have

(A11) tanh(V(n)+ H)

=a+ (1—0‘5-!—2 Yo (—1)fe 42 Y (—l)ke‘z"H(e”z"V(")—l)).
k=1 k=1
Lemmas (A.1) and (A.4) imply that

—2H ©

2 -
AL2) 1—G— o 42 Y (—1) (e W _{)ef, .
1 2H
+e k=1

Also the integral of (A.12) with respect to +* is zero. Hence when (A.12) is expanded
in terms of ¥%’s the constant term is zero. Thus

26_2H ©
(A.13) “1-—07— o +2 ) (—1)Fe™2HI(e=2K() _ 1)
+e k=1 3
~2| 3 (=~ e e 2oy |1 _g— 277
k=1 F L4e?H
§2 i e—ZkH(eZk”V”a_l)
k=1
§2 i e—ZkH(e2k||V||1+;_a_1)‘

k

1

(A.14) Theorem. Under the assumptions of Theorem (3.10) each real zoeU is
contained in an open set U, CU on which (3.3) and (3.4) hold.

Proof. Fix a real zoe U, set H=J4(z,) and

Jo- Jr(zo) if |R]22
270 if |Rj=1.

We do the proof under the assumption that H > 0.
One easily checks from (3.12) that

(A15) H> Y |Jg3RI-1,
R30
and thus the hypotheses of Lemma (A.7) are satisfied.
We also have from (3.12) that

2% Y |Jg 3R

Rs0

(A16) Y e"z"H(exp
k=1

—1)=b<1.

Now the continuity of each Jg(z) together with (3.11) implies that
Z |Jr(2)| 3IRIZ1 4 |J{0}(Z) - J{O}(ZO)]

R=0
[R|z2
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is continuous on U; and thus, from (A.15), we see that there is an open UcU
containing z, such that

(A17) v=sup Y [Jr@I3F 7 +Jgy(2) = Joylzoll <H .

zelU R30
[RIz2
Now let
. B (1—b) (1 +exp[2(v— H)]P*
— . _ IR{
U, = {ZGU,RZBJOUR(Z) Jr(zo) 3”71« Sexp (20— H)] }

Again because of the continuity of each Jg(z) and (3.11), U, is open and clearly
contains z,.

We now let « be as in the conclusion of Lemma (A.7) and a={(1 +b)/2 and check
that (3.3) and (3.4) hold on U . Because of (0.1) it suffices to check them for k=0.
Let

Viz,m= ) Jplz) ] n,—H.
R>0 jeR\(0}
Then Cy(z, n)= 1+ oy +no(tanh(V(z, n)+ H)—a). But (A.17) implies that for all
zeU,,, H>|V(z,n)|. Therefore by Lemma (A.5), just as in (A.11), we have
(A.18) tanh(V(z,n)+H)—
ze—ZH

=l e +2 Z (— e 2 exp[ —2kV(z, )] —1)

=tanh(V(zo, )+ H)—a
+2 i (= 1) e 2 (exp[ —2kV(z, n)] —exp[ — 2kV(zo, 1)]) -
k=1

According to Lemma (A.7) the o norm of the first term on the right side of (A.18)
is bounded by

8

2 Z e-zw(exp[ZkH Vizg, Wiszd—1).

k=1

By using Lemmas (A.1) and (A4) and the increase of |V(z, -)Il, as a function of
y=1, it is easily checked that the « norm of the second term is bounded by

4 Z kexp[2kiv—H)] |V(z, -)—V(zo, 3

which is less than (1 —b)/2 for zeU,,. Applying these two bounds to (A.18) we
obtain

(A.19) Ti—a Itanh(V(z, -)+ H)—al,
‘- i NUSIPSS Y " exp[2K] Vo, - }nmg—n)
{— b ®

S5 +2 Z “H(exp[2k[V (2o, 1 42,1 = DAL +00).
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Since V(z,, -) does not have a constant term when expanded in terms of the
xws, it follows that (exp[2k|{V(zo, )ll1+2.]— 1)/(1+) is an increasing function
of o. Thus, using {A.16), we may bound the right side of (A.19) by

1-b i

— t Y. expl[—2kH] (exp[2k|V(zo, )|5]—1)=a,

k=1

proving (3.3). 3

To prove (3.4) note that (A.17) implies that for ze U, CU

(A20) H> Y |[JR@I3%7 1+ g(2)~ HI

R30
IR{z2

Z Z Jr(2) H n;—Hj.
R30 JeR\{0}

The analyticity of y(z,0, G) follows from (3.11), (3.7), (4.20), and the dominated
convergence theorem. The uniform convergence of Z 7z, 0, G|, ze U, is proved
G

as in Theorem (A.2) using the first equality in (A.18).
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Note Added in Proof. The authors have recently received a preprint of [7] which contains another
proof of Theorem (3.8) together with analogous results for other models.



