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Abstract. The three papers in this series describe an 
approach to the synthesis of solutions to a class of mechanical 
design problems; these involve transmission and transformation 
of mechanical forces and motion, and can be described by a 
set of inputs and outputs. The approach involves (1) identifying 
a set of primary functional elements and rules of combining 
them, and (2) developing appropriate representations and 
reasoning procedures for synthesizing solution concepts using 
these elements and their combination rules; these synthesis 
procedures can produce an exhaustive set of solution concepts, 
in terms of their topological as well as spatial configurations, 
to a given design problem. 

This paper, Part II, describes a set of procedures, which, 
using a knowledge base of primary structures expressed in 
terms of the representation constructs developed in Part t, 
can exhaustively synthesize topological descriptions of 
possible solutions to a given problem. 
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1. I n t r o d u c t i o n  

Constructs for describing problems and solutions in 
transmission design were described in Section 7 of Part 
I (Chakrabarti and Bligh 1994), Introduction and 
Knowledge Representation. To recapitulate, a multiple 
input-output problem is described in terms of the 
characteristics of each of the required inputs and 
outputs. These characteristics include 'kinds' (forces 
and motions), 'orientations' (i, j or k), 'senses' (+ or 
- ) ,  'magnitudes' (some real number), and 'positions" 
(xi + ),j + zk, where x, y and z are real numbers). A 
'primary structure' is described in terms of three 
vectors: an 'input vector', an 'output vector', and a 
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'length vector' connecting these two. An input or an 
output vector has all the characteristics mentioned 
above, while a length vector has all but the 
kind-characteristic. Each primary structure has a set 
of relationships between each characteristic of its 
vectors; these are called 'transformations'. A structure, 
therefore, has some 'kind-transformations', which 
describes the kinds of inputs and corresponding 
outputs permitted by the structure. A primitive lever, 
for instance, can take a force or linear velocity as input, 
and a torque or angular velocity as its corresponding 
output, and vice versa. For each of these kind 
transformations, there can be a number of'orientation- 
transformations', each of which is a relation that gives 
a possible combination of orientation characteristics 
of the three vectors describing the structure. Similarly, 
for each such orientation-transformation, there can be 
a set of 'sense-transformations', and so on. 

Given a knowledge base of primary structures 
whose above transformations are known, a design 
problem, described in terms of the representation 
constructs mentioned above, can be solved by 
synthesizing these structures. The problem considered 
here is to generate solutions to a transmission design 
problem at an instant of time. The approach is to solve 
the problem at each instant of time, following the order 
in which the I/O characteristics are enlisted in Section 
7 of Part II (i.e., Kind, Orientation, Sense, Magnitude 
and Position requirements). We first consider the 
problem of 'kind synthesis' (i.e., synthesizing only 
those solutions which will provide the I/O kinds 
required by the design problem). We then evaluate 
each of the above solutions for orientation, thereby 
configuring the valid orientations of these solutions. 
These orientations are then checked for the sense 
requirements, and the valid sense configurations are 
computed and retained. These solutions are now ready 
to be evaluated for the magnitude and position 
requirements, again allowing the elimination of the 
infeasible solutions. This paper describes the kind 
synthesis procedures. 
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2. Kind Synthesis of Single Input-Single 
Output (SISO) Systems 

The problem here is to devise a procedure that would 
synthesize solution concepts, using a knowledge base 
of structures and their rules of combination, to a given 
design problem of transforming an input of a given 
kind to an output of a desired kind. If for instance, 
we want to transform an input force into an output 
torque, the kind synthesis procedure should be able 
to generate concepts that would take a force as an 
input and provide a torque as an output. 

This problem can be viewed as a 'search' problem, 
'satisficing' (Simon, 1969) or exhaustive, where there 
are defined 'initial' (input kind) and 'goal '  (output 
kind) 'states', and the problem is to move from the 
initial state to the goal state using valid 'operators '  
(known primary structures) that change the state of 
the problem. Each resulting solution should be a 
'causal chain' of operators (i.e., primary structures) 
connecting the given input kind to the desired output 
kind. In this case, we try to solve the exhaustive search 
problem, of which searching for satisficing solutions 
is a sub-problem. 

There are two questions. One is, how do we choose 
the first structure, and the next, and so on? The second 
is, where do we stop this process? 

The rule of combination (which in this case is that 
two structures can be connected, if and only if the 
output kind of one structure is the same as the input 
kind of the other) provides the way of choosing 
succeeding structures at any state of the problem. We 
can choose, as the first structure, any structure from 
the knowledge base, whose input kind is the same as 
that of the specified problem input. The resulting state 
of the problem can now be given in terms of the output 
kind of the chosen structure, and the next operator 
can be chosen from the structures that can take, as 
input, the output kind of the previously chosen 
structure. 

One answer to the second question is that the 
procedure would stop as soon as the problem state 
matches the goal state, i.e., the output of the most 
recently chosen structure matches with the specified 
problem output. However, as we are interested in an 
exhaustive set of solutions, the method is to explore 
every possible branch of the solution tree, until all the 
solutions are found. It may be that for a specific 
branch, it is not possible to find a solution by using 
a finite number of structures. For example, in a 
problem of transforming a force into a torque, we 
could to on transforming the input by using a series 
of force-to-force transformers, thereby never arriving 
at the torque. The other possibility is that a solution 

space can be potentially infinite, and therefore, can 
never be explored exhaustively in an absolute sense. 
For  instance, a force-to-force transformation could be 
achieved by connecting one force-to-torque structure 
with its inverse, or by connecting four such structures, 
or eight, and so on. To eliminate these possibilities, 
the problem is constrained by specifying the maximum 
number of structures that can be used in spawning 
any branch. 

Therefore, given an allowable set of structures 
having known kind-transformations (e.g., torque-to- 
torque transformation for a shaft), the kind synthesis 
procedure should be able to generate all the solutions 
which could transform the given input kind to the 
required output kind (e.g., torque-to-torque) using a 
maximum of r structures from the given set (e.g., 4 for 
the bicycle drive in Fig. 7 in Part I). The procedure 
is as follows (see Fig. 1): 

v t vuLFu~ 
• An Intermediate N o d e  

0 A n  Inpu t  o r  an  Output  Node  
- -  - -  A Poss ib le  Connec t ion  between Two Nodes  
- -  A Structure  Enb l i ng  a 

C o n n e c t i o n  betwecn Two Nodes  

Poss ib le  Dis t inc t  Solut ions  Represented  by 
One  Dist inct  Cha in  (wi th in  the  rectangle)  

Fig. 1. Generating single-input single-output chains of structures 
(arcs) as conceptual solutions to a single-input single-output 
problem using a maximum of two structures; only one branch 
of the solution space is expanded here. The possible distinct 
solutions represented by one distinct chain is shown by expanding 
its content. 
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Known: A set of kind-transformation 
structures (i.e., structures such 
as shaft: torque +-~ torque; lever: 
force ~-, torque; etc.) 

Given Problem: Find all the solutions which 
transform the given Input kind to 
the required Output kind (e.g., 
force ~ Torque) 

Maximum number of structures allowed: r i 

Step l: Set the problem input as the present input. 
Set the problem output as the required output. 

Step 2: List all the structures whose input matches 
the present input. For each such structure do the 
following. 

Step 2.1: check whether or not the output of the 
structure matches the required output. 

Option 2.1.1: It it matches, keep a copy of the 
chain of structures, used in the present branch, 
as a solution in a list of solutions. Check to see 
if the total number of structures used in the 
present branch is less than r. 

Option 2.1.1a: If yes, set the output of the 
last structure used as the present input, and 
follow through Step 2 onwards. 
Option 2.1. t b: If no, terminate the process by 
returning the list of solutions. 

Option 2.1.2: If matching does not succeed, set 
the output of the last operator used as the 
present input and continue through Step 2 
onwards. 

3. An Example of Kind Synthesis of SISO 
Systems 

Suppose we want to devise solution concepts to the 
problem of using a small hand force for unlatching a 
door, and we have already decided that the door would 
be latched by inserting a slider into a slot. Using the 
problem representation constructs that the synthesis 
procedure can recognize, we can represent this 
problem as a transformation between an input force 
(and associated motion) and an output linear motion. 
The function of the problem at an instant can be 
described as an instantaneous transformation between 
an input force and an output linear motion. This can 

T h e  idea  is t ha t  the  des igne r  w o u l d  s t a r t  syn thes i s  wi th  a smal l  

value  o f  r, a n d  w o u l d  increase  its va lue  if this  does  no t  a l low 

sa t i s fac to ry  so lu t ions  to  be  found .  

Design Objective: 

I F . . . .  q O 

t_ . . . .  I 

Design Solution 1 : r = I 

I I Lever-1 Lever-2 Tie-Rod-I O 

I I 

Design Solution 2: [ "t 
I Transverse Tie Rod 1 0 

l I 

I Input 
O Output @ Torque 

@ F o r c e  @ Linear Motion 

Fig .  2, A S I S O  k ind  syn thes i s  example .  

be specified by: 

Input 
Kind: force 
Orientation: k 
Sense: + 
Magnitude: magnitude ! 
Position: (xii  + YlJ + zlk) 

Output 
Kind: linear motion 
Orientation: i 
Sense: + 
Magnitude: magnitude - 2 
Position: (x2i + Y2J -1- Z2k ) 

Now, starting with the kind synthesis part of the 
problem, the output of the procedure would be a list 
of causal chains, each of which could be represented 
as a directed graph of a set of structures. For instance, 
given a suitable knowledge base, if r is set as 4 for this 
problem, two of the 255 solutions produced would be 
(see Fig. 2): 

Solution 1:(lever-1 force ~ torque) (lever-2 torque 
lbrce) (tie-rod-1 force -~ linear motion) 

Solution 2:(lever-1 force-~ torque) (cam torque 
force) (transverse-tie-rod-1 force ~ force) (tie-rod-1 
force ~ linear motion) 

This synthesis procedure would require modification, 
if this were to apply to synthesizing single input 
multiple output (SIMO) or multiple input single 
output (MISO) systems, which is discussed next. 
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4. Kind Synthesis of SIMO and MISO 
Systems 

Single Input-Multiple Output (SIMO) systems are in 
essence equivalent to Multiple Input-Single Output 
(MISO) systems. Discussion here is therefore limited 
to considering the synthesis of single input-multiple 
output systems. These problems, as in the synthesis of 
SISO systems, can be viewed as exhaustive search 
problems, where there are defined initial (input kind) 
and goal (output kinds) states, and the problem is to 
move from the initial state to the goal state using valid 
operators (known structures) that change the state of 
the problem. The resulting solutions should be causal 
trees of operators (i.e., primary structures) connecting 
the given input kind to the desired output kinds. 

Therefore, given an allowable set of structures 
having known kind-transformations (e.g., torque-to- 
torque transformation for a shaft), the kind synthesis 
procedure should be able to generate all the solutions 
which could transform the given input kind to the 
required output kinds (e.g., a force to two torques) 
using a maximum of r structures from the given set. 
The working of the SIMO synthesis procedure can be 
viewed as an extention of the SISO synthesis 
procedure, and is illustrated for a single input-two 
output problem using r = 4 (see Fig. 3). Here each 
output is connected, using the SISO procedure, to one 
of the potential inputs (which can be either the input 
specified by the problem, or some intermediate input 
generated while forming the previous causal chains). 

The kind synthesis procedure is as follows: 

Known: A set of kind-transformation 
structures 
(e.g., shaft torque ~ torque, lever 
force +-, torque; etc.) 

Given Problem." Find all the solutions which 
transform the given Input kind 
into the required Output kinds 
(i.e., input: force ~ output-l: 
torque, output-2: force). 

Maximum number of structures allowed." r 
Step 1: Start with a list of 

(1) nodes that can be used as valid input nodes 

(2) system output nodes that are not connected to 
any other nodes 

(3) connections already produced (which connect 
two or more nodes) 

(4) total number of structures (i.e., operators) that 
can be used to synthesize the solutions. 

node from the list of Step 2: Remove the first 
unconnected output nodes. 

\ 

\ 
\ 

h Input 
Ol, 02 Outputs 
• An Intermediate Node 
o An Input or an Output Node 
-- -- A Possible Connection between Two Nodes 

A Structure Enbling a 
Connection between Two Nodes 

"x 

Fig. 3. Generating single-input multiple output networks of 
structures (arcs) as conceptual solutions to a single-input 
two-output problem using a maximum of four structures; only 
one branch of the solution space (highlighted) is expanded here. 

Step 3: Prepare a list of arcs connecting each of the 
valid inputs in input nodes to this recently removed 
output node. Calculate how many structures can be 
used to form this connection (by subtracting from 
r the number of arcs in the list of connections, and 
the number of nodes in the present output nodes). 
If this number is zero, terminate. Otherwise, for each 
arc of this list, do: 

Step 3.1: Use the SISO kind synthesis procedure 
to form a list of chains connecting the nodes that 
form the arc. For each such chain do: 

Step 3.1.1: Modify the list of valid input nodes 
by including the newly generated intermediate 
nodes in the presently considered chain. 

Step 3.1.2: Modify the list of already produced 
connections by including in the previous list 
the newly produced arcs. 

Step 3.1.3: If the list of unconnected output 
nodes is empty, keep the already produced 
connections as one solution, and terminate. 
Otherwise, follow Steps 2 onwards. 
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5. An Example of Kind Synthesis of SIMO 
Systems 

Suppose we want to devise solution concepts to the 
problem of using a small hand force for locking and 
unlocking a toilet door and providing a signal. There 
are two problems. One is (un)tockin9 of the door, and 
the other, indicatin9 to people outside that it is 
(un)locked. Suppose we have already decided that the 
door would be locked by inserting a slider into a slot, 
and the indication (whether it is locked or not) would 
be given by bringing into view some suitable signal 
(such as a colour code). Using the problem 
representation constructs that the synthesis procedure 
can recognize, we can represent this problem as 
a transformation between an input force (and 
associated motion) and two output linear motions 
(one for locking, and the other for indication). The 
instantaneous function of the problem at an instant 
can be described as an instantaneous transformation 
between an input force and two output linear motions, 
which can be specified by: 

Input 
Kind: force 
Orientation: k 
Sense: + 
Magnitude: magnitude - 1 
Position: (xii + YlJ + zJO 

Output-1 
Kind: linear motion 
Orientation:/ 
Sense: + 
Magnitude: magnitude - 2 
Position: (Xzi q- Y2J + zzk) 

Output-2 
Kind: linear motion 
Orientation:/ 
Sense: + or - 
Magnitude: magnitude -- 3 
Position: (x3i + Y3J + z3k) 

Now starting with the kind synthesis part of the 
problem, the output of the procedure would be a list 
of causal trees, each of which could be presented as a 
directed graph of a set of structures. For instance, for 
a suitable knowledge base, if r is set as 4 for this 
problem, one of the 945 solutions produced would be 
(see Fig. 4): 

One solution: (transverse-tie-rod-1 force ~ force) 
(tie-rod-1 force ~ linear motion) (lever-1 force 
torque) (lever-2 torque ~ linear motion) 

A Design Objective: 

I_ 

A. C h a k r a b a r t i  and  T. P. Bligh 

o 

A Design Solution: 

1- 1 0  
I I Transverse Tie-Rod-1 - t,¢--72~ 

I 
r I r LeveM T Le,~r_2 I ' ~ "  

I Input 
O Output 

Force 

Torque 

Linear Motion 

Fig. 4. A k ind  synthesis  example:  the to i le t -door  lock p rob lem and  

one of its S I M O  solut ions,  

The SIMO synthesis procedure needs modification in 
order to apply to synthesis problems involving 
multiple inputs and multiple outputs (MIMO); this is 
discussed next. 

6. Kind Synthesis in MIMO Systems 

As in the less general cases, Multiple Input-Multiple 
Output (MIMO) problems are also viewed here as 
(exhaustive) seach problems. The MIMO synthesis 
procedure is an extension of the SIMO synthesis 
procedure; here the outputs are first connected to 
some inputs, and then the remaining (unconnected) 
inputs are connected to some outputs, see Fig. 5 for an 
illustration. The procedure is: 

Known: A set of kind-transformation 
structures 
(e.g., shaft: torque ~ torque, lever: 
force ,--+ torque; etc.) 

Given Problem: Find all the solutions which 
transform the given Input kinds 
into the required Output kinds 
(e.g., input-l: force-l, input-2: 
force-2 ~ output-l: torque, out- 
put-2: force). 

Maximum number of structures allowed: r 

Step 1: Stack inputs, stack outputs. 

Step 2: Connect each of the outputs to any of the 
inputs, directly or indirectly, in all possible ways, 
without repeating any solution. 
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*' "x t 

,o, o2 t \  \ 

ra, 12 

o An Input or an Output Node 
-- -- A Possible Conneeti0n between Two Nodes 

A Structure Enbling a 
Connection between Two Nodes 

Fig. 5. Gene ra t i ng  mul t ip le  i npu t -ou tpu t  ne tworks  of s t ruc tures  

(arcs) as concep tua l  so lu t ions  to a two- inpu t  two-ou tpu t  p rob lem 
using a m a x i m u m  of five structures:  only  one b ranch  of the so lu t ion  

space (highl ighted)  is fully expanded  here. 

Step 3: Connect the remaining inputs (which were 
not connected in the above process) to any of the 
outputs, without generating any solution more than 
o n c e .  

Step 4: Among the solutions generated above, 
identify those, having more than one independent 
network, which have not used all the allowed 
operators. Connect these independent networks in 
all possible ways, using the maximum allowed 
number of spare operators. 

Step 5: Among all the solutions generated in Step 
4, identify those which still have not used all 
the allowable number of operators. Using these 
spare operators, connect nodes, within the same 
(independent) network in a solution, in all possible 
ways, without forming circuits (i.e., without joining 
two nodes using more than one path) and without 
repeating any solutions already generated. 

7. An Example of Kind Synthesis of MIMO 
Systems 

We would like now to re-examine the toilet-door lock 
problem, discussed in the SIMO synthesis example 
Section 5, with the following changes. Instead of a 
single input, the specification now calls for two equal, 
opposite and non-collinear input forces, i.e., a couple. 
Using the problem representation constructs that the 
MIMO synthesis procedure can recognize, we can 
represent this problem as a transformation between 
two equal and opposite input forces (and associated 
motion), and two output linear motions (one for 
locking, and the other for signalling). The function of 
the problem at an instant can be described as an 
instantaneous transformation between two input 
forces and two output linear motions. A complete 
specification of this problem would be: 

Input-1 
Kind: force 
Orientation: k 
Sense: + 
Magnitude: magnitude - 1 
Position: (xli  + YlJ + zlk) 

Input-2 
Kind: force 
Orientation: k 
Sense: - 
Magnitude: magnitude - 2 
Position: (x2i + YzJ + zzk) 
Output-1 
Kind: linear motion 
Orientation: i 
Sense: + 
Magnitude: magnitude - 3 
Position: (x3 i + Y3J + z3k) 
Output-2 
Kind: linear motion 
Orientation: i 
Sense: - 
Magnitude: magnitude - 4 
Position: (x4i + YgJ + zgk) 

Now, starting with the kind synthesis part of the 
problem, the output of the procedure would be a list 
of causal networks, each of which could be represented 
as a directed graph of a set of structures. For instance, 
for a suitable knowledge base, if r is set as 5 for this 
problem, one (see Fig. 6) of the (~10000) solutions 
produced would be: 

One solution: 
(tever-1 input force-1 ~ intermediate torque) 
(lever-2 input force-2 ~ intermediate torque) 



58 

A Design Problem: I @ - - ~ F  
] @  ol 
] @ o 2  

A Design Solution: 
I P Lever-1 Lever-3 Tie-Rod-I I O1 

1 @ 1  - ~ I 0 2  

Torque 
I1,12 Inputs 

@ Linear Motion @ F . . . .  0 1 , 0 2  Outputs 

Fig. 6. A MIMO kind synthesis example: the toilet-door lock 
problem and one of its MIMO solutions. 

I1 P e,- l I O1 

I ,, ~1 

L2 0 2  

I1,12 Inputs Force 
O1, 0 2  Outputs 

@ Linear Motion @ Torque 

Fig. 7. Another solution to the toilet-door lock problem shown in 
Fig. 6. 

(lever-3 intermediate torque --, intermediate force) 
(tever-4 intermediate torque --* output linear motion-2) 
(tie-rod-1 intermediate torque ~ output linear motion- 

1) 

8. Implementation and Validation 

The knowledge base described before, and the 
kind synthesis procedures, are implemented on a 
LispWorks T M  (Harlequin Ltd, UK) environment. The 
language used is Common-LISP. 

In MIMO systems synthesis, as well as in SISO and 
SIMO systems synthesis, it is found that, by using the 
knowledge of kind transformation of the primary 
structures extracted and represented from solutions to 
a set of problems (described in Section 7 of Part I) 
and by using the procedures described in Section 6 of 
this paper, it was possible to synthesize the 
graph-structures of these solutions (and more), to their 
corresponding problems. For  instance, the procedure, 
implemented in the MIMO synthesis programs, 
generates, for the toilet-door lock problem (Fig. 6), 
not only the existing solution but also other feasible 
solutions such as the one shown in Fig. 7 (see Figs 8a 
and 8b for schematic diagrams of these solutions). This 
was also the case for the other problem-solution pairs 
which were used in the knowledge extraction phase. 

A, Chakrabarti and T. P. Bligh 

output - 9 - ~ - ~ P a y ~  
Motion-2 ~ ' ] ~  / 

~ Output 
I ~ Motion-t 

~.~.\~.ANX Tie'Rod- 1 ] 

E 
t 

Doo l i' 
I~ver-I I , I Lever-2 

(a) A schematic of the solution shown in Fig. 6. 

output ~ - - " - - - n ~  
Motion-2 ~ x / ~ ' ] ~  

• I I " Input i 

xxxxx'N'~' [ ~ Motion- t 

Door Tie-Rod- l [ 

Lever-I I [ Lever-2 

(b) A schematic of the solution shown in Fig. 7. 

Fig. 8. Schematic representations of an existing solution and a new 
solution generated by the MIMO synthesis procedures, to the toilet- 
door lock problem. 

9. Evaluation of the Procedures 

These procedures can be evaluated by asking two 
questions: 

• Does the procedure serve its purpose? 

• How effectively does it serve its purpose? 

Within the scope of the problems discussed here, 
the synthesis procedures were expected: (I) to produce 
all the possible solutions (i.e., they are supposed to be 
exhaustive), and (2) to be able to do this is in a 
reasonable time. The number of feasible solutions 
possible, for a given problem, depends on the following 
parameters: 

(1) The number and characteristics of the inputs and 
outputs of the problem; 

(2) The number and characteristics of the trans- 
formers available in the knowledge base; 
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(3) The maximum number of structures that can be 
used in constructing the solution concepts. 

Assuming that the available knowledge base would 
contain transformers of sutficient types, so as to 
transform an input of any allowable kind to an output 
of any allowable kind, i.e., when the knowledge base 
is 'complete', according to Prabhu and Taylor (1988): 

• The number of solutions possible, for a given 
problem using a given r, always increases with an 
increase in the number Of transformers available in 
the knowledge base. 

• The number of solutions possible increases ex- 
ponentially with an increase in r, for a given problem 
and knowledge base. 

In order to evaluate the performance of the 
procedures, we need to check, (i) whether or not the 
procedures produce all the feasible solutions to a given 
problem, using no more than r transformers from a 
given knowledge base (i.e., the exhaustiveness), and 
(ii), whether this solution-set is produced in a 
reasonable time (i.e., the time-effectiveness). 

9.1. Exhaustiveness 

There are two ways of proving the exhaustiveness of 
a procedure A. One is to prove it mathematically. The 
other is to find another procedure B which yields the 
same result as that of procedure A under the same 
situations, and can be proved to be exhaustive. The 
second method is adopted here to substantiate the 
exhaustiveness of the synthesis procedures. Procedure 
B follows these steps: 

(a) Enumerate all possible networks that can connect 
the given input(s) to the given output(s) of the 
problem. 

(b) Label the nodes of each network in all possible 
ways, using variables (in mechanical design, these 
are force, torque, etc.) from the set of variables 
available in the knowledge base. 

(c) For each possible network (or a set of networks) 
having a distinct set of labeled nodes, calculate the 
total number of possible solutions, by labeling the 
arcs (i.e., operators such as lever, shaft, etc.) in all 
possible ways, using available structures in the 
knowledge base as possible arcs. 

(d) Add them to find the total number of solutions. 

In the case of the synthesis of SISO systems, each 
of the steps are shown to be exhaustive, and hence 
the procedure is exhaustive (see Appendix A). In the 
case of SIMO/MISO systems synthesis, although 
steps (b) and (c) were exhaustive, and the concept 

of symmetry was used, manually, to check the 
exhaustiveness of the networks produced (i.e., step (a)) 
for the cases involving few inputs, outputs and 
maximum allowable operators, no formal proof is yet 
available. 

In the case of MIMO systems synthesis, step a was 
manually carried out, using methods used in 
substantiating the exhaustiveness of the SISO and 
SIMO/MISO synthesis procedures, for small problems 
and was found to be exhaustive. However, a general 
procedure for carrying out step (a) remains to be found. 

9.2. Time-Effectiveness 

The procedures solve a problem in exponential time, 
i.e., the amount of time required to solve a problem 
is linearly proportional to the size of its solution-set 
which increases exponentially with r, for a given 
knowledge base and problem, and always increases 
with an increase in the number of transformers in the 
knowledge base, for a given problem and r. Some 
results illustrating the performance of the SISO 
synthesis algorithm are provided in Appendix B. An 
elaborate analysis of these effects, for SISO systems, 
is provided in Part III (on Spatial Configuration) of 
this paper series. 

9.3. Combinatorial Explosion 

As discussed, the procedures generate an exhaustive 
set of feasible solutions to a given problem. This 
solution-set is large, and increases exponentially with 
r and knowledge base. One way of solving the 
combinatorial problem is to force the solution-set to 
be small (possibility 1), If the emciency of the algorithm 
can be increased, problems of larger size than at 
present could be tackled (possibility 2). Another 
method, which is not considered here, is to incorporate 
(comparative) evaluation of each solution as it is being 
produced, thereby identifying the optimal solutions 
rather than feasible solutions. This will require a 
second theory for (comparative) evaluation by which 
the quality of a complete solution could be judged by 
considering only a part of it (possibility 3). In the 
absence of this, either 'heuristically based' or 
'near-optimal' algorithms have to be considered 
(possibilities 4 and 5). A long-term possibility might be 
the advancement of parallel processing in computers 
(possibility 6). These possibilities are elaborated 
below: 

(1) Attack the parameters that contribute to the 
combinatorial problem: 

Keep the required knowledge base and r 
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manageably small. When r is small, 'basic' 
(Chakrabarti, 1991) structures can be used. On 
the other hand, if a large r is needed when 
using basic structures, use compound structures 
(macros) of the relevant degree of detail which 
will reduce r. For example, use pumps, motors 
and valves as macros, rather than systems of 
basic structures, when designing a plumbing 
system. 

(2) Devise more efficient algorithms: 

Improve the algorithm having 'exponential 
complexity' into one that has 'sub-exponential 
complexity' (such as changing a 2" algorithm 
into a 2 n/2 algorithm). This wilt increase the 
maximum size of problems that can be solved 
in a reasonable time. 

(3) Use sound theories for evaluation: 

A sound theory for (comparative) evaluation, 
which can be used to judge how good the 
complete solution will be, by examining an 
incomplete solution, would allow for rapid 
elimination of incompetent designs at an early 
stage of their generation, thereby reducing the 
changes of combinatorial explosion. 

(4) Use 'Heuristics': 

Use 'heuristics' (judgement criteria, which can 
usually enable the algorithm to quickly prune the 
solution space, but is not guaranteed to work) 
in an existing algorithm in those cases where 
they work. Research is required in order to 
identify these heuristics. 

(5) Look for 'near-optimal' algorithms: 

• Instead of requiring an algorithm to always 
generate the optimal solution, it might be 
relaxed so that the algorithm must always 
generate a feasible solution with a value 
'close' to that of an optimal solution (this is 
called an 'approximate' solution, and the 
algorithm which generates it is called an 
'approximate' algorithm). 

• Look for an algorithm which almost always 
generates an optimal solution. Algorithms 
with this property are called 'probabilistically 
good' algorithms. 

(6) Change the technology: 

With an increase in speed and parallel processing 
and decrease in the cost for arithmetic and logical 
operations, it should be possible to tackle 
problems of much larger size (possibilities 2, 4, 5 
and 6 are discussed at greater length in Horowitz 
& Sahni, 1978). 

10. Summary and Conclusions 

Within the framework described in Part I (Introduction 
and Knowledge Representation), this part describes 
the step-by-step development of procedures for kind 
synthesis of up to multiple input-multiple output 
systems. The procedures use a knowledge base of 
primary structures, such as functional descriptions of 
levers and shafts, to produce networks of these 
structures as solutions to transmission problems 
described in terms of their inputs and outputs. The 
knowledge base, design problems, and solutions are 
expressed in terms of a set of representation constructs 
descibed in Part I. The solutions produced by the 
procedures include existing solutions as well as feasible 
new ones. The procedures generate an exhaustive set 
of solutions within the scope of the knowledge base 
used, and have combinatorial problems. However, 
these procedures are rudimentary in the sense that 
they do not use any heuristics or constraints apart 
from the kind-requirements of the problem inputs and 
outputs. It is hoped that judicial inclusion of heuristics 
and other methods mentioned in this article would 
improve their performance. 
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Appendix A: A Derivation of the Exhaustive 
Set of Solutions Produced in the Kind 
Synthesis of SISO Systems 

For the n possible kind-variables (such as force, torque, 
etc.) permitted to be considered for a design, there can 
b e  n 2 possible SISO transformers. Each such 
transformer type is denoted here by T u, where i denotes 
the input kind and j denotes the output kind of the 
transformer (i = 1 . . . . .  n ; j  = 1 . . . .  , n). Similarly, N/.j 
is used as the number of available different 
transformers of type T u. 

Suppose a SISO design problem is expressed as the 
following transformation: 

k - - , p  

where k is the input kind-variable, and p is the output 
kind-variable. Let this problem be solved by using a 
maximum of r transformers. This is equivalent to 
forming chains of transformers, whose length should 
be, at the most, r. 

For an exhaustive search, the number of solutions 
possible using a single transformer is all those which 
can take k as input and p as output. This is given by: 

N(1) = Nk p (1) 

The number of solutions possible using two trans- 
formers per solution is: 

N(2)= )~ [-~/k. i(lj N/(1). p] (2) 
i ( 1 ) =  1 

The number of solutions possible using three 
transformers per solution is: 

i(1)=1 i¢2)=1 

By induction, the number of solutions using r 
transformers per solution is: 

i ( 1 ) =  1 i (2 )  = 1 

i(r ~1)=1 [~(r-2)-i(r-1)Ni(r-1)'P]'"ll 
(4) 

So, the total number of solutions possible using a 

maximum of r* transformers (r _< r*): 

N(£r* )  

: ~,, Nk. i ( i )  N / ( 1 ) . i ( 2 )  • • • 
r = l  i ( 1 ) =  1 i ( 2 ) =  1 

i(r- 1) = 1 

(5) 

Therefore, for a given knowledge base (i.e., the n 
kind-variables, the numbers N~.j of available trans- 
formers of various types), and a given kind synthesis 
problem (i.e., the input variable k, output variable p, 
and the value of r*), the size of the exhaustive set of 
SISO solutions can be obtained. Note that, if the 
various types of transformers available, for each 
specific input-output  transformation required by 
Eq. (5), are put together in the sequences in which 
they are required by the equation, the SISO solutions 
themselves in the exhaustive set can be obtained. 

Appendix B: Some Results of the 
Performance of the SISO Algorithm 

Figures 9 and 10 are two scatter-plots of the number 
of solutions produced (N), for the same problem, using 
different values of the number of elements used in the 
solution (r), and different knowledge bases. Each set 
of data-points, having the same symbol, represents the 
typical effect, on the number of solutions produced 
(N), of the allowable number of elements (r), for a 
given knowledge base. Data-points having separate 
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symbols shows the above change for separate, and as 
one moves up, for increasingly larger knowledge bases. 
The size of a knowledge base depends on two 
parameters. One is n 2, the number of different 
transformer-types that are available in the knowledge 
base (such as force-to-force t ransformers,  and 
torque-to-force transformers); the other is the number  
of different transformers (solution-elements) A~.j 

available for each such type (such as a screw 
and a cam, both of which do a torque-to-force 
transformation).  The total number  of different 
solution-elements is given by 

i = l j = l  

The number of solutions, for a uniform knowledge 
base, where ?v).j for any i and j has the same value, 
would be N~.j x n 2. Datapoint-sets in Fig. 9 are plotted 
for a constant n, and an increasing N.j ;  Figure 10 is 
a plot for a constant N~.j and an increased n for each 
data-set. Note that the number  of solutions increases 
exponentially with r (linear change in a semi-log plot), 
and increases always with an increase in the knowledge 
base. For a non-uniform knowledge base, the number  
of solutions produced would lie between the bounding 
data-sets denoting the maximum and minimum 
values of its N~.js. It  is to be noted that all the 
above plots are solution-sets to a single problem, i.e., 
a single input -ou tpu t  problem. Similar plots can be 
obtained also for multiple input -ou tpu t  problems 
having various values in inputs and outputs. With 
the increase in the number  of inputs and outputs, 
the number  of solutions produced have similar 
characteristics, except that it increases faster with r 
and knowledge base. 


