
Research in Engineering Design (1996) 8:52.62
© 1996 Springer-Verlag London Limited

Research in
E gineering

esign

An Approach to Functional Synthesis of Solutions in Mechanical Conceptual
Design. Part II: Kind Synthesis

Amaresh C h a k r a b a r t i a n d T h o m a s P. Bligh

The Engineering Design Centre, Department of Engineering, University of Cambridge, Cambridge, UK.

Abstract. The three papers in this series describe an
approach to the synthesis of solutions to a class of mechanical
design problems; these involve transmission and transformation
of mechanical forces and motion, and can be described by a
set of inputs and outputs. The approach involves (1) identifying
a set of primary functional elements and rules of combining
them, and (2) developing appropriate representations and
reasoning procedures for synthesizing solution concepts using
these elements and their combination rules; these synthesis
procedures can produce an exhaustive set of solution concepts,
in terms of their topological as well as spatial configurations,
to a given design problem.

This paper, Part II, describes a set of procedures, which,
using a knowledge base of primary structures expressed in
terms of the representation constructs developed in Part t,
can exhaustively synthesize topological descriptions of
possible solutions to a given problem.

Keywords. Functional modelling; Functional reason-
ing; Functional synthesis; Mechanical design; Com-
puter aided design; Transmission design; Concept
generation; Topological synthesis; Exhaustive search

1. I n t r o d u c t i o n

Constructs for describing problems and solutions in
transmission design were described in Section 7 of Part
I (Chakrabarti and Bligh 1994), Introduction and
Knowledge Representation. To recapitulate, a multiple
input-output problem is described in terms of the
characteristics of each of the required inputs and
outputs. These characteristics include 'kinds' (forces
and motions), 'orientations' (i, j or k), 'senses' (+ or
-) , 'magnitudes' (some real number), and 'positions"
(xi +),j + zk, where x, y and z are real numbers). A
'primary structure' is described in terms of three
vectors: an 'input vector', an 'output vector', and a

Correspondence and offprint requests to." Dr A. Chakrabarti,
Department of Engineering, University of Cambridge, Trumpington
Street, Cambridge CB2 1P2, UK.

'length vector' connecting these two. An input or an
output vector has all the characteristics mentioned
above, while a length vector has all but the
kind-characteristic. Each primary structure has a set
of relationships between each characteristic of its
vectors; these are called 'transformations'. A structure,
therefore, has some 'kind-transformations', which
describes the kinds of inputs and corresponding
outputs permitted by the structure. A primitive lever,
for instance, can take a force or linear velocity as input,
and a torque or angular velocity as its corresponding
output, and vice versa. For each of these kind
transformations, there can be a number of'orientation-
transformations', each of which is a relation that gives
a possible combination of orientation characteristics
of the three vectors describing the structure. Similarly,
for each such orientation-transformation, there can be
a set of 'sense-transformations', and so on.

Given a knowledge base of primary structures
whose above transformations are known, a design
problem, described in terms of the representation
constructs mentioned above, can be solved by
synthesizing these structures. The problem considered
here is to generate solutions to a transmission design
problem at an instant of time. The approach is to solve
the problem at each instant of time, following the order
in which the I/O characteristics are enlisted in Section
7 of Part II (i.e., Kind, Orientation, Sense, Magnitude
and Position requirements). We first consider the
problem of 'kind synthesis' (i.e., synthesizing only
those solutions which will provide the I/O kinds
required by the design problem). We then evaluate
each of the above solutions for orientation, thereby
configuring the valid orientations of these solutions.
These orientations are then checked for the sense
requirements, and the valid sense configurations are
computed and retained. These solutions are now ready
to be evaluated for the magnitude and position
requirements, again allowing the elimination of the
infeasible solutions. This paper describes the kind
synthesis procedures.

Functional Synthesis: Kind Synthesis 53

2. Kind Synthesis of Single Input-Single
Output (SISO) Systems

The problem here is to devise a procedure that would
synthesize solution concepts, using a knowledge base
of structures and their rules of combination, to a given
design problem of transforming an input of a given
kind to an output of a desired kind. If for instance,
we want to transform an input force into an output
torque, the kind synthesis procedure should be able
to generate concepts that would take a force as an
input and provide a torque as an output.

This problem can be viewed as a 'search' problem,
'satisficing' (Simon, 1969) or exhaustive, where there
are defined 'initial' (input kind) and 'goal ' (output
kind) 'states', and the problem is to move from the
initial state to the goal state using valid 'operators '
(known primary structures) that change the state of
the problem. Each resulting solution should be a
'causal chain' of operators (i.e., primary structures)
connecting the given input kind to the desired output
kind. In this case, we try to solve the exhaustive search
problem, of which searching for satisficing solutions
is a sub-problem.

There are two questions. One is, how do we choose
the first structure, and the next, and so on? The second
is, where do we stop this process?

The rule of combination (which in this case is that
two structures can be connected, if and only if the
output kind of one structure is the same as the input
kind of the other) provides the way of choosing
succeeding structures at any state of the problem. We
can choose, as the first structure, any structure from
the knowledge base, whose input kind is the same as
that of the specified problem input. The resulting state
of the problem can now be given in terms of the output
kind of the chosen structure, and the next operator
can be chosen from the structures that can take, as
input, the output kind of the previously chosen
structure.

One answer to the second question is that the
procedure would stop as soon as the problem state
matches the goal state, i.e., the output of the most
recently chosen structure matches with the specified
problem output. However, as we are interested in an
exhaustive set of solutions, the method is to explore
every possible branch of the solution tree, until all the
solutions are found. It may be that for a specific
branch, it is not possible to find a solution by using
a finite number of structures. For example, in a
problem of transforming a force into a torque, we
could to on transforming the input by using a series
of force-to-force transformers, thereby never arriving
at the torque. The other possibility is that a solution

space can be potentially infinite, and therefore, can
never be explored exhaustively in an absolute sense.
For instance, a force-to-force transformation could be
achieved by connecting one force-to-torque structure
with its inverse, or by connecting four such structures,
or eight, and so on. To eliminate these possibilities,
the problem is constrained by specifying the maximum
number of structures that can be used in spawning
any branch.

Therefore, given an allowable set of structures
having known kind-transformations (e.g., torque-to-
torque transformation for a shaft), the kind synthesis
procedure should be able to generate all the solutions
which could transform the given input kind to the
required output kind (e.g., torque-to-torque) using a
maximum of r structures from the given set (e.g., 4 for
the bicycle drive in Fig. 7 in Part I). The procedure
is as follows (see Fig. 1):

v t vuLFu~
• An Intermediate N o d e

0 A n Inpu t o r an Output Node
- - - - A Poss ib le Connec t ion between Two Nodes
- - A Structure Enb l i ng a

C o n n e c t i o n betwecn Two Nodes

Poss ib le Dis t inc t Solut ions Represented by
One Dist inct Cha in (wi th in the rectangle)

Fig. 1. Generating single-input single-output chains of structures
(arcs) as conceptual solutions to a single-input single-output
problem using a maximum of two structures; only one branch
of the solution space is expanded here. The possible distinct
solutions represented by one distinct chain is shown by expanding
its content.

54 A. C h a k r a b a r t i a n d T, P. Bligh

Known: A set of kind-transformation
structures (i.e., structures such
as shaft: torque +-~ torque; lever:
force ~-, torque; etc.)

Given Problem: Find all the solutions which
transform the given Input kind to
the required Output kind (e.g.,
force ~ Torque)

Maximum number of structures allowed: r i

Step l: Set the problem input as the present input.
Set the problem output as the required output.

Step 2: List all the structures whose input matches
the present input. For each such structure do the
following.

Step 2.1: check whether or not the output of the
structure matches the required output.

Option 2.1.1: It it matches, keep a copy of the
chain of structures, used in the present branch,
as a solution in a list of solutions. Check to see
if the total number of structures used in the
present branch is less than r.

Option 2.1.1a: If yes, set the output of the
last structure used as the present input, and
follow through Step 2 onwards.
Option 2.1. t b: If no, terminate the process by
returning the list of solutions.

Option 2.1.2: If matching does not succeed, set
the output of the last operator used as the
present input and continue through Step 2
onwards.

3. An Example of Kind Synthesis of SISO
Systems

Suppose we want to devise solution concepts to the
problem of using a small hand force for unlatching a
door, and we have already decided that the door would
be latched by inserting a slider into a slot. Using the
problem representation constructs that the synthesis
procedure can recognize, we can represent this
problem as a transformation between an input force
(and associated motion) and an output linear motion.
The function of the problem at an instant can be
described as an instantaneous transformation between
an input force and an output linear motion. This can

T h e idea is t ha t the des igne r w o u l d s t a r t syn thes i s wi th a smal l

value o f r, a n d w o u l d increase its va lue if this does no t a l low

sa t i s fac to ry so lu t ions to be found .

Design Objective:

I F q O

t_ I

Design Solution 1 : r = I

I I Lever-1 Lever-2 Tie-Rod-I O

I I

Design Solution 2: ["t
I Transverse Tie Rod 1 0

l I

I Input
O Output @ Torque

@ F o r c e @ Linear Motion

Fig . 2, A S I S O k ind syn thes i s example .

be specified by:

Input
Kind: force
Orientation: k
Sense: +
Magnitude: magnitude !
Position: (xii + YlJ + zlk)

Output
Kind: linear motion
Orientation: i
Sense: +
Magnitude: magnitude - 2
Position: (x2i + Y2J -1- Z2k)

Now, starting with the kind synthesis part of the
problem, the output of the procedure would be a list
of causal chains, each of which could be represented
as a directed graph of a set of structures. For instance,
given a suitable knowledge base, if r is set as 4 for this
problem, two of the 255 solutions produced would be
(see Fig. 2):

Solution 1:(lever-1 force ~ torque) (lever-2 torque
lbrce) (tie-rod-1 force -~ linear motion)

Solution 2:(lever-1 force-~ torque) (cam torque
force) (transverse-tie-rod-1 force ~ force) (tie-rod-1
force ~ linear motion)

This synthesis procedure would require modification,
if this were to apply to synthesizing single input
multiple output (SIMO) or multiple input single
output (MISO) systems, which is discussed next.

F u n c t i o n a l Syn thes i s : K i n d S y n t h e s i s 55

4. Kind Synthesis of SIMO and MISO
Systems

Single Input-Multiple Output (SIMO) systems are in
essence equivalent to Multiple Input-Single Output
(MISO) systems. Discussion here is therefore limited
to considering the synthesis of single input-multiple
output systems. These problems, as in the synthesis of
SISO systems, can be viewed as exhaustive search
problems, where there are defined initial (input kind)
and goal (output kinds) states, and the problem is to
move from the initial state to the goal state using valid
operators (known structures) that change the state of
the problem. The resulting solutions should be causal
trees of operators (i.e., primary structures) connecting
the given input kind to the desired output kinds.

Therefore, given an allowable set of structures
having known kind-transformations (e.g., torque-to-
torque transformation for a shaft), the kind synthesis
procedure should be able to generate all the solutions
which could transform the given input kind to the
required output kinds (e.g., a force to two torques)
using a maximum of r structures from the given set.
The working of the SIMO synthesis procedure can be
viewed as an extention of the SISO synthesis
procedure, and is illustrated for a single input-two
output problem using r = 4 (see Fig. 3). Here each
output is connected, using the SISO procedure, to one
of the potential inputs (which can be either the input
specified by the problem, or some intermediate input
generated while forming the previous causal chains).

The kind synthesis procedure is as follows:

Known: A set of kind-transformation
structures
(e.g., shaft torque ~ torque, lever
force +-, torque; etc.)

Given Problem." Find all the solutions which
transform the given Input kind
into the required Output kinds
(i.e., input: force ~ output-l:
torque, output-2: force).

Maximum number of structures allowed." r
Step 1: Start with a list of

(1) nodes that can be used as valid input nodes

(2) system output nodes that are not connected to
any other nodes

(3) connections already produced (which connect
two or more nodes)

(4) total number of structures (i.e., operators) that
can be used to synthesize the solutions.

node from the list of Step 2: Remove the first
unconnected output nodes.

\

\
\

h Input
Ol, 02 Outputs
• An Intermediate Node
o An Input or an Output Node
-- -- A Possible Connection between Two Nodes

A Structure Enbling a
Connection between Two Nodes

"x

Fig. 3. Generating single-input multiple output networks of
structures (arcs) as conceptual solutions to a single-input
two-output problem using a maximum of four structures; only
one branch of the solution space (highlighted) is expanded here.

Step 3: Prepare a list of arcs connecting each of the
valid inputs in input nodes to this recently removed
output node. Calculate how many structures can be
used to form this connection (by subtracting from
r the number of arcs in the list of connections, and
the number of nodes in the present output nodes).
If this number is zero, terminate. Otherwise, for each
arc of this list, do:

Step 3.1: Use the SISO kind synthesis procedure
to form a list of chains connecting the nodes that
form the arc. For each such chain do:

Step 3.1.1: Modify the list of valid input nodes
by including the newly generated intermediate
nodes in the presently considered chain.

Step 3.1.2: Modify the list of already produced
connections by including in the previous list
the newly produced arcs.

Step 3.1.3: If the list of unconnected output
nodes is empty, keep the already produced
connections as one solution, and terminate.
Otherwise, follow Steps 2 onwards.

56

5. An Example of Kind Synthesis of SIMO
Systems

Suppose we want to devise solution concepts to the
problem of using a small hand force for locking and
unlocking a toilet door and providing a signal. There
are two problems. One is (un)tockin9 of the door, and
the other, indicatin9 to people outside that it is
(un)locked. Suppose we have already decided that the
door would be locked by inserting a slider into a slot,
and the indication (whether it is locked or not) would
be given by bringing into view some suitable signal
(such as a colour code). Using the problem
representation constructs that the synthesis procedure
can recognize, we can represent this problem as
a transformation between an input force (and
associated motion) and two output linear motions
(one for locking, and the other for indication). The
instantaneous function of the problem at an instant
can be described as an instantaneous transformation
between an input force and two output linear motions,
which can be specified by:

Input
Kind: force
Orientation: k
Sense: +
Magnitude: magnitude - 1
Position: (xii + YlJ + zJO

Output-1
Kind: linear motion
Orientation:/
Sense: +
Magnitude: magnitude - 2
Position: (Xzi q- Y2J + zzk)

Output-2
Kind: linear motion
Orientation:/
Sense: + or -
Magnitude: magnitude -- 3
Position: (x3i + Y3J + z3k)

Now starting with the kind synthesis part of the
problem, the output of the procedure would be a list
of causal trees, each of which could be presented as a
directed graph of a set of structures. For instance, for
a suitable knowledge base, if r is set as 4 for this
problem, one of the 945 solutions produced would be
(see Fig. 4):

One solution: (transverse-tie-rod-1 force ~ force)
(tie-rod-1 force ~ linear motion) (lever-1 force
torque) (lever-2 torque ~ linear motion)

A Design Objective:

I_

A. C h a k r a b a r t i and T. P. Bligh

o

A Design Solution:

1- 1 0
I I Transverse Tie-Rod-1 - t,¢--72~

I
r I r LeveM T Le,~r_2 I ' ~ "

I Input
O Output

Force

Torque

Linear Motion

Fig. 4. A k ind synthesis example: the to i le t -door lock p rob lem and

one of its S I M O solut ions,

The SIMO synthesis procedure needs modification in
order to apply to synthesis problems involving
multiple inputs and multiple outputs (MIMO); this is
discussed next.

6. Kind Synthesis in MIMO Systems

As in the less general cases, Multiple Input-Multiple
Output (MIMO) problems are also viewed here as
(exhaustive) seach problems. The MIMO synthesis
procedure is an extension of the SIMO synthesis
procedure; here the outputs are first connected to
some inputs, and then the remaining (unconnected)
inputs are connected to some outputs, see Fig. 5 for an
illustration. The procedure is:

Known: A set of kind-transformation
structures
(e.g., shaft: torque ~ torque, lever:
force ,--+ torque; etc.)

Given Problem: Find all the solutions which
transform the given Input kinds
into the required Output kinds
(e.g., input-l: force-l, input-2:
force-2 ~ output-l: torque, out-
put-2: force).

Maximum number of structures allowed: r

Step 1: Stack inputs, stack outputs.

Step 2: Connect each of the outputs to any of the
inputs, directly or indirectly, in all possible ways,
without repeating any solution.

Func t iona l Synthesis: K i n d Synthesis 57

*' "x t

,o, o2 t \ \

ra, 12

o An Input or an Output Node
-- -- A Possible Conneeti0n between Two Nodes

A Structure Enbling a
Connection between Two Nodes

Fig. 5. Gene ra t i ng mul t ip le i npu t -ou tpu t ne tworks of s t ruc tures

(arcs) as concep tua l so lu t ions to a two- inpu t two-ou tpu t p rob lem
using a m a x i m u m of five structures: only one b ranch of the so lu t ion

space (highl ighted) is fully expanded here.

Step 3: Connect the remaining inputs (which were
not connected in the above process) to any of the
outputs, without generating any solution more than
o n c e .

Step 4: Among the solutions generated above,
identify those, having more than one independent
network, which have not used all the allowed
operators. Connect these independent networks in
all possible ways, using the maximum allowed
number of spare operators.

Step 5: Among all the solutions generated in Step
4, identify those which still have not used all
the allowable number of operators. Using these
spare operators, connect nodes, within the same
(independent) network in a solution, in all possible
ways, without forming circuits (i.e., without joining
two nodes using more than one path) and without
repeating any solutions already generated.

7. An Example of Kind Synthesis of MIMO
Systems

We would like now to re-examine the toilet-door lock
problem, discussed in the SIMO synthesis example
Section 5, with the following changes. Instead of a
single input, the specification now calls for two equal,
opposite and non-collinear input forces, i.e., a couple.
Using the problem representation constructs that the
MIMO synthesis procedure can recognize, we can
represent this problem as a transformation between
two equal and opposite input forces (and associated
motion), and two output linear motions (one for
locking, and the other for signalling). The function of
the problem at an instant can be described as an
instantaneous transformation between two input
forces and two output linear motions. A complete
specification of this problem would be:

Input-1
Kind: force
Orientation: k
Sense: +
Magnitude: magnitude - 1
Position: (xli + YlJ + zlk)

Input-2
Kind: force
Orientation: k
Sense: -
Magnitude: magnitude - 2
Position: (x2i + YzJ + zzk)
Output-1
Kind: linear motion
Orientation: i
Sense: +
Magnitude: magnitude - 3
Position: (x3 i + Y3J + z3k)
Output-2
Kind: linear motion
Orientation: i
Sense: -
Magnitude: magnitude - 4
Position: (x4i + YgJ + zgk)

Now, starting with the kind synthesis part of the
problem, the output of the procedure would be a list
of causal networks, each of which could be represented
as a directed graph of a set of structures. For instance,
for a suitable knowledge base, if r is set as 5 for this
problem, one (see Fig. 6) of the (~10000) solutions
produced would be:

One solution:
(tever-1 input force-1 ~ intermediate torque)
(lever-2 input force-2 ~ intermediate torque)

58

A Design Problem: I @ - - ~ F
] @ ol
] @ o 2

A Design Solution:
I P Lever-1 Lever-3 Tie-Rod-I I O1

1 @ 1 - ~ I 0 2

Torque
I1,12 Inputs

@ Linear Motion @ F 0 1 , 0 2 Outputs

Fig. 6. A MIMO kind synthesis example: the toilet-door lock
problem and one of its MIMO solutions.

I1 P e,- l I O1

I ,, ~1

L2 0 2

I1,12 Inputs Force
O1, 0 2 Outputs

@ Linear Motion @ Torque

Fig. 7. Another solution to the toilet-door lock problem shown in
Fig. 6.

(lever-3 intermediate torque --, intermediate force)
(tever-4 intermediate torque --* output linear motion-2)
(tie-rod-1 intermediate torque ~ output linear motion-

1)

8. Implementation and Validation

The knowledge base described before, and the
kind synthesis procedures, are implemented on a
LispWorks T M (Harlequin Ltd, UK) environment. The
language used is Common-LISP.

In MIMO systems synthesis, as well as in SISO and
SIMO systems synthesis, it is found that, by using the
knowledge of kind transformation of the primary
structures extracted and represented from solutions to
a set of problems (described in Section 7 of Part I)
and by using the procedures described in Section 6 of
this paper, it was possible to synthesize the
graph-structures of these solutions (and more), to their
corresponding problems. For instance, the procedure,
implemented in the MIMO synthesis programs,
generates, for the toilet-door lock problem (Fig. 6),
not only the existing solution but also other feasible
solutions such as the one shown in Fig. 7 (see Figs 8a
and 8b for schematic diagrams of these solutions). This
was also the case for the other problem-solution pairs
which were used in the knowledge extraction phase.

A, Chakrabarti and T. P. Bligh

output - 9 - ~ - ~ P a y ~
Motion-2 ~ '] ~ /

~ Output
I ~ Motion-t

~.~.\~.ANX Tie'Rod- 1]

E
t

Doo l i'
I~ver-I I , I Lever-2

(a) A schematic of the solution shown in Fig. 6.

output ~ - - " - - - n ~
Motion-2 ~ x / ~ '] ~

• I I " Input i

xxxxx'N'~' [~ Motion- t

Door Tie-Rod- l [

Lever-I I [Lever-2

(b) A schematic of the solution shown in Fig. 7.

Fig. 8. Schematic representations of an existing solution and a new
solution generated by the MIMO synthesis procedures, to the toilet-
door lock problem.

9. Evaluation of the Procedures

These procedures can be evaluated by asking two
questions:

• Does the procedure serve its purpose?

• How effectively does it serve its purpose?

Within the scope of the problems discussed here,
the synthesis procedures were expected: (I) to produce
all the possible solutions (i.e., they are supposed to be
exhaustive), and (2) to be able to do this is in a
reasonable time. The number of feasible solutions
possible, for a given problem, depends on the following
parameters:

(1) The number and characteristics of the inputs and
outputs of the problem;

(2) The number and characteristics of the trans-
formers available in the knowledge base;

Functional Synthesis: Kind Synthesis 59

(3) The maximum number of structures that can be
used in constructing the solution concepts.

Assuming that the available knowledge base would
contain transformers of sutficient types, so as to
transform an input of any allowable kind to an output
of any allowable kind, i.e., when the knowledge base
is 'complete', according to Prabhu and Taylor (1988):

• The number of solutions possible, for a given
problem using a given r, always increases with an
increase in the number Of transformers available in
the knowledge base.

• The number of solutions possible increases ex-
ponentially with an increase in r, for a given problem
and knowledge base.

In order to evaluate the performance of the
procedures, we need to check, (i) whether or not the
procedures produce all the feasible solutions to a given
problem, using no more than r transformers from a
given knowledge base (i.e., the exhaustiveness), and
(ii), whether this solution-set is produced in a
reasonable time (i.e., the time-effectiveness).

9.1. Exhaustiveness

There are two ways of proving the exhaustiveness of
a procedure A. One is to prove it mathematically. The
other is to find another procedure B which yields the
same result as that of procedure A under the same
situations, and can be proved to be exhaustive. The
second method is adopted here to substantiate the
exhaustiveness of the synthesis procedures. Procedure
B follows these steps:

(a) Enumerate all possible networks that can connect
the given input(s) to the given output(s) of the
problem.

(b) Label the nodes of each network in all possible
ways, using variables (in mechanical design, these
are force, torque, etc.) from the set of variables
available in the knowledge base.

(c) For each possible network (or a set of networks)
having a distinct set of labeled nodes, calculate the
total number of possible solutions, by labeling the
arcs (i.e., operators such as lever, shaft, etc.) in all
possible ways, using available structures in the
knowledge base as possible arcs.

(d) Add them to find the total number of solutions.

In the case of the synthesis of SISO systems, each
of the steps are shown to be exhaustive, and hence
the procedure is exhaustive (see Appendix A). In the
case of SIMO/MISO systems synthesis, although
steps (b) and (c) were exhaustive, and the concept

of symmetry was used, manually, to check the
exhaustiveness of the networks produced (i.e., step (a))
for the cases involving few inputs, outputs and
maximum allowable operators, no formal proof is yet
available.

In the case of MIMO systems synthesis, step a was
manually carried out, using methods used in
substantiating the exhaustiveness of the SISO and
SIMO/MISO synthesis procedures, for small problems
and was found to be exhaustive. However, a general
procedure for carrying out step (a) remains to be found.

9.2. Time-Effectiveness

The procedures solve a problem in exponential time,
i.e., the amount of time required to solve a problem
is linearly proportional to the size of its solution-set
which increases exponentially with r, for a given
knowledge base and problem, and always increases
with an increase in the number of transformers in the
knowledge base, for a given problem and r. Some
results illustrating the performance of the SISO
synthesis algorithm are provided in Appendix B. An
elaborate analysis of these effects, for SISO systems,
is provided in Part III (on Spatial Configuration) of
this paper series.

9.3. Combinatorial Explosion

As discussed, the procedures generate an exhaustive
set of feasible solutions to a given problem. This
solution-set is large, and increases exponentially with
r and knowledge base. One way of solving the
combinatorial problem is to force the solution-set to
be small (possibility 1), If the emciency of the algorithm
can be increased, problems of larger size than at
present could be tackled (possibility 2). Another
method, which is not considered here, is to incorporate
(comparative) evaluation of each solution as it is being
produced, thereby identifying the optimal solutions
rather than feasible solutions. This will require a
second theory for (comparative) evaluation by which
the quality of a complete solution could be judged by
considering only a part of it (possibility 3). In the
absence of this, either 'heuristically based' or
'near-optimal' algorithms have to be considered
(possibilities 4 and 5). A long-term possibility might be
the advancement of parallel processing in computers
(possibility 6). These possibilities are elaborated
below:

(1) Attack the parameters that contribute to the
combinatorial problem:

Keep the required knowledge base and r

60 A. Chakrabarti and T. P. Bligh

manageably small. When r is small, 'basic'
(Chakrabarti, 1991) structures can be used. On
the other hand, if a large r is needed when
using basic structures, use compound structures
(macros) of the relevant degree of detail which
will reduce r. For example, use pumps, motors
and valves as macros, rather than systems of
basic structures, when designing a plumbing
system.

(2) Devise more efficient algorithms:

Improve the algorithm having 'exponential
complexity' into one that has 'sub-exponential
complexity' (such as changing a 2" algorithm
into a 2 n/2 algorithm). This wilt increase the
maximum size of problems that can be solved
in a reasonable time.

(3) Use sound theories for evaluation:

A sound theory for (comparative) evaluation,
which can be used to judge how good the
complete solution will be, by examining an
incomplete solution, would allow for rapid
elimination of incompetent designs at an early
stage of their generation, thereby reducing the
changes of combinatorial explosion.

(4) Use 'Heuristics':

Use 'heuristics' (judgement criteria, which can
usually enable the algorithm to quickly prune the
solution space, but is not guaranteed to work)
in an existing algorithm in those cases where
they work. Research is required in order to
identify these heuristics.

(5) Look for 'near-optimal' algorithms:

• Instead of requiring an algorithm to always
generate the optimal solution, it might be
relaxed so that the algorithm must always
generate a feasible solution with a value
'close' to that of an optimal solution (this is
called an 'approximate' solution, and the
algorithm which generates it is called an
'approximate' algorithm).

• Look for an algorithm which almost always
generates an optimal solution. Algorithms
with this property are called 'probabilistically
good' algorithms.

(6) Change the technology:

With an increase in speed and parallel processing
and decrease in the cost for arithmetic and logical
operations, it should be possible to tackle
problems of much larger size (possibilities 2, 4, 5
and 6 are discussed at greater length in Horowitz
& Sahni, 1978).

10. Summary and Conclusions

Within the framework described in Part I (Introduction
and Knowledge Representation), this part describes
the step-by-step development of procedures for kind
synthesis of up to multiple input-multiple output
systems. The procedures use a knowledge base of
primary structures, such as functional descriptions of
levers and shafts, to produce networks of these
structures as solutions to transmission problems
described in terms of their inputs and outputs. The
knowledge base, design problems, and solutions are
expressed in terms of a set of representation constructs
descibed in Part I. The solutions produced by the
procedures include existing solutions as well as feasible
new ones. The procedures generate an exhaustive set
of solutions within the scope of the knowledge base
used, and have combinatorial problems. However,
these procedures are rudimentary in the sense that
they do not use any heuristics or constraints apart
from the kind-requirements of the problem inputs and
outputs. It is hoped that judicial inclusion of heuristics
and other methods mentioned in this article would
improve their performance.

Acknowledgements

Amaresh Chakrabarti wishes to acknowledge the
Nehru Trust for Cambridge University, India,
Cambridge Philosophical Society, Cambridge Uni-
versity Engineering Department, The Trustees of
the Lundgren Fund of Cambridge University,
The Cambridge Engineering Design Centre, The
Northbrook Society, Darwin College, The Gilchrist
Educational Trust, and The Leche Trust, for financial
support.

References

Horowitz, E. and Sahni, S. (1978) Fundamentals of Computer
Algorithms. Pitman Publishing Ltd, London.

Prabhu, D. R. and Taylor, D. U (1988) "Some issues in the
generation of the topology of systems with constant power-flow
input-output requirements'. Proc. of The ASME Design
Technology Conferences--The Design Automation Conference,
Rao, S. S., editor), Kissimmee, Florida, September, pages 41-48.

Simon, H. A. (1969) The Sciences of the Artificial, The MIT Press,
Cambridge MA.

Chakrabarti, A. (1991) Designing by functions, Chapter 7, PhD
Thesis, Department of Engineering, Cambridge University, UK.

Chakrabarti, A. and Bligh, T. P. "An approach to functional
synthesis of solutions in mechanical conceptual design: Part I:
introduction and knowledge representation." Research in
Engineerino Desion, 1994, 6: 127-141.

Functional Synthesis: Kind Synthesis 61

Appendix A: A Derivation of the Exhaustive
Set of Solutions Produced in the Kind
Synthesis of SISO Systems

For the n possible kind-variables (such as force, torque,
etc.) permitted to be considered for a design, there can
b e n 2 possible SISO transformers. Each such
transformer type is denoted here by T u, where i denotes
the input kind and j denotes the output kind of the
transformer (i = 1 n ; j = 1 , n). Similarly, N/.j
is used as the number of available different
transformers of type T u.

Suppose a SISO design problem is expressed as the
following transformation:

k - - , p

where k is the input kind-variable, and p is the output
kind-variable. Let this problem be solved by using a
maximum of r transformers. This is equivalent to
forming chains of transformers, whose length should
be, at the most, r.

For an exhaustive search, the number of solutions
possible using a single transformer is all those which
can take k as input and p as output. This is given by:

N(1) = Nk p (1)

The number of solutions possible using two trans-
formers per solution is:

N(2)=)~ [-~/k. i(lj N/(1). p] (2)
i (1) = 1

The number of solutions possible using three
transformers per solution is:

i(1)=1 i¢2)=1

By induction, the number of solutions using r
transformers per solution is:

i (1) = 1 i (2) = 1

i(r ~1)=1 [~(r-2)-i(r-1)Ni(r-1)'P]'"ll
(4)

So, the total number of solutions possible using a

maximum of r* transformers (r _< r*):

N(£r*)

: ~,, Nk. i (i) N / (1) . i (2) • • •
r = l i (1) = 1 i (2) = 1

i(r- 1) = 1

(5)

Therefore, for a given knowledge base (i.e., the n
kind-variables, the numbers N~.j of available trans-
formers of various types), and a given kind synthesis
problem (i.e., the input variable k, output variable p,
and the value of r*), the size of the exhaustive set of
SISO solutions can be obtained. Note that, if the
various types of transformers available, for each
specific input-output transformation required by
Eq. (5), are put together in the sequences in which
they are required by the equation, the SISO solutions
themselves in the exhaustive set can be obtained.

Appendix B: Some Results of the
Performance of the SISO Algorithm

Figures 9 and 10 are two scatter-plots of the number
of solutions produced (N), for the same problem, using
different values of the number of elements used in the
solution (r), and different knowledge bases. Each set
of data-points, having the same symbol, represents the
typical effect, on the number of solutions produced
(N), of the allowable number of elements (r), for a
given knowledge base. Data-points having separate

100000

10000

1000

1 0 0

1 0

1
0

• Ni.j = l . n = 2
x Ni.j = 2, n = 2
A NLj =3 , n = 2
n Ni.j = a, n = 2

x

G

& x

x

1

o x

x •

a
N u m b e r of E ~ n ~ Used In • S4~lutloa tr)

Fig. 9. S c a t t e r - p l o t s h o w i n g n u m b e r o f s o l u t i o n s N p r o d u c e d f o r

various values of maximum allowable number r of elements for a
knowledge base with a constant n and a variable N~.j.

62 A. Chakrabarti and T. P. Bligh

]
!

.s
z

100000

10000

t0C0 •

100"

10

,It* Ni4 =2, n = 2
X Ni4=2~ n = 3
• Ni.j ='~ n = 4
* Ni.j = 2, n = 5

" ~ " ; . i -

Number of Elements Used In i* Solution (r)

Fig. 10. Scatter-plot showing number of solutions N produced for
various values of maximum allowable number r of elements for a
knowledge base with a variable n and a constant N-j.

symbols shows the above change for separate, and as
one moves up, for increasingly larger knowledge bases.
The size of a knowledge base depends on two
parameters. One is n 2, the number of different
transformer-types that are available in the knowledge
base (such as force-to-force t ransformers, and
torque-to-force transformers); the other is the number
of different transformers (solution-elements) A~.j

available for each such type (such as a screw
and a cam, both of which do a torque-to-force
transformation). The total number of different
solution-elements is given by

i = l j = l

The number of solutions, for a uniform knowledge
base, where ?v).j for any i and j has the same value,
would be N~.j x n 2. Datapoint-sets in Fig. 9 are plotted
for a constant n, and an increasing N.j ; Figure 10 is
a plot for a constant N~.j and an increased n for each
data-set. Note that the number of solutions increases
exponentially with r (linear change in a semi-log plot),
and increases always with an increase in the knowledge
base. For a non-uniform knowledge base, the number
of solutions produced would lie between the bounding
data-sets denoting the maximum and minimum
values of its N~.js. It is to be noted that all the
above plots are solution-sets to a single problem, i.e.,
a single input -ou tpu t problem. Similar plots can be
obtained also for multiple input -ou tpu t problems
having various values in inputs and outputs. With
the increase in the number of inputs and outputs,
the number of solutions produced have similar
characteristics, except that it increases faster with r
and knowledge base.

