USE OF POISSON’S INTEGRAL IN CALCULATING
HIGHER VERTICAL DERIVATIVES OF HARMONIC
FUNCTIONS — PART 1
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Geophysical Institute, Czechosl. Acad. Sci., Prague*)

Summary: The higher vertical derivatives of harmonic functions, expressed by Poisson’s
integral, are calculated for an infinite plane. The properties of the higher derivatives of the kernel
of the integral are investigated and a method of calculation is proposed, which partly eliminates the
negative effect caused by their “oscillation”,

1. INTRODUCTION

In recent years considerable attention has been devoted to the analytical continuation of
harmonic functions into regions where the solution of boundary problems cannot be applied.
Regions in which the harmonicness of the functions can no longer be guaranteed and the problem
stops being unique, are usually involved. The solution is then more or less formal and need not
correspond to reality. Nevertheless, it is useful to deal with this problem. One of the possible
approaches to the solution is the use of a Taylor series which yields a unique solution in the
interval where it converges. In this paper we shall deal with the conditions for determining the
terms of this series, in particular with calculating the vertical derivatives of harmonic functions.

2. INTRODUCTION OF FUNCTIONS Q,

The solution of the external Dirichlet problem for a sphere, radius R, is Poisson’s
integral [1]

T(o, 9, 4) = R(4m)~* j J T(R, 8, 2) r(¢* — R dw, ¢ > R,

where T is a function harmonicin the interval ¢ 2 R; ¢, 9, 4, and R, 9, 4 are spherical
co-ordinates (origin at the centre of the sphere) of the investigated and variable point,
respectively, and r is their distance; dew is an element of the unit sphere.

By applying the limit R —» ©o we arrive at the Poisson integral for the infinite
plane z = O:

o pr2n
(1) T(xo, yo, 2z) = (2n)‘1J‘ J zlr™? T(xo + lcos a, yo + Isin o, 0) dI der,
0J0
r

2=12+22

s
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where [ and o are the polar co-ordinates of the variable point in plane z = 0 with
the origin at point (x,, yo, 0), Tis a function harmonic in the halfspace z > 0 and r
is the distance of the investigated and variable point.

The k-th derivative of function T with respect to z at point (x4, ¥, v) is obtained
by differentiating the kernel zI[r> of integral (1) k-times. We shall denote this function

by k! O,:
& [z AR |

2 Ko =2 (2Yi= - 2 (1)

) 0z 1) oz* <r3> ozF 1 <r>

It is easy to see that
11Q, = r(1 =331,
200, = —r * 33 — 51,
3105 = —r733(3 — 30 + 35x*) 1,

and, in general,

(k+3)/2 i
(3) k1 Qp = aflr~®+2 % g0020-D |k = 1,3,5,...;
i=1
(h+23/2 )
k' Qp = afber= ¥ N g0207 D k=2 4,6,..., »=ufr.

=1
Table 1 gives the coefficients a{ for k = 1,2,..., 12. The sums Y a{”»*Y~ are

J
polynomials in terms of %> and, therefore, they have 4(k + 1) (for k odd) or }k (for
k even) positive roots. It can be proved that all roots lie within the interval »* € (0, 1),

Table 1.

k af)k) a(lk) ag_k) ag") a&k) a(sk) ag‘ ) a(7k)

1 1 1 —3

2 —3 3 —5

3 -3 3 —30 35

4 15 15 —170 63

5 45 5 —105 315

6 —315 35 —315 693 —429

7 ~315 35 —1260 6930 —12012 6435

3 2835 | 315 | —4620, 18018 —25740 12155

9 14175 63 | 3465 | 30030 —90090 109395 —46189
10 |—155925 | 693 | —15015 | 90090 — 218790 230945 - 88179
11 |—467775 | 231 | —18018 | 225225 | —1021020 | 2078505 | —1939938 679039
12 | 6081075 | 3003 | —90090 | 765765 | —2771340 | 4849845 | —4056234 | 1300075

4 Studia geoph. et geod. 26 [1982]



Use of Poisson’s Integral...

i.e. |l] € (0, o) and that they differ from one another. Therefore, if I = 0, the function
Q, has ¥(k + 3) or 4(k + 2) roots which differ from one another. Table 2 gives the
roots of functions @, forv = land k = 1,2, ..., 12. It can be proved that

4), (5) Ov, ) = v~ ® D Q1,1); t=1.
Table 2.
k Xy Xy X3 Xy X5 Xg
1 1-4142
2 0-8165
3 0-5904 2-7662
4 0-4667 1-5649
5 0-3874 1-1325 4-0719
6 0-3318 0-9048 2:2520
7 0-2905 07587 1-6181 53590
8 0-2585 0-6563 1-2876 29174
9 0-2330 0-5799 1-0799 2:0795 66423
10 0-2121 0-5204 09359 1-6465 3:5728
11 0-1948 04726 0-8288 1-3780 2:5280 7-9222
12 0-1800 04332 0-7459 1-1932 19929 4-2224

This is convenient because we are able to investigate the functions Q(1, t) only, and
proceed from them to the functions Q(v, I) using Eq. (4) and substitution (5). We
shall put

6) By(o) =f T() Qv Hdl, k=1,2,...,
0

where T(I) = (2n)™* 3" T(xo + I cosa, yo + Isin &, 0) do. Function b,(v) is thus

equal to the k-th derivative of function T with respect to z at point (xo, yo, v), divided

by k1.

3. INTRODUCTION OF FUNCTIONS f, AND «,

Due to their “oscillations” functions @, are not suitable for calculating the deriva-
tives of b,. This can be seen in Fig. 1, in which functions Q,, Qs and Qg are shown
for v = 1. If k is roughly larger than 5, the small quantity (6) can be obtained as
the difference of several areas, which may be as much as several orders of magnitude
larger than b, itself, and thus the relative error of the caclulated derivative b, will
become several orders of magnitude larger than the relative error of function T,

From investigating functions @, we can see that two successive functions 0,
and @y, become increasingly similar (with the exception of the sign) with increasing
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Fig. 2.

k (see functions Q,; and @, in Fig. 2); we are, therefore, offered the idea of creating
combinations of the type

My R
) Yo P Qv D) + Quii(v D), k=1,2,..., My=12,...,

j=1

where the difference Avf” = v — v{”’ is a small number (JAv| < 1). We shall restrict
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ourselves just to the case of M, = 1, i.e. to combinations which we shall denote f,:
(8) oD (1) = v EI[A Qule 1) + QL )] =
=0 Qe 1) + Quei(v, ), t=1p, k=1,2,....

Instead of v, we have introduced the parameter ¢, = v,/v, (¢, ~ 1). We shall introduce
the o -integrals by

©) vofs) = o-¢*D f T(o) /(1) dt = A by(ew) + vhusa(0), k= 1,2,....
V]

Given a suitable choice of parameters 2; and g, the kernels of the integrals f, are
more suitable for numerical integration than the Q,-kernels in Eqs (6) (see function
f11 in Fig. 2). We shall discuss the choice of parameters 4, and &, in Section 5.

4. CALCULATION OF THE DERIVATIVES b,

In order to obtain the unknowns b, with the aid of the integrals «;, we shal create
a linear system in terms of b, from Egs (9). Assume that we know b, (i = 1,2,...).
We now write j + 1 equations (9) (j = 1, 2, ...). For the sake of simplicity we shall
put bv) = b, afv) = a;
(10) va; = A;bfe) + vbyyy,

Wiyg = Ay by i(8in10) + vbiys s

00 ;= Ay by {80 0) + vbiy iy

We shall develop the terms bep), ..., b, [&;4 ;) into series in terms of the powers
of vAe=v —ev > 0:

(11) oay

o . '

bi}“i + bi+1 U[I - (i + ]) )“i Agl] + Alz(“"l)t (-z'—;'tl"l—): bi+l(v A8£)£ Iy
=2 ity

Vs = bipidipr + b o L= (4 2) i q Agyy ] +

+ A Z( 1yt (l( ++11;; ll')

.........................................................................

bs+1+t(” Ag;y 1)1 s

V5 = biy iy + biyjig o[t - (i +j+ 1) Aivj A3i+j] +

Ai+j§('— ) (l—*—] s l)

D T TR G
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For this purpose we have used the equations
(12) 0" by(v)fov' = (i + k)il k) bees(v), Lk=1,2,...,

which follow immediately from Egs (2) and (6). We shall use Eq. (12) to derive the
equations for the improper integrals

(13) Jwbj(z)dz — i h, (),

v

i

mb- tdz = —j7'h._ (v} v + d b, {v)v'™t —
jv J(Z)Z z J J 1() ](]+1) j 2()

— ‘_“z(_z:ql)___ b s 2+ .. n=12,...
JG-100-2

We shall integrate the second equation of system (11) within the limits z € (v, ),
and the third equation twice, first within the limits z € {z,, 00) and then within the
limits z, € (v, o0); the third equation will be integrate three times, etc., and, finally,
the (j + 1)-st equation j-times. We now take the terms with b; over to the Lh.s.
and neglect the terms containing b, ., .... We thus arrive at a system of j + 1
equations for j + 1 unknowns b, 4, ..., by 4

“)l — (i + 1) Ag;S{” P AZSI L cUTD AT |
i
i+1 1 . .
e — (i + 1) Ag;y SV P Agl, SV D AT IS
(14) i+ 22“_1 ( ) +1Vi i i+1*i i +1 %
i+ 1 1 . . " . .
;Zl_i;?ﬁ T (i 1) By SO o Ack SO YD Aclz ]S
n i+ A
b4y Igo)
% v*bi4 s _ I(il)
Uj“bi-fjﬂ 1
(15) C = (=1 +mlfitml), m=23,..,j+1,

S{" are power series in terms of Ae;,, = 1 — g,,,, and it can be proved that
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(16) SO =g, r=0,1,...,j,
(17) I(i') = A(i') — b, S(') . ———»1— r=1,2,...,j,
i+ 147 l,w
I(io) = ){10{,- - b,,

(18) AP = (= 1y zu)“—,j;f dz,. IJ fdzlf wia2) 2 dz,
J-

7 sy

The elements of the matrix of system (14) ¢,, diminish with increasing I and, therefore,
we shall only calculate the first unknown b, (the accuracy of calculating b;,,
deteriorates with increasing l). For i we then substitute m = i + 1, calculate the
unknown by, , etc. We shall denote the determinant of system (14) by D{*" and
the sub-determinants of the elements of the first column [DY*D], ,, r = 1,2, ...,
Jj + 1. It then holds that

jt1
(19) vbypy =Y CHIED
k=1
(20 CH = (=) DY+, [DY D], k=1,2,...,j+ 1.

5. CHOICE OF THE PARAMETERS 4, AND ¢,
It is evident that the effectiveness of the method proposed in Section 4 depends on

the choice of the parameters 4, and g, If we draw only on Section 3, we can, e.g.,
require that function f, satisfy the condition

(21) f[zk 04l 1) + Qusa(L ]2 dt = min.

After differentiating this equation with respect to A, and ¢, and modification, we
arrive at an implicit equation for g,:

(22) J QI/CQI;+1 dtf QI;Qk+1 dt "f (QI:)Z dtf Q;<+1Qk+1 dt =0 ’
[ 0 0 0

Ql = Ql(l’ t) ’ Q; = Ql(ga t) >

and for A;:

3
— = j 010441 df[f (Qk)2 df j Orv1Qis1 dt[J’ 0 Qi1 df] .
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As an index of “improvement”, achieved by introducing functions f; instead of Q,,
we can adopt the ratio p, of the standard deviations of both functions:

(24) ot = j 0 at[ j :f,f(t) dt]“ .

Table 3 gives the parameters Ag, ..., 4,, and &g, ..., &4, calculated using Eqs (22)
and (23), and the values ps, ..., pyy, calculated using Eq. (24). These values can be
considered optimum only with regard to calculating integrals (9), but not with
regard to solving the system (14). We shall not deal with the criterion for selecting
the parameters suitable for solving the system (14) in this paper. Very roughly speaking,
the parameters 4, and ¢, have to be chosen to render the absolute values of coeffi-
cients (20) within the interval (0, 8 > 1), where & does not differ much from unity.

Table 3.

8 0-3954 0-8967 0-1033 175
9 0-3952 0-9072 0-0928 192
10 0-3910 09145 0-0855 21-0
11 0-3856 0-9205 0-0795 240

However, at the same time the values p, have to be as large as possible. By calculating
the coefficients C{", C{¥, CP, C3 for the parameters J; and g, given in Tab. 3,
we shall find that max |C{’| ~ 45. This means that the selection of the parameters
A and &, optimum for calculating the integrals (9), is not optimum for calculating
the integrals (6) with the aid of system (14). Table 4 gives the values of the para-
meters 4, and g, determined by approximative methods. The values of the quantity
p and coefficients C are also given.

Table 4.

n Eﬂ Agﬂ P n r C gr )

8 0-3432 0-8836 0-1164 | 135 1 0185417
9 0-4375 0-9167 0-0833 | 160 2 3-986088
10 0-3575 0-9081 0-0919 | 180 3 —2-168847
11 04210 0-9270 0-0730 | 207 4 —1-565442
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6. CONCLUSION

Introducing the function f, as a linear combination of functions Qs, t) and
Q,+1(1, 1) improved the conditions of numerical integration expressively and thus
will permit the auxiliary plane z = v to approach the initial plane z = 0. From the
example in Section 5 (Tab. 4) we can see that a suitable choice of the parameters 4,
and ¢, will enable us to achieve very considerable improvement (more accurately
speaking, b, can be calculated with a relative error several times smaller than by
direct computation using Eq. (6)). We shall have to deal more rigorously with the
problem of optimizing the selection of the parameters 4, and g with regard to the
effectiveness of the proposed method, and to the investigation of the case given
by Eq. (7), or possibly of an even more general case.
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