
U S E  O F  P O I S S O N ' S  I N T E G R A L  I N  C A L C U L A T I N G  

H I G H E R  V E R T I C A L  D E R I V A T I V E S  O F  H A R M O N I C  

F U N C T I O N S  - P A R T  1 

PETR VELKOBORSKY 

Geophysical Institute, CzechosL Acad. ScL, Prague*) 

S u m m a r y :  The higher vertical derivatives of harmonic functions, expressed by Poisson's 
integral, are calculated for an infinite plane. The properties of the higher d~ivatives of the kernel 
of the integral are investigated and a method of calculation is proposed, which partly eliminates the 
negative effect caused by their "oscillation". 

1. INTRODUCTION 

In recent years considerable attention has been devoted to the analytical continuation of 
harmonic functions into regions where the solution of boundary problems cannot be applied. 
Regions in which the harmonicness of the functions can no longer be guaranteed and the problem 
stops being unique, are usually involved. The solution is then more or less formal and need not 
correspond to reality. Nevertheless, it is useful to deal with this problem. One of the possible 
approaches to the solution is the use of a Taylor series which yields a unique solution in the 
interval where it converges. In this paper we shall deal with the conditions for determining the 
terms of this series, in particular with calculating the vertical derivatives of harmonic functions. 

2. INTRODUCTION OF FUNCTIONS Qk 

The solut ion o f  the external  Dir ichlet  p r o b l e m  for  a sphere,  rad ius  R, is Po i s son ' s  

integral  [1] 

r(o, Oo, 2o) = R(4n)-l  f j l  T(R,O, 2) r -3 (O2-  R2) do), ~ > R ,  

where T is a funct ion ha rmon ic  in the in terval  ~ ~ R;  •, `9o, 20 and  R, ,9, 2 a re  spher ica l  

co-ordina tes  (or igin at  the centre of  the sphere)  of  the invest igated and  var iable  po in t ,  

respectively,  and  r is thei r  distance;  de) is an e lement  o f  the unit  sphere.  

By apply ing  the l imit  R -o oo we arr ive at  the Poisson integral  for  the infini te 

p lane z = 0: 

flog ff2~ 
(1) T ( x ° ' Y ° ' Z ) = ( 2 r O - 1 1  I z l r - 3 T ( x °  + / c ° sc~ 'Y°  + /s in0~,0)  d l d e ,  

j o  Jo  

r 2 = 12 + z 2 , 
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(2) 

I t  is easy to see tha t  

where  1 and  e are the po la r  co-ordinates  o f  the var iable  po in t  in p lane  z = 0 with 

the  origin at  po in t  (x 0, Yo, 0), T i s  a funct ion ha rmon ic  in the halfspace z > 0 and r 

is the dis tance of  the invest igated and variable  point .  

The  k- th  derivat ive of  funct ion T with respect  to z at po in t  (Xo, Y0, v) is ob ta ined  

by  different iat ing the kernel  zl/r 3 of  in tegral  ( t )  k-t imes.  We shall  denote  this funct ion 

b y  k! Qk: 

cSz~ ~ l =  Oz ~+1 I. 

and ,  in general,  

(3) 

l !  ~1 : r - 3 (  1 -- 3~2) / , 

2! Q2 = - r - 4  3x(3 - 5x 2) l ,  

3! Q3 = - r - 5  3(3 - 30~ 2 + 35~ 4) t ,  

(k+ 3)/2 
k! Qg a(ok)lr-(k+2) 2 ~(k)~.2(j- 1) = , j  ,~ k =  1 , 3 , 5  . . . .  ; 

j = l  

(k+ 2)/z 
k! Qk = a(o k)lXr-(k+2) Z a} k)~2(j-1), k = 2, 4, 6 , . . . ,  ~ = v/r .  

j = t  

Tab le  I gives the coefficients a} k~ for  k = 1, 2 . . . . .  12. The sums ~a}k)~ z(j-1) are 
J 

polynomials in terms of ~2 and, therefore, they have }(k + 1) (for k odd) or ½k (for 
k even) posi t ive roots.  I t  can be p roved  that  all roots  lie within the interval  x2 e (0, 1), 

Table 1. 

k a~ ) a~  ) a~  ) a~ ) a~  ) a~  ) a~ ) a~  ) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
--3 
--3 

15 
45 

--315 
---315 
2835 

14175 
--155925 
--467775 
6081075 

1 
3 
3 

15 
5 

35 
35 

315 
63 

693 
231 

3003 

--3 
- -5  

--30 
--70 

--105 
--315 

--1260 
--4620 
--3465 

-°-15015 
--18018 
--90090 

35 
63 

315 
693 

6930 
18018 
30030 
90090 

225225 
765765 

--429 
--12012 
--25740 
--90090 

--218790 
--1021020 
--2771340 

6435 
12155 

109395 
230945 

2078505 
4849845 

--46189 
--88179 

--1939938 
--4056234 

679039 
1300075 
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i.e. (0, o0) and that  they differ f rom one another .  Therefore,  if  I > 0, the funct ion 
Qk has ½(k + 3) or ½(k + 2) roots which differ f rom one another .  Table 2 gives the  
roots  of  functions Qk for  v = 1 and k = 1, 2 . . . . .  12. I t  can be p roved  tha t  

(4), (5) Qk(v, I) = v -(c+') Qk(1, t); t = I/v. 

Table 2. 

k x 1 X 2 X 3 X 4 X 5 X 6 

1 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1.4142 
0'8165 
0-5904 
0"4667 
0.3874 
0'3318 
0.2905 
0-2585 
0.2330 
0.2121 
0.1948 
0-1800 

2"7662 
I'5649 
1.1325 
0'9048 
0.7587 
0-6563 
0.5799 
0'5204 
0.4726 
0"4332 

4"0719 
2"2520 
1'6181 
1"2876 
1"0799 
0"9359 
0'8288 
0"7459 

5"3590 
2'9174 
2"0795 
1'6465 
1"3780 
1-I932 

6"6423 
3'5728 
2'5280 
1'9929 

7"9222 
4"2224 

This is convenient  because we are able to investigate the functions Q(1, t) only, and 
proceed f rom them to the functions Q(v, l) using Eq. (4) and subst i tut ion (5). We  
shall put  

(6) bk(v) = f f  T(l)Q(v, 1)at,  k = 1 ,2  

where T(l) = ( 2 r 0 - '  fg" r (x  o + 1 cos a, Y0 + / s in  e, 0) de. Funct ion  bk(v ) is thus 
equal to the k-th derivative of  funct ion T w i t h  respect to z at  point  (x o, Yo, v), divided 
by k!. 

3. INTRODUCTION OF FUNCTIONS fk AND c¢ k 

Due to their "osci l lat ions" functions Qk are not  suitable for  calculating the der iva-  
tives of  bk. This can be seen in Fig. 1, in which functions Q1, Q6 and Q9 are shown 
for  v = 1. I f  k is roughly larger than  5, the small  quant i ty  (6) can be obta ined  as 
the difference of  several areas, which may  be as much  as several orders of  magn i tude  
larger than bk itself, and thus the relative error  of  the caclulated derivative bk will 
become several orders of  magni tude larger than  the relative error  of  funct ion T. 

F r o m  investigating functions Qk we can see that  two successive funct ions Qk 
and Qk+ 1 become increasingly similar (with the exception of  the sign) with increasing 
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Fig. 1. 

Fig. 2. 

k (see functions Ql l  and Q l z  in Fig. 2); we are, therefore, offered the idea of  creating 
combinat ions of  the type 

mk 

(7) 2 v - ' 2 ( k  j) Qk(v(k j ) , l )  + Q k + l ( v , l ) ,  k =  1 , 2  . . . . .  M k = 1 , 2  . . . .  , 
j = l  

where the difference Av(k j) = v - v~ j) is a small number  (lAY I < 1). We shall restrict 
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ourselves just to the case of  M k = 1, i.e. to combinations which we shall denote fk: 

(8) V-(k+ 2) fg(t) = v-(k+ 2)[2k Q,(ek, t) + Qk+l(1, t)] = 

= v - ' 2  kQk(ekv,1) + Qk+l(V, 1), t = l /v ,  k =  1 , 2 , . . . .  

Instead of  v k we have introduced the parameter  ek = Vk/V, (e, ~ 1). We shall introduce 
the ~k-integrals by 

f/ (9) V C~k(V) = V -(k÷ 2) T(vt) fk(t) dt = 2k bk(e~V) + Vbk+ l(v ) , k =  1,2  . . . . .  

Given a suitable choice of  parameters 2 k and ek, the kernels of  the integrals fk are 
more  suitable for  numerical integration than the Qk-kernels in Eqs (6) (see function 
f~ ~ in Fig. 2). We shall discuss the choice of  parameters  2 k and e k in Section 5. 

4. CALCULATION OF THE DERIVATIVES b k 

In order  to obtain the unknowns b k with the aid of  the integrals c¢ k, we shal create 
a linear system in terms of  b~ f rom Eqs (9). Assume that  we know b i (i = 1, 2 . . . .  ). 
We now write j + 1 equations (9) (j  = 1, 2 . . . .  ). Fo r  the sake o f  simplicity we shall 

put  bi(v ) = bi, ¢q(v) = ~i: 

(lo) = + 

/'20~i+1 = "~i+1 b i+ l (g i+ lv )  4- v b i + 2 ,  

V~i+ J = ;i,i+ j bi+ j(gi+ jV) "4- vbi+ j+ t . 

We shall develop the terms bi(giv) . . . . .  b,+j(~+~v) into series in terms of  the powers 
o f v A ~ =  v - e v >  O: 

(11) v~ i = bi~ i -~- bi+ 1 vi i  - (i  -[- l ) ) q A g i ]  d[_ 2 i Z ( _ l ) ' ~  i b i + t ( v A e o t  ' 
{ + l)~ 

1=2 i! 1! 

wzi+t = b i+,2 i+ l  + bi+2 v [ 1 - - ( i  + 2) 2 i + l A e i + , ] +  

+ 2i+1 ~](_1),  (i + 1 + l ) !b i+ l+ t (vAs i+ l )  , 
,=2 (i + 1)! l! 

wi+ j  = bi+j)q+j + b i+ j+ l  V [ 1  - -  (i + j + 1) 2i+j Aei+j] + 
oo 

+ 2 ,+~X ( - 1 ) '  (i + j + 1)! bi+j+,(v A e i + y .  
, = 2  + j)! 
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For this purpose we have used the equations 

(12) Oibk(V)/avi=(i + k)!/(i!k[)bk+,(v ) ,  i , k =  1,2 . . . .  , 

which follow immediately from Eqs (2) and (6). We shall use Eq. (12) to derive the 
equations for the improper integrals 

f? (13) (z) dz = _ j -1  bj_l(v), 

~bj(z) z ~ dz = _ j - 1  bj_l(v ) vl + _ _  

i ( i -  1) 

j ( j -  1 ) ( j -  2) 

JO + 1) 
b~_~(~) ¢ - '  - 

b j_ 3(t)) /fi- 2 .4_ . . . .  n = 1, 2 . . . . .  

We shall integrate the second equation of system (11) within the limits z e <v, oo), 
and the third equation twice, first within the limits z E <zl, oo) and then within the 
limits z 1 e (v, co); the third equation will be integrate three times, etc., and, finally, 
the (j + 1)-st equation j-times. We now take the terms with b~ over to the l.h.s. 
and neglect the terms containing bi+j+z . . . . .  We thus arrive at a system o f j  + 1 
equations fo r j  + 1 unknowns bi+l . . . . .  bi+~+j: 

(14) 

- 1  _ ( i  + 1) Ae~S~ °) cff)  A~.2,~(- °) '(J+ a) j + ,  (o) - 
)~i ~ ~ t  , ' .  c i  A ~ i  S i  

i + 1  1 

i + 2 2i+ 1 
(i + 1) Ae~+IS~ ~) c]2) AE2+ K'(1)  c~J+I) AeJ+I'q(1) 

l ~ i  • . .  ~ i + l ~ i  

i + 1  1 

i + j + 1 2i+j 
(i + 1) as,+jS~ j) C~2) Ae2 ~(j) ,(j+l) Agj+ 1 q,(j) 

~ i + j ~ i  • • • ~i  ~ i + j  ~ i  

X 

vbi+ l 

v2bi+2 

vJ 4 l b i +  j +  1 

- i~o)-  

[I?) 

(15) c W =  (-1)m(i + m)!/(i!m!), m = 2,3 .. . . .  j + 1, 

SI r) are power series in terms of Aei+ , = 1 -- ei+r, and it can be proved that 
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(16) S} ") = e,+~, 

(17) _,1(") = ._,a(. ~) - b i ES{ °  - 

I~ °) = 2~'lai - b i ,  

(18) A~¢) = ( _  1) ~ (i + r)! 
i! 

r = 0 , 1  . . . . .  j ,  

r , ]  
- i +  ' i + l + r 2  

r = l , 2  . . . . .  j ,  

1 d G -  1 -.- dzl  
) ~ i + r  ~ v C z r -  I ~.l z 2 

r =  t, 2 . . . . .  j .  

z z d z ,  

The elements of  the matrix of  system (14) ekl diminish with increasing 1 and, therefore,  
we shall only calculate the first unknown b/+ 1 (the accuracy of  calculating bi+ z 
deteriorates with increasing 1). For  i we then substitute m = i + 1, calculate the 
unknown bin+a, etc. We shall denote the determinant  of  system (14) by D~ ~+1) and 
the sub-determinants of  the elements of  the first column FD~J+ 1)3 k i dr,l, r = 1, 2, . . . ,  
j + 1. It then holds that  

j + l  
(19) vbi+ 1 = ~ C'('k)l(k-1) 

k = l  

(20) C~ k) = ( - 1 )  ~+k FDd+')-I l-Dff+l)-1-1 k = 1, 2, j + 1 
L i . ] k , 1  L r d ~ " '  " ,  " 

5. C H O I C E  O F  T H E  P A R A M E T E R S  2 k A N D  e k 

It is evident that  the effectiveness of  the method  proposed in Section 4 depends on 
the choice of  the parameters  2 k and e k. I f  we draw only on Section 3, we can, e.g., 
require that  function fk satisfy the condit ion 

(21) fo[ 2k Qk(ek, t) + Qk+l(1, 0 ]  2 dt = m i n .  

After differentiating this equation with respect to  2k and ek and modification, we 
arrive at an implicit equat ion for ek: 

fl fo f? ;o (22) Q'kQ;,+I dt Q£Qk+x dt - Q£)2 dt Qk+IQk+~ dt = O, 

Q, = ~,(1, t) ,  Q; = Q,(~, t) ,  
and for 2k: 

(23) 

;o ]-' fo [fo 1-' Q~Qk+I dt 2 dt ' dt  ' ' dt  = -~ Q k + I Q k + I  . QkQk+~ 
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As an index of "improvement",  achieved by introducing functions fk instead of Q~, 
we can adopt the ratio p ,  of the standard deviations of both functions: 

(24) r rf 1' pk 2 = e 2 dt fk2(t) dt . 
, /o  L , , ' o  

Table 3 gives the parameters 28 . . . . .  211 and es, ..., e11, calculated using Eqs (22) 
and (23), and the values Ps . . . .  , Pll ,  calculated using Eq. (24). These values can be 
considered optimum only with regard to calculating integrals (9), but not with 
regard to solving the system (14). We shall not deal with the criterion for selecting 
the parameters suitable for solving the system (14) in this paper. Very roughly speaking, 
the parameters 2 k and e k have to be chosen to render the absolute values of  coeffi- 
cients (20) within the interval (0, 6 > 1), where 6 does not differ much from unity. 

Table 3. 

n 2 n en Acn Pn 

8 
9 

10 
11 

0.3954 
0.3952 
0-3910 
0-3856 

0-8967 
0.9072 
0.9145 
0-9205 

0.1033 
0.0928 
0-0855 
0.0795 

17.5 
19-2 
21.0 
24.0 

However, at the same time the values Pk have to be as large as possible. By calculating 
the coefficients C(81), C~ 2~, C~ a), C(84) for the parameters 2 k and ek, given in Tab. 3, 
we shall find that max ]C(8°I ~ 45. This means that the selection of the parameters 
2k and ek, optimum for calculating the integrals (9), is not optimum for calculating 
the integrals (6) with the aid of system (14). Table 4 gives the values of the para- 
meters 2k and ek, determined by approximative methods. The values of the quantity 
p and coefficients C are also given. 

Table 4. 

n 2 n '~n Aen Pn r C~8 r) 

8 
9 

10 
11 

0"3432 
0-4375 
0'3575 
0"4210 

0-8836 
0-9167 
0.9081 
0-9270 

0.1164 
0-0833 
0'0919 
0-0730 

13.5 
16-0 
18'0 
20.7 

0"185417 
3"986088 

--2.168847 
--1-565442 
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6. CONCLUSION 

Introducing the function fk  as a linear combination of ftmctions Ok(S, t) and 
Qk+l(1, t) improved the conditions of numerical integration expressively and thus 
will permit the auxiliary plane z = v to approach the initial plane z = 0. From the 
example in Section 5 (Tab. 4)we can see that a suitable choice of the parameters 2k 
and e k will enable us to achieve very considerable improvement (more accurately 
speaking, bk can be calculated with a relative error several times smaller than by 
direct computation using Eq. (6)). We shall have to deal more rigorously with the 
problem of optimizing the selection of the parameters 2~ and e~ with regard to the 
effectiveness of the proposed method, and to the investigation of the case given 
by Eq. (7), or possibly of an even more general case. 
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