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Abstract. This article is devoted to the perturbative renormalization of the abelian Higgs-Kibble 
model, within the class of renormalizable gauges which are odd under charge conjugation. The 
Bogoliubov Parasiuk Hepp-Zimmermann renormalization scheme is used throughout, including the 
renormalized action principle proved by Lowenstein and Lam. The whole study is based on the ful- 
fillment to all orders of perturbation theory of the Slavnov identities which express the invariance 
of the Lagrangian under a supergauge type family of non-linear transformations involving the 
Faddeev-Popov ghosts. Direct combinatorial proofs are given of the gauge independence and uni- 
tarity of the physical S operator. Their simplicity relies both on a systematic use of the Slavnov iden- 
tities as well as suitable normalization conditions which allow to perform all mass renormalizations, 
including those pertaining to the ghosts, so that the theory can be given a setting within a fixed Fock 
space. Some simple gauge independent local operators are constructed. 

Introduction 

The latest achievements on the renormal izat ion of  Lagrangian  models in- 
volving gauge fields, most ly  due to t 'Hoof t ,  Lee, Veltman, Zinn-Just in [1], were 
primarily based on the use of a gauge invariant  regularization procedure,  the 
most  popular  of  which being the so called dimensional  regularization [2]. The 
gauge structure could thus conveniently be respected by fulfilling the so called 
Slavnov identities [3]  th rough  the renormal izat ion procedure.  There resulted 
finite Green's  functions which could not  however  be directly given an interpreta- 
t ion relevant to an opera tor  theory in some Fock  space, were it be in a perturbative 
sense, because of the lack of  the finite mass renormalizat ions which would have 
been necessary for this purpose.  As will be seen here, an opera tor  interpretation 
is quite convenient  for any discussion involving asymptot ic  concepts  concerning 
e.g. the unitari ty of  the S operator ,  the construct ion of  gauge invariant  local 
operators  etc. 

We shall treat here the simplest model  involving gauge fields in which no 
infrared problem occurs, namely  the abelian Higgs-Kibble model  [4] within the 
class of  gauges advocated by t 'Hoof t .  The algebraic complicat ions which occur 
in the non abelian cases are deferred to later publications. 

We shall make  full use of  the combinat ior ia l  knowledge or  renormalized per- 
turbat ion theory that  has been acquired th rough  the work  of  Z immermann  [5] 
(effective Lagrangians,  normal  products,  Wilson expansions), Lowenstein [6] and 
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Lam [7] (renormalized action principle), which has been successfully applied in 
other cases (massive quantum electrodynamics [8], ~r models [9] abelian Higgs- 
Kibble model in the Stueckelberg gauge [10]). 

This well developed machinery, which relies on the locality and power 
counting properties of perturbation theory, is most effectively put to work by 
intensive use of the implicit function theorem for formal power series [l i] through 
which, as we shall see, most symmetry aspects of the perturbation series can be 
read off on the classical Lagrangian on which the theory is based, including the 
possible occurrence of anomalies. This possibly surprising statement wilt be 
widely illustrated in the present work and in reviews now in preparation [J2]. 

The main reason why such a favourable situation prevails in the present case 
is that the model is almost entirely specified by an invariance property even after 
the introduction of the necessary Faddeev-Popov ghosts [t3]. Namely, at the 
classical level, the Lagrangian is invariant under transformations of the super- 
gauge type [14], which we have called Slavnov transformations. In the abelian 
case treated here, one has however also to impose the full degeneracy of the ghost 
masses in order to implement spontaneous breaking. This is a particular feature 
of the abelian case which in a sense makes things more complicated. 

Section I is thus devoted to a study of some crucial aspects of the tree approxi- 
mation. The role of the invariance under Slavnov transformations and the par- 
ticular expression of spontaneous breaking are stressed. 

In Section II the model is defined to all orders of a perturbation expansion 
in powers of a parameter, h, which counts the number of loops in Feynman 
diagrams. Namely, we show that both renormalized Slanov identities and the 
normalization conditions on Green's functions which hold in the tree approxima- 
tion can be fulfilled to all orders. The compactness of the proofs is due to a repeated 
use of the implicit function theorem for formal power series I1 t]. The logic of 
the construction also makes clear how anomalies, which do not occur in the 
present model, can be produced. 

In Section III, one proves the independence of the physical scattering operator 
against a change of the parameters which label the gauge function, by suitably 
generalizing the argument given by Lowenstein and Schroer [8] in the case of 
massive quantum electrodynamics. 

Section IV is devoted to a direct combinatorial proof of the unitarity of the 
physical S operator. 

Several appendices are devoted to a number of technical questions: 
Appendix I deals with the structure of the Slavnov identities at the classical 

level in the non abelian case. 
Appendix II is devoted to a brief description of the implicit function theorem 

for formal power series [11]. 
Appendices III, IV, and V give some computational details which would have 

obscured the line of argument in the body of the article. 

Appendix VI deals with the construction of some local gauge invariant 
operators of dimension smaller than or equal to four. 

Appendix VII extends the theory to quadratic gauges odd under charge 
conjugation. 
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I. The Tree Approximation 

As is well known, a classical Lagrangian, £a~(~), which will be assumed to 
be of the renormalizable type, defines the tree approximation of a quantum 
Green's functional 

i 
Z(!) = exp ~- Zc(fl_ ) (1) 

where _J denotes collectively a set of sources linearly coupled to the field variables 
_~ from which 2 '¢1 is constructed. The Legendre transform [15] F(~q) of the con- 
nected Green's functional Zc(fl_ ) defined through 

z d ! )  = r ~ )  + ~ g 2 )  (~) dx (~_~ + .-,>>o (2) 

coincides with ~ dx~.~l(~)(x) in the lowest approximation of a perturbative ex- 
pansion in powers of h, and, in higher orders, generates "proper" Feynman graphs. 

Let us now consider a classical Lagrangian 

2'~(~_J)--- 2'°~(~) +2 "e 

~2 (3) 
= Y~°v(_q,)- 5 7  + -J  ~e 

where 5ainv(5~ ) is invariant under local abelian gauge transformations of the second 
kind; 

a2(x) 62(x ) = y o ~ j -  6A(y)dy. (4) 

dx IJ(x)" 

where the substitution 

is a gauge function which breaks gauge invariance, and ~ is a numerical 
parameter, as they occur for instance in quantum electrodynamics. Noether's 
theorem yields the following Ward identity: 

65P'(x) ~(x,y) ~ ( x ) ]  = 0  (5) 
aA(.v) 

has to be made, and where 

a ZcC4) (6) 

a~(x) 
~(x, y)= aA(y) (7) 

is the kernel of a field dependent differential operator of hyperbolic character 
whenever N is a perturbed version of the divergence of the gauge vector field 
associated with the gauge transformations under consideration. We shall from 
now on limit ourselves to this situation. The Ward identity (5) can conveniently 
be solved for ~ upon introducing scalar charged Faddeev-Popov (qsH) ghost 
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fields [13] and the corresponding sources into the initial Lagrangian 

--- + ~dy~(y)J/Z(x,y)c(x) + [ _ 4 . ~ + ( c + ~ b ' ] ( x )  
O~ 

= ~e(~e, c, c--) (x) + U .~  + ~c + ~ (x). (g) 

The Fermi statistics conventionally assigned to these fields while preserving 
locality introduces new sources of indefinite metric into the quantum inter- 
pretation of such a system and, at the same time exhibits crucial properties con- 
nected with the structure of the gauge transformations, which are best observed 
in the non abelian case described in Appendix I. The new Ward identity reads: 

W(x) (zo 

I_ J t a~¢i(y,z) [ (9) = Jdy (y). bA(x)b~°(Y) ~l ///{(y,x)~(y)- .-~Jdza(z) hA(x) c(y) = 0  

Integrating through ~- yields the so-called Slavnov identity (3), which, in the 
present, abelian, case, reads: 

where use has been made of the equations of motion for the ~bH fields, and of 
their anticommutativity, whereby the last term in the Ward identity (9) drops out 
in view of the abelianness of the gauge transformations. In the non abelian case 
treated in Appendix I, this last term contributes however in a way which is charac- 
terized in terms of the structure constants of the Lie algebra involved. 

The Slavnov identity can be interpreted as expressing the invariance of 
under the following transformations of the supergauge type [14], which we shall 
call Stavnov transformations: 

b~c(x) = Z~(x) (tl 

a~, ~(x) = 0 

where 2 is an infinitesimal, space time independent, gauge parameter of the Fermi 
type. The vanishing of the variation of 8 is due to the abelian character of the 
gauge transformations and is suitably altered in the non abelian case as shown 
in Appendix I. The Fermi character of the ~ H  field linearizes the gauge "group" 
since 

3,, c5~2~ ? (x) = 0 

8;. 6;.= 8(x) = 0 (12) 

ba,b~2 c(x ) = 2122 j ./#(y, x) "d(y) dy 
so that 

and 
S2(Zc) =- ~ dxdy ~(y) ./~(y, x) 8(x)= 0 

(S. S 2 - S  2, S) (zC)=O. 

(13) 

04) 
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One should realize the lack of equivalence, in general, between the Ward identity 
(5) and the Slavnov identity (10): if one adds to Y a breaking term of the form 

such that 

5A(y) 

B (15) 

,S B(x) 
- ./~(x, y) ~ (x )  (16) 

where t g  is a possibly field dependent differential operator which does not upset 
the hyperbolic character of .~///, the Lagrangian 

2L ) L~1=5~in"(x)- e \ 2 +B(x)+~dY5(Y)("~(x'Y)+'A/~(x'y))c(x) (17) 

+ a_(x) . ~e(x) + ~(x) c(x) + ~(x) ~(x) 

will lead to the same Slavnov identity whereas the Ward identity is modified 
according to 

J (.,#(y, x) + ./V~(y, x)) f~(y) 
62(Y) 1 

W(m(x) [Zc] = ~ dy (Y)' 5A(x) c~ 
(18) 

1 ~ dz "~(z) 5(Jg(y, z) + ,A/'(y, z)) c(y)] = 0 
c~ 5 A(x) l " 

This pathological situation is due to the abelianness of the gauge transformations 
which insures the absence from the Slavnov identity of a contribution involving 
the last term of the Ward identity. 

A concrete example of this phenomenon will be given in the context of the 
abelian Higgs-Kibble model treated within a family of linear, charge conjugation 
odd gauges. 

The basic fields and sources are given in Table 1. 

Table 1. Fields and sources 

Field Behaviour under Source 
charge conjugation 

Ol even Jl 
¢P2 odd J2 
A~ odd J~ 

c~ q)f/ghosts even 
c] even 

One may choose for the Slavnov transformation: 

c5 qo 1 = - 2e ° (/0 2 c 

&o 2 = + 2e°(~oi + v °) ? 

bA u = 20~,5 

5c = 2(a ° ~uAu + 0 ° (P2) 

5 7 = 0  

(19) 
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where v ° is a field translation parameter e °, e ° are charge parameters, a ° and 0 ° 
characterize the gauge function. The corresponding Stavnov identity reads: 

S(Zc) - ~ dx {& G ~ Zc - e° J, a.,~ Z c 6¢ Z c + e ° 4 (4,, Zc 5~ Zc + v°'~ Zc) 

- ~ [a  ° cgF, 6, .  Z c + e° 6j~ Zc] } (x) = O. (20) 

Equation (20) can be linearized by introducing into the Lagrangian the source 
terms: 

t/l(Zl (~o 15 q- z' 8) -q-/~ 2 z2 (~o2 ~ (21) 

where rh, ~/z are Fermi type sources: 

S(Zc) = 5~Zc = 0. (22) 

Now Zc also depends on rh, v12 whereas the Lagrangian is the partial Legendre 
transform of Zc with respect to J~, J2, Ju, ~, ~. 

5 e is now a linear functional partial differential operator of the form: 

~ = ,[ dx [Ju 8u (~,~ - el .It (},2 + e2 J2 ~,~ + rnJz ~ - ~(aS. 6,ru + 0 6j;)] (x). (23) 

The transformation taw (19) is easily converted by translation and renormaliza- 
tion of the field variables into the more conventional one 

8~1 --= --  2e (P2~  

&o2 = 2e(~ol + v) 
(24) 

bA u = 28u5 

6c = 2(8.A u + &P2) 

90 _0 = (e~ = e2 = e, v = v °, 0 = ~ o°, a ° t), where we keep however a field translation 
parameter explicit. 

One may ask oneself what is the most general Lagrangian of the renormalizable 
type which is invariant under such a transformation, even under charge conjuga- 
tion and carrying zero ~ / / charge .  

This problem is a purely algebraic one. The most general Lagrangian of the 
renormatizable type which carries the vacuum quantum numbers is, up to a 
divergence, a linear combination of the following twenty six monomials: 

0) (Pl 10) (p2~uAu 20) ~'c 

t) ~o 2 11) Auq)18.q) 2 2t) 5qhc 
2) ~o 2 12) Aucp28uq) 1 22) 8q)2c 
3) (p3 13) AuA" 23) 8q)2c 
4) qo22~ol 14) A,Auq h 24) ~A~A~c 
5) ~o~ 15) A~,A.cp~ 25) 8 D c  
6) ~o~ 16) A~,A~,q) 2 
7) ~o~ 2 17) (8"A.) 2 

9) 8,~o28~o 2 19) (AuA~) 2 

(25) 
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Its variation s ~  under the Slavnov transformation (24) is of maximal dimension 
five, carrying the q)H charge of a ~" ghost, odd under charge conjugation. It is 
therefore a combination of the 23 monomials: 

1) cgo2 11) F~uA" 
2) c'golgo2 12) "gAuc')ugol 
3) ggo~ 13) F3.A.go~ 
4) Fgo2go2 14) d~uAugo~ 
5) FDgo2 15) FAugoI0ugol 
6) Fgo~go2 16) FGA.go2 
7) 5go1 go2 3 17) cAugoz~ugo2 
8) ~go2Dgol 18) 5D~,Au 
9) g?gol [[[]c-P2 19) FAuOuFc 

10) 5~ugol~?ugo2 20) FAuA~uA ,, 

21) "CAuAugo2 
22) "dAuAugol go2 
23) 5A~AuO,,A ~, 

(26) 

One can however verify that the last three monomials can never occur as varia- 
tions of some monomials in Eq. (25) whereas the first twenty are such variations. 
It follows that the requirement that ~ be invariant under Slavnov transforma- 
tions is expressed via a homogeneous linear system of twenty equations whose 
unknowns are the coefficients of the twenty six monomials listed in Eq. (25). As 
a result, the most general invariant ~ can be written as a linear combination of 
the following six terms: 

1) Gu~ G,, = (OuA,- O~A~) (OuA ~ - O~Au) 
2) (D~go)* D~g0 
3) cp*go 
4) (go, go)2 (27) 

c~2 6aj 
5) 5--  + ~-g£ c 

6) AuAu 5c+ ~ go1 
2 c 

where 

go1 + V + igo2 go - ~ ~¢ = GA# + Qgo2 

D r = 0 u - ieA. 

In other words, c~q is of the form 

3~ 

5A 
- [] +oev+Qecpl.  

G 
4 Gu~G"~ + ZI(Dugo)*D~go +'u2go*fp 

(28) 

_g(go, go)2_l_~ (~__~ +~ 7A -c6~¢ ) 

+~(½&&-ec+~--gol) c 

(29) 
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The last term which is conspicuously absent from the classical Higgs-Kibble 
Lagrangian has precisely to do with the phenomenon previously alluded to. Its 
presence violates spontaneous breakdown without spoiling the Slavnov identity. 
As we shall see later, its absence can be imposed by requiring suitable normaliza- 
tion conditions on the Green functions which allow to convert the unphysical 
parameters ZA, Za, ~2, g, e, ~, fl into parameters that are needed to interpret the 
theory in terms of particles. In terms of the variables appropriate to the case of 
broken symmetry, Eq. (29) can rewritten as: 

4 Guv G .  v "~ Z1 [•F, q~)l 8~ (p 1 + Og (~92 8p (P2 

+ 2eA.(q)2 au ~0, -(¢p, + v) (3u,;02)+ e2AF, Au((cPl + v) 2 + go2)] 

+ ~ [(~,  + v) ~ + ~o~] - g [(~o, + v) = + q~==] = (30) 

[ (0uAu + F(D + oe(~0, + v)) c / 
+ ~0@2) 2 ] 

- ZG 2 ] 

+fi(.A~A. F c + ~ q ° l ]  " e  

w e  shall now impose the following normalization conditions, which for reasons 
to be explained, we split into two groups: 

unphysical: <qh ) = 0 (0) 

F~.~(p2=mg)=O (1) 

l~!e(pZ=mD)= 1~ (2) 

physical: Fo,~o, (p2 = M 2) = 0 (3) 

2 = 1  F£, o2(P = M2) = ze, (4) (3i) 

_FATAT(p 2 = m 2) = 0 (5) 

-FflTAT(p 2 = m 2) = z a = 1 (6) 

ffATATq~i(m 2, m 2, M 2) = 2era (7) 

t /& ,  ~,~ _rAL,>~ t r s '  det iS. " = O. (8) 
\-A'C<n2 -]-'~ 2 ~'2 I IPZ = rrl~; 
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Here A r (resp. A L) denotes the transverse (resp. longitudinal part) 
in terms of the parameters specifying 5~, these conditions read: 

/-~1 det (ff--F ALAL 
\FALq~2 

( ~ 0 1 ) = 0 = 2 v #  2 - 4 v  3g-ff Off (0) 
e 

1 
Z G = - -  (2) 

2 
mZ = -~1 (69v2-/~z) (3) 

Z z = z~l = 1 (4) 

m 2 = [ZI e 2 v z + fi] Z2 ' (5) 

ZA = ZA = i (6) 

e = ~ ( 7 )  

F(19 2 ¢p 2 /[p2+m2 

135 

of A; expressed 

(32) 

- ~ p2 _ o e v  - 3 ~  ( p Z  _ o e v -  f i e )  p2 _ o e v -  e v -  v:=m g 

This last normalization condition is well defined because the ~ H  ghost mass 
turns out to be degenerate with at least one of the coupled (A L, P2) ghost system. 
This is a consequence of the Slavnov identity, as shown in Appendix III. On the 
other hand complete degeneracy of the ghost masses is precisely the condition 
for spontaneous breakdown, (fl=0), except if ~ = c~ev, which characterizes the 
restricted t 'Hooft gauge, excluded here and eventually recovered by a limiting 
procedure. 

The system is an algebraic system which is invertible and allows to solve for 
the coefficients in the Lagrangian in terms of the parameters occurring in the 
normalization conditions. This leads to a particle interpretation of the theory in 
a Fock space carrying an indefinite metric due to the Fermi character of the 
4~//ghosts and the non positive definiteness of the (A c, q~2) coupled propagator 
matrix. 

One can easily generalize this analysis to the case where e ° + e °, a ° =~ 1 where 
the theory is again determined by the Slavnov identity and normalization con- 
ditions, e ° and a ° being left free. Although the corresponding algebra is not 
illuminating and will not be reported here, the possibility of such a generalization 
should be kept in mind for further reference. 

We are now able to describe the scattering theory: the Fock space is deter- 
mined by the quadratic part of 2p, the corresponding in fields being solutions of 
the derived Euler Lagrange equations. Within this Fock space we may select a 
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A T physical subspace generated from vacuum by application of (~0 x,ln i,). Physical 
states should actually be equivalence classes of such states modulo some zero 
norm states whose structure will be mentioned later in connection with the ques- 
tions of the unitarity of the physical S operator and of the existence of physical 
local observables. 

The restriction to the above defined physical subspace of the connected scat- 
tering operator is given by the L S Z  formula: 

SChy~ =: exp i S dxdy (Pl.i,(x) K~(x,y) (5~J~(y) 

+ A r  in(x)Ku~(x,y)6j~)j 'Zc[f]la, ,=j~=j~=~=~= o (33) 

= Z'ph~ZcfX)l!= o 

where, in view of Eq. (31, 3-6) 

Kl(x, y) = (rl + M 2) ~(x - y) 

Ku~(x, y) = (Ogu~ - 9u9~ + m2 guy) ~(x - y). 
(34) 

It is typical of the spontaneously broken theory that the physical scattering 
operator does not depend on the parameters which specify" the gauge. In other 
words, 

9Sphy~ = 0 ,  9Sphys _ 0. (35) 
90 &~ 

The first relation can be proved as follows: 

c aZc[d] J=o 9 S p h y s  - -  ~:~phys 

90 90 (36) 

=Zphys(-~)Sdx[~qo2+'ee°((pl+v°)c](x) ld=o=O 

since the expectation value of ~¢ between physical states vanishes because of the 
Slavnov identity and those ofc and F because of ~//charge conservation. Similarly, 

c 9Zc[J_] J~o 9 S p h y s  - -  ~ p h y s  - -  

= £phy~ ~ - S  dx +F./gc (x)[,2= o (37) 

This concludes our review of the tree approximation. 
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H. Perturbation Theory to All Orders: The Slavnov Identities 

The extension of the model beyond the tree approximation, proceeds in the 
spirit of the BPHZ [5] renormalization scheme, via an effective Lagrangian of 
the form 

+ t12 z2 N2 [5q~2] + J~ ~0i + J2 ~02 + J.A. 
(38) 

+ ~ c + ~  
= 5eoff(~, ~) +_J~. 

The corresponding Green functionals 

Z(J_,~)= ( T exp [~ ~ ~f,~t (~, J_, rt) (x) d4 xl) (39) 

and 

Zc(J_,~)= ~ lnZ(J_,_q): h ITexp[h-,  d4x~[(.~,J_,_q.)(x)lt c (40) 

are expressed in terms of Feynman graphs in which the propagators are defined 
by the quadratic part 5(' o of 5¢ [Eqs. (30, 31)], and the vertices are given by 

2/,~[ = L~ elf (~, _J,5) - N4 ~ o .  (41) 

The substraction procedure which defines the time ordering symbol T in Eqs. 
(39, 40) being specified by the N prescriptions indicated in Eq. (38). The coefficients 
o f  the Wick monomials in cSeff are to be considered as formal power series in h, 
and, of course, ~eff should coincide in zeroth order with S [Eqs. (3t)]. 

We shall also clearly restrict ourselves to effective Lagrangians even under 
charge conjugation and carrying no qH/charge. 

One can furthermore immediately specialize Eq. (38) by making the choice 

z 1 = z 2 = t , z'~ = 0 (42) 

which corresponds to fixing normalization conditions on the fields coupled to ft. 
We can also define ~ff(~?) so that no linear term is present, thus automatically 
fulfilling the normalization condition (31,0) 

(~o15 = 0 .  (31,0) 

We shall have however to keep in mind in the following that the allowed class 
of Lagrangians is that written clown in Eq. (38) and Y*ff(~) is a linear combina- 
tion of 25 terms which are listed in Eq. (25) [excluding Eq. (25,0) in view of 
Eq. (31,0)]. 

The question is now whether one can determine YCff so that Zc~,~) fulfills 
a renormalized Slavnov identity: 

S~Zc(J, ~) = ~ dx [J,~ 8~6~ - ~ ,116~2 + ~2 J~'~,~ + ~J~'~ 
(43) 

- T(~a~,b. + ~,b~)] (x) z&4,_~) = 0 

where a, Q, e~, e2, m = ezgare formal power series in h. We shall eventually require 
that the normalization conditions (31) be fulfilled. 
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Now, according to Lam's [7] renormalized action principle, the Slavnov 
identity (43) expresses the invariance of the effective Lagrangian under the renor- 
malized Slavnov transformation 

~Ol = ,~2 N2 [q,2 e--] 

3A, = 2 c3~ b- (44) 

3c = 2(-dOuA u + "~(P2) 

3 ? = 0 .  

Indeed performing on an arbitrary effective Lagrangian the quantum variation 
(44) according to the quantum action principle yields: 

5f  Z c ~ ,  ~ ) = A Zc(fl_, ~) (45) 

where the left hand side comes from the variation of the source terms, and where 
- A  is precisely the insertion of the quantum variation of the effective Lagrangian 
5¢~fr(~,~). It is a consequence of Lam's analysis that: 

A = - ~ d x N  5 [s~rf(~?,~) + hQ] (x) (46) 

where s ~  af is the naive variation of the Lagrangian, and hQ sums up the quantum 
corrections. Because of power counting and selection rules, A is a linear com- 
bination of twenty three monomials listed in Eq. (26), the coefficients being formal 
power series in h and in the coefficients of ,Q.Q~eff a s  well as in those appearing in 
Eq. (44). The symmetry condition we are looking for is 

A = 0. (47) 

It can be partially satisfied by requiring that the coefficients of the 20 first 
monomials vanish to all orders in h the parameters of the Slavnov identity being 
left arbitrary to all orders. The argument is that if 

5~°ff =-G ~ + - G ~  ~ 
where: 

we can write: 

s_2f ~ = 0, s_Lf ~ + 0 

(48) 

(49) 

A = d ~ s ~  b + hN (50) 

where d~ =-G + h_~, _q)~ being a formal power series in h,_G,..G and the coefficient s 
of the Slavnov identity, and the quantum correction hN is not of the form s ~  ~, 
namely it involves the last three monomials in Eq. (26). By the implicit function 
theorem for formal power series (cf. Appendix II), the system: 

_c~ + h_~b(h,_c~,_c~,_s) = 0 (51) 

is soluble for-G. 
cfleff is thus now determined in terms of five parameters [because of (3J,0)] 

and of the five coefficients involved in the Slavnov identity which now reads 

~ Z c ( J ,  I t ) = (C I A 1 --}- c2A 2 --~ c3A3) Zc(.J_,~ ) (52) 
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where A 1, A2, A3 (previously numbered 21, 22, 23) are the last three terms in (26), 
affected with the N 5 prescription. 

Now, obviously, the right hand side (52) has to fulfill the compatibility con- 
dition implied by the structure of the left hand side [cf. Eqs. (12, 13)] namely: 

~ 2  Zc  - - J dx  [T((~D + 8~) ~ + g~2 ~,,)] (x) Zc  

- ~ d x [ ¢ ( ~ ) ]  (x) Zc (53) 

= oc¢'(Cl A1 + c 2 A 2 + c s A g )  Z c  

= [,5 "°, c l A  1 + c2A 2 + c3A3]  Z c .  

Now: 
EY, Ai] Zc = EsA, + hP,] Zc (54) 

where sA~ is the naive variation of the monomial A~ under a Slavnov transforma- 
tion, to which dimension six is assigned, whereas P~ is a dimension six insertion, 
carrying two 8 charges, even under charge conjugation and whose coefficients are 
formal power series in h and in the so far undetermined power series coefficients 
occuring in £,feff and Y, as a consequence of Zimmermann's reduction formulae. 

On the other hand, the q~H ghost equation of motion is of the form: 

( , 2 ~ ) ( x ) Z c - E ( ~ [ ] + g 2 ) ~ + d ~ , l +  f . ~ ] ( x ) Z c l ~ = o = ~ ( x )  (55) 

where a, g, d, f g are formal power series, and/3 is a source coupled to 

~ =  {N 3 [~of c-], N 3 [(pZ c--], N 3 [AuAuc-]} . 

Thus, integrating Eq. (52) through ~, one gets 

dx [~(,A73~)] (x) Z c = 0. (56) 

Noticing that 

dx(~(5~) (x) Z c = 0 (57) 

as a consequence of the invariance of Se f f~ ,~ )  under the variation 

~c= fl8 

and substracting Eq. (56) from Eq. (53) yields: 

S d~ E~((~2 - a) ~ . , -  f .  ~ ) ]  (~1 ZcCa_,,_.,/~)1~ o 
(58) 

= Y.~ c , ( s ~  + hP,) ZcCg_,~). 
1 

We now express Z c in terms of F by Legendre transform, thus obtaining: 

dx [(d - ~'~2) ,5~Van, r + f S~VbfF] (x)l~= 0 

3 (59) 
= F,, c~(sA~ + hP,.) r = 01~=o. 

1 

Let us now write 

e = 5('°ff(.J_,tl) + ft. c~_ he'  (60) 
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where it has been explicitly noted that the corrections to ~eff occuring in F are 
necessarily radiative corrections. Equation (59) can be cast into the form: 

d X { E ]  c [ ( d  - ~e2)  (D1 ~-]- f~ cP 2 ~ + f z  (p2 ~ + f 3 A , A u g  + 2C 1 ~ A  u Ou~q~2 

+ 2c2 Au Ou C~l (/02 -l- C 3 (2 ~0~ ~A u ~A~  + FAuA~ [] c--)] } (x) (61) 

= h~(d  - o e 2 , f l , f 2 , J ' 3 ,  % c2, c3) 

where ~b is a functional of the fields which is linear in the indicated arguments 
and lumps together contributions from F'  and from the Pfs. Differenciating in 
turn Eq. (61) with respects to the fields occuring in each indicated monomial, 
and setting all fields equal to zero, yields, in view of the independance of these 
monomiats: 

d - "~e2 = h( l )o(d  - -  ~'e2, d ' , -  C) 

f l  = ~ b l  (d - -  0-e2 , f ,  - c) 

f2 = h * 2 ( d -  ~O:,f,_c) 

f3  = h + 3 ( d  - ~ e 2 , d , -  C) 

c I = hFtl (d - ~ez,f,£) 

c :  = h ~ 2 ( d  - ~ 2 , f , _ c )  

c3 = h ~ 3 ( d -  -~2, f,_c) 

(62) 

where ~b i (i = 1,2, 3), 7Ji (i = l, 2, 3) are linear in the indicated arguments, formal 
power series in h and in the remaining parameters. The situation occuring in the 
tree approximation and application of the theorem in Appendix II yield: 

d - -~'d z --- c 1 = c 2 = c 3 - -  f l  = f z  = f3 - -  0 .  (63) 

Hence, the Slavnov identity holds, and, up to the mass term the ~/,//equation of 
motion involves the same coefficients and monomials as those occuring in 6 e2. 
The equality of the two mass terms will be proved in Appendix III in connection 
with the normalization conditions we shall now consider. 

Namely, we shall show that the normalization conditions (31) can be fulfilled, 
whereby all parameters are determined except g and e2-Eq. (31,0) is already ful- 
filled. Next we try to impose Eq. (31,1-7). Looking at the algebraic system which 
is soluble in the tree approximation, we can apply once more the theorem of 
Appendix II, because this system is perturbed as allowed by this theorem by 
higher order terms occuring in F+,+~, FA~aT, Fc~,FA'rAT~I. 

The last normalization condition (31,8) is more delicate: one has first to show, 
to all orders in h that _Fc~ -1 2 p2 _ ~ALALF_+2+2--F_.~LO2 ) is finite at =mg. The proof, 
based on the Slavnov identity and Eq. (31,2) is given in Appendix III. As a by 
product, as previously announced, one obtains the last equation connecting ~2 
and the ~b/7 equation of motion [Eq. (52)] namely the q~F/equation reads: 

(.2c5~) (x) Z c - (./F¢ c5~) (x) Z c = ~ ( x ) .  (64) 

In conclusion, once the Slavnov identities and the normalization conditions have 
been fulfilled, there remain two free parameters, g and ~2, which will not be 
specialized any further. 
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HI. Perturbation Theory to All Orders: Gauge Invariance of the 
Physical Scattering Operator 

The normalization conditions Eq. (31) allow to interpret the theory, in the 
sense of formal power series, within the Fock space defined in the tree approxima- 

c tion, and the formula giving Sphy~ in terms of Zc(.J_ ) [Eq. (31)], or similarly Sphy ~ 
in terms of Z(J_) remains unchanged. For a technical reason which will appear 
later we shall from now on work with the non connected Green functional. 

We now wish to evaluate 

3Sphys ~Sphys 

Using Lowenstein's [61 renormalized action principle we see that 

h 0 
i Q)~ Z(f_,q.)= A~ZCJ_,_~) (65) 

where 2 is one of the parameters e, mg and Ax is a dimension four insertion ob- 
tained by differenciating ~ f e ( ~ ,  t/), with respect to 2, namely an operation which 
alters infinitesimally 5¢~ff(~,_q) within the class (38). Using the Slavnov identity, 
we are going to show that A~ can be written as 

8 6 
A - V c ° ' i A  o w s , i - s  x -  ~ i  ;~ i + L i c z  ~i (66) 

1 1 

where the A°'s (i = 1, ..., 8) are eight insertions such that 

Sphys AO Z ( f f - , 3 ) ] , J  =q =: 0 ~- 0 (67) 

and leaving unchanged the physical normalization condition (31,8). 
The other physical normalization conditions (31,3-7) are left unaltered as 

a consequence of Eq. (67). In the following, we shall call these insertions non 
physical. The A s, (i = 1 . . . .  ,6), are six symmetric insertions, namely such that 

y A s Z Q _ , 3 )  = 0 (i = 1 . . . .  ,6). (68) 

Thus applying Eq. (65) to the physical normalization conditions (31,3-8) yields 
a linear homogeneous system of equations of the form 

6 
~ S ' ~ A S ' J - - O  ( j=  3, 4, 5, 6, 7, 8) (69) i t ' ) ,  J i  - -  
1 

The forthcoming analysis shows that 

det 11 d sJ [L * 0 (70) 

since this happens to be true in the tree approximation. Hence it follows that 

o 

and the gauge invariance of the physical S-operator follows from Eq. (67). We 
now construct the decomposition of A~ given in Eq. (67). 
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so that  

F r o m  the definition of A~ we have 

i 
8z(SeZ) = 8~J  Z + -~ Se AxZ =O 

i 
~- [ & ,  o~] = 8 ; 5  ~. 

Thus we can write 

(72) 

(73) 

where o 
Co = 1 so = ~ clx(J~ GS~)  (x) 

c~ = - ~ s~ = ~ d x ( J ,  ,5,,2)(x) 

c~ = ~ s~ = ~J~c(4 8,.) (x) 

c~ = ~, s~ = S c l x ( 4  8~) (x) 

= - a = S 

c~ = - g s, = S a x ( ~ 8 , )  (~). 

So that Eq. (73) now reads: 

Indeed let us consider:  

5 

i [fl:~,J] ~iSzcis i. (77) 
h I 

Now, there exists a basis of covariant  non  physical insertions At: i (i = 1, ..., 5) 
satisfying: 

i 
- g  [ A . 5 q  = si . 

h 2 C i 
Q t : -  ~ ~dx(8~,(~)cSr~_~))(x) ( i = 4 , 5 )  (78) 

where the cis are defined in Eq. (76) and g in Eq. (55). 
The symbols 8g, are defined by: 

804 = 8~ 8.1. (79) 
8g, = 8s2. 

The indices ( +  e) indicate translat ions by the e.g. space like small vectors _+ ~. 
We introduce the insertions: 

A t : Z  = ,ga Qt :Z  = [50, Q.t:] Z (80) 

(76) 

~ = ~ i  ct st (75) 

A a = zi a + A s (74) 

where Jx  is a part icular  solution of Eq. (7 3 and A s is a symmetrical  insertion. 
We shall first construct  a non physical A~, and we shall show that any A s is 

a linear combinat ion  of nine symmetrical  insertions three of which are non 
physical the remaining six satisfying Eq. (68). 

Let  us denote  
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and we have: 

i i 2 
[A,#,  Oo] Z = - ~-  [5  '~ , Q,,~] Z 

_ i [Qi ~, ~ d x  [ # ( . / f f 6 ¢ ) ]  ( x ) Z  = - -  - -  
f, , 

h C i 
= J dx[ao.~>(.Yaj ( -  O] (x)Z 

i c¢ 

(8,) 

where the connection between ,9 ° and the ~F /equa t ion  of motion [Eq. (64)] has 
been used. 

It is shown in Appendix IV that, in the limit e-~0 the finite part A~ of Ai, ~ has 
the same covariance as A~,~, namely 

c, s, Z~,_~)  = l i ra ci~ d x [ ~ ( -  e) l~gi(~)] (X) Z(_J, ~) . 0 (82) 

It is furthermore shown, in Appendix IV, that by substracting a symmetric in- 
sertion, which therefore does not alter the covariance cisl, one obtains non 
physical insertions which we denote A °. 

We now look for other non physical insertions which are easily obtained by 
applying the renormalized action principle [6]. 

The following variations whose covariances are indicated provide us with the 
desired insertions: 

1) ~coc c yields the insertion 

Ac = -~- ~f ax(~a~) ix) (83) 
with 

i 
h [Ac, 5e] = c4s4 + c s s s ,  (84) 

2) the operation 

h 
a.,  = T J" ax(rh a , ) ix)  (85) 

corresponds to a variation of z 1 in the neighbourhood of za = z2 = 1, z~ = 0 and 
its covariance is given by 

3) the operation 

i 
~- [z1.1, 50]  = - c2 s2 ,  (86) 

h 
/[*fa = T I dx(~12atl2)(X) (87) 

corresponds to a variation of z 2. Its covariance is given by 

i 
7[ [A.~, °9 °] = - q Sl, (88) 
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4) the operation 

A,~ = dx ( t  h g)¢) (x) 

corresponds to a variation of z'l. Its covariance is given by 

i ! 
[Ar11 '~]  ~-- - - C 2 S 3 .  

(89) 

(90) 

It is obvious that all of these four insertions leave all physical normalization con- 
ditions (31,3-8) unchanged. 

zi~ is thus a linear combination of A °, A°5, A,I, A,I~, A,I' which solves part of 
Eq. (74). 

We are thus left with finding a basis of symmetrical insertions. We know that, 
given the Slavnov identity 5o°ff(2, t/) depends on nine parameters, namely six to 
specify 5oeff(q?), three to specify the external field dependence (i.e., z 1, zz ,  z~). 

This is indeed true in the tree approximation and therefore, by the theorem 
of Appendix II, to all orders. [Of course, this counting does not take into account 
any of the normalization conditions (31), including (3t,0).] As a consequence, 
there are nine independent symmetric insertions. 

We first construct those which respect the physical normalization conditions: 
The first one is: 

A ° 's  = A ° + A ° - A t . (91) 

The second one is generated by the variation 6qh = const.: 

A °'S = Jl(x) d x .  (92) 

The third one is obtained by considering 

Ao2 = - ~  ~ dx(J2 6 ,  2) (x) (93) 

whose covariance is given by 

i 
~I [A02, f ~ ]  ~- C2S2 -{- C3S3 -- C5S5" (94) 

From the foregoing analysis: 

C3 1 A ° 's  = Ae2 + A,I + - -  A,1 + A ° (95) 
C2 

is symmetric, leaves the physical normalization conditions unchanged, and is 
non zero as can be seen by a direct calculation at the tree level. 

We are thus left with finding six independent symmetric insertions. By the 
general theorem of Appendix II, five of them are determined by the terms of 5 ° 
(excluding the one which leads to A°o'S). The sixth one involves 

AA = h ~ d x ( J  u c~j,) (x) (96) 
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since 
i 

[AA, ~cf] = CO SO -- C4 $4 = __ Cl $1 __ C2 $2 __ C3 $3 --  2c4 s,t - c5 s5 (97) 

it follows that 
A s = A  A - A ~ z  A . 1 - -  c3 A 1 

- c2 - ~  + 2A~ - A ° (98) 

is symmetric. 
It is straightforward but tedious to verify in the tree approximation that these 

six insertions alter independently the six physical normalization conditions 
(31,3-8). 

The gauge invariance proof is thus completed. It is extended in Appendix VII 
to gauges which contain a quadratic term odd under charge conjugation. 

IV. Unitary of the S Operator 

Let us first define 

Sphys(~) = Zphys Z(J) (99) 

where the notations are the same as in Eq. (33). According to the reduction 
formula, the physical S operator is given by 

Sphy~ = Ghy~(l)LJ = o.  (100) 

The contribution of non physical particle states to physical unitarity is explicitly 
given in the expression: 

S~hy~(j ) exp {ih S dx  [6~j./~S+, L ~ ]  (X)}GhostSphys(J_)l,2= 0 
0 0 1 )  

Sphys(_J ) exp d Sphy s (.J)]_d = O" 

Here L and ihS+ are respectively the differential operator occuring in the 
asymptotic field equations and the positive frequency part of the asymptotic field 
commutator. 

The proof consists in considering 

S;hys(_j ) o~(~) Sphys(_J)ls = 0 = S ;hys ( j )  exp(2d) Sphys(.J)Lj = 0 (102) 

and evaluating 

3. S;hys (-~) 0~¢ (,~) Sphy s (j)I_J = O" (t  03)  

It is shown in Appendix V, by extensive use of the Slavnov identity that 

th[Sj(e)(LS% * L)~ceSj~e)] (x )dx}#[(2)  Sphy~)Iy: o (104) : ! i m  0 S;hysC~) { ~"  ~ 

where 

6 j~ )  = -d~ 6 s, + -(6 j~ . (105) 
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S~+ denotes a regularized version of S÷ around the ghost mass shell and the index 
~ labels the "gauge-gauge" matrix element of LS~+ L as indicated in Appendix V. 

Integrating Eq. (104) with respect to ), yields 

S;h,~(d) ~(i)  S~,~(d)l~: o (~06) 

= !ira o S~hys~) exp {ih I dx  [c3j(,)(LS~+ • £ ) e ,  6s~,)] (x)} Sphys~)l , = o. 

Further use of the Slavnov identity according to which, the gauge operator 
decouples from physical states finishes the proof: 

S;hys (.J) ~¢(1) Sphys(.J)l.j = o = S;hys(~) Sphys(~_)l,t=O = S;hys Sphys - (107) 

Unitary follows from the hermiticity of the Lagrangian. 

Conclusion - Outlook 

The gauge invariance problem has been solved for the abelian ttiggs-Kibble 
model treated in a family of gauges odd under charge conjugation. Emphasis was 
put on the fulfillment of normalization conditions which allow the interpretation 
of the theory within a Fock space with indefinite metric. This has in particular 
allowed us to prove the unitarity of the physical scattering operator and to con- 
struct some physical local observables. We feel however that one should make 
a more complete study of the zero norm states that are allowed in the definition 
of physical states as equivalence classes. From the technical point of view, it was 
encouraging to see that the theory was widely controlled by the algebraic structure 
of its tree approximation thanks to the repeated application of the implicit 
function theorem for formal power series. This situation looks quite favorable 
to a future treatement of the non abelian situations, at least when no fermion 
anomalies are potentially present. This last case will doubtlessly call for more 
refined techniques, involving the Callan-Symanzik equations which have not been 

inc luded  here. 
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Appendix I. Non Abelian Gauge Transformations: Classical Theory 

Here are a few details concerning the classical theory of non abelian gauge 
transformations: the gauge parameters A as well as the ~ H  ghost field gare labelled 
by the indices of the dual of a Lie algebra ~- with structure constants f .  The cbH 
ghost field c and the gauge function N are labelled by the Lie algebra itself. 

-~¢/= ~ -  is labelled as a linear operator from ~- into ~ .  The square of ~ is the 

Killing form of ~,~, at least for the non degenerate part. 
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Going from the Ward identity to the Slavnov identity now involves an extra 
term: 

-- ~ dx  dy dz c~(x) 8 A'(z)  tSAr(y) ] ~(z)  g~(y) (AI.t) 

which, using the group law together with the anticommutativity of ~ boils down to 

6%(x) 
-- ½ J dx  dy c~(x) ~ f~v yV(y) Fp(y) (AI.2) 

or, using the equation of motion: 

½ ~ dx U(x) f]~s ca(x) ~,(x).  (AI.3) 

The corresponding Slavnov identity can then be interpreted as expressing the in- 
variance of the lagrangian under the transformation law: 

- 2 ¢ d 6(pi(x) ~ i ( x ) -  j y3h-z(~e~(y) 
(AI.4) 

2 
~c~(x) = ~%(x) ,  ~e(~) = ~ f L  ~(x )  8'(x) 

where 2 is a space time independent anticommuting parameter carrying no index. 

Appendix II. The Implicit Function Theorem for Formal Power Series 

This appendix is devoted to the statement and proof of an easy theorem (11) 
which has been repeatedly used to reduce the proof of a property to all orders of 
perturbation theory down to the verification of a simple algebraic property of the 
tree approximation: 

Theorem. Let F,.( x ~ . . . . .  x ,  , y j . . . . .  yp)=0 (i= t, . . . , n) be a set o f  algebraic 
(analytic) equations which has a unique solution x i=(p i (y l , . . . , yp )  analytic in 
(Y l , . . . ,  Yp) in some neighbourhood o f  (yO . . . .  , yO). 

Then the perturbed system 

P)Gx, ...,x-,;Y_a, . . . , y p ) = h  fi~.~ . . . .  ,X_~n; Y._ 1 . . . . .  y . _ p ; h )  ( i  = 1 . . . .  ,E l )  

where s I . . . .  , y_p are formal power series in h whose lower order terms are yO, ..., yO 
and the fi's are formal power series in x l ,  ..., x_,, y~, ...,y_p, h, possesses a unique 
solution 

x_~ = 2i(h, Y_l, ..., yp) 

where the ~i's are formal power series in h, Y_I, . . . ,Yv.  

Proof. Let 



148 C. Becchi et aL 

/~) can be expanded into a formal power series in _~, £~, whose term linear in _~ is 

0v~ 

OXj X;k = ~ok(yl ..... yp ) "~d 

where, by the hypothesis 

det 

is invertible in the sense of formal power series. Hence the initial system can be 
cast into the form 

~ j = l ~ i ( ~ l , ' " , d n ; . ~ l , ' " , . ~ p ; h )  
~3Xj xu = qk(_r~,..,,_yp) 

where the formal power series ~b~ are such that (b~(O, ..., O;_y~, .. . ,yp; O) = 0 

i.e. _~j = ~ 1  . . . .  ,_~,;_Yl . . . . .  yp ;h )  

with the same conditions on ~j. This system is easily solved by iteration. 

Appendix HI 

We show here that, as a consequence of the Slavnov identity, 
1 F 2 - F~L~o2) at [cc ( ALALIV~OZtV2 is finite p 2 =  mg and thus can be required to vanish. 

In other words, the ~ H  ghost mass is always degenerate with one of the A L, ~o 2 
ghost masses, complete degeneracy then characterizing spontaneous breakdown. 
We first write the Slavnov identity in terms of the vertex functional: 

f f (F)  ~ ~ d x ( - ~  ~3uDa~]" - el (~. ~Ff~2F + ez(~2F (~  I~ 
(AIII.t) 

+ NgcSe~F - -dA. 8~c5cF + "~q)2 6~F) (x) = O. 

Within the A., q)2 channel, we get: 

tp#F&,e2(p ) _ ~-i ~_ (p2) _ 7(pZ)Fe2 ~2(p2) = 0 
(AIII.2) 

pup, F4uA.(p) -- -ap 2 F&(p 2) + iy(p2)PuFA,~oa(p) = 0 

where 

Thus 

Hence: 

~(p2) = C~ r~,~(f)  + m. 

1 
G z g ' 2 ( P 2 )  = ~ P - f f i -  [ip"FA"~2(P) - 0F~c(P2)] 

P,p~FA,A~(P) = iT(pZ)puFA,,o2(P) + "aP z F&(p2) . 

. [I'ALAL I'AZ~,2) 1 
D = a e t I F A L o 2  F~o2~2, = pZy(p2) [-'~'apZ(Fec(P2)) z] 

+ ip~, FA,.,e2 (P) F~c (p2) (fi-2 p2 _ 07 (p2)). 

(AIII.3) 

(AIII.4) 

(AIII.5) 
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Thus, first 

r ~  1 Dip2 =rag 

is finite and furthermore its vanishing implies 

aP 2 -- -O(ffi + e2 F~,~ ( p 2 ) ) [ p 2  = m  2 ~ ap 2 -- F},(p2)tp2 mb = 0, (AIII.6) 

since FA,o~ +0,  provided one stays away from the restricted t'Hooft gauge 
(e=c~ev). 

Looking now at the OH propagator equation 

[~.p2 _ (~-~ + ~-2)] G~(p2) _ gF2 G~n~(p2) = ~ (11II.7) 

the absence of a pole in the left hand side at p2 = m 2 yields: 

~p2 _ ( F  ~ + ~ 2 )  _ ~-e2 FFt/1 (P2)[p  2 = m 2 = 0 (AIII.8) 

after multiplication of (AIII.7) through Fe~ and use of 

G~-,~ = F~,, G~-¢. (AIII.9) 

Hence comparing with Eq. (AIII,6), we get: 

g =  0. (1III.10) 

Appendix IV 

We have shown in Chapter III [Eq. (81)] that, in the limit e ~ 0, the commutator  
of Ai,~ with 5 ~ is equal to cisi . We thus infer that the infinite part of A~,~ as given 
by the Zimmermann-Wilson expansion is a symmetric insertion with coefficients 
going to infinity as e~0 .  The finite part A~ will then be given by [5 #, Qi] where Qi 
is the finite part of Qi,~. 

It is possible but lengthy to verify these statements by looking at the Zimmer- 
mann-Wilson expansion of Q~,~. In the case of Qs,~ the calculation is however 
reasonably simple: 

S dx[Tqo;(e) c ( -  e)] (x) 

h ( j  dx  Tfqo2(e ) c ( - e ) ]  (x) N2 [gq~2] (0)5 j dxrl2(X) (AIV. 1) 

+ (J dx  T[cP2(e ) c ( -  el] (x) _02(0)_c(0)5. j dx{TN2[cP2(e) c ( -  e)] (x)} 

where the second coefficient is amputated on its 02 F arguments. The only singular 
coefficient in this expansion is 

(~ dx  W[q~2(e ) c ( - e ) ]  (x) N2[Fqo2] (0)5 (A IV.2) 

which diverges logarithmically. The singular part of As, ~ is thus proportional to 
[~,  ~ dx112(x)] "~ ~ dxJ l (x )  which is symmetrical [cf. Eq. (92)] as expected. 
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By a similar but more involved analysis one can evaluate the singular part 
of A4, , which assumes the form 

{ (  } ,A,v.3, 
+COt(e) f d x  Jl(~jl-l-l~2(~rt2-l-J2(~j2-~l(~th-}- ~-/~13{ ( x ) + A 5  

where co and co' are, in the limit e--, 0 logarithmically divergent. 
The resulting finite parts are however not suitable for our purpose because, 

due to the occurence of graphs which are q~ one particle reducible they do not 
vanish upon application of the operator Xphy s [cf, (Eq. (33)]. Since the Qi,~'s carry 
the quantum numbers of c~02 we have: 

where 

Sphy~ Y Q i Z  = - E ,  Zphy~ 5 dx(Ja On=) (x)Qi z 

= - -  e l  ~'phys 5 dp ffl(P) F(a')(P) 631~p) Z 

= - ea rO" ')(Mz) Zf, hys ~ dp 31 (19) g),/i~p) Z 

= -- el I'(Qi)(m2)z~phys f dx(J1 (}J1 -}- 172 6q2) (x)Z 

(AIV.4) 

i 
/'(Q0(p) = h -  ( T N  2 [~'q02] (0) Qi~l  (1))) 

is involved in the expansion" 

i 
~5..(p)Q,Z = -~ (TN2 [e~o2] (0)Qi~bl (p)) 5j1(p)Z 

i 
+ ~- (TN2 [ ~ 2 ]  (p)QYlZ 

(AIV.5) 

(AIV.6) 

where the upperscript 11 denotes the set of graphs which are one particle irreducible 
with respect to the pair E(Pz, Qv 

Since j'dx[Ja3jl+tlz~)~2](x ) is obviously a symmetric insertion, adding 

does not change the covariance of [5 ~, Qi] and produces insertions which leave 
the physical normalization conditions [Eq. 31 (3-7)] invariant. We now want to 
show that the insertions A ° leave the normalization condition Eq. (3 t.8) unchanged. 
These insertions can be replaced by A i = [5 p, Qi] modulo terms which triviNly do 
not contribute to the calculation. 

We shall show that: 

F~2 det(IF ALAL FAL~2) = 2 (AIV.7) 
\ aLq~2 /"~02 02 / G~D 
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remains regular at the q~H mass, upon insertion of Ai. 

=- A i 

where the matrix tIGJ is the inverse of the matrix t]FJ. By commuting 6¢J~ 
through ~ we get: 

[A~ Q~] (iv) = ( T c(p) f¢(0) Qz) 

= G~(p 2) (T c2(p) N(0)Q,) 

where underlining means amputation. 
Similarly 

[A~ G~D] (p) = 2 G2~(p 2) D(p 2) [(T~(p) ~(0) Q~) 

+ (T~2(P) [~2 N2 [gqo~] + N c-] (0)Q~) (A IV. 10) 

_ p2 ( T c3~'Udu(p) ~(0) Q,) ] .  

Thus we only have to make sure that the bracket is regular at the ~ H  squared 
mass. Now the first term is singular due to the occurence of the ff propagator, and 
the last two terms are singular due the occurence of the q~H propagators. The 
propagator can be factorized using the Slavnov identities: 

(T~(p)~02(0)) = - (T(~2 N2 [~0~] + Nc-) (O)5(p)) 

( T (~(p) O n A.(O)) = p2 ( r 5(0) 5(p)), (A IV. 11 ) 

so that: 

( T2(p) NO)Q,) = - (T-c@) q~z(O)Q,) (T(g2 N2 [~0~] + Nc-)(0) a(p)) 

+p2(r'-c(p) O, Au(O)Q~) (T~(O) a(p)). (A IV.t2) 

Now the &H equation of motion allows to replace [g2N2[gqh ] +Nc-'] (0) by a 
term proportional to [] 5(0) up to a regular term, so that the factors (TE(0) 5(p)) 
undo the ~ amputation involved in their factors and produce an exact cancellation 
with the last two terms in Eq. (AIV.10). 

(AIV.9) 

Appendix V 

This appendix deals with a number of details in the unitarity proof of Chap- 
ter IV. We first discuss the properties of the asymptotic ghost field wave operators L 
and of the corresponding asymptotic field two point function S+. Within the cou- 
pled (OuA~, cp2 ) channels L can be taken as a polynominial approximation to the 
matrix 
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where 

(AVA) 
= - g 8, A, + ~~o2 • 

Denoting x = p 2  rag, and taking into account: (i) the normalization condition 
(31.8), which implies the occurence of a double zero in detL at x = 0 (ii) the lack 
of singularity in the f i n  propagator, which follows from the Slavnov identity and 
implies the occurence of a double zero in F ~  at x = 0. We can parametrize L 
in the following form: 

(A+. 
L = 7x + O(x2), (AV.2) 

the last term giving corrections of order x 2. 
The corresponding matrix propagator  is: 

Gf~g~ G ~ /  72X 2 --?X A+f i x  + Regular terms (AV.3) 

and the S+ operator is given by: 

ih'-S + = O(po) Y (AV.4) 

a(x) a(x) + a'(x 

so that 

ih(LS+L)~=O(P°)( A[y~3(x)+3(x)X+'y~5'(2)2]+flyi3(x)2723(x)2 ~Yc g)( ),x)x/ (AV.5) 

where the symbols 2, Y are to remind that the usual identities: x b(x) = x 2 3'(x) = 0 
cannot be used here because this kernel is to be tested with functions which have 
poles at x = 0. 

Concerning the Faddeev-Popov fields, let us define 

~ = c  
(AV.6) 

g7 = 2~[r~ + ~2 F ~  (m2)] ~. 

Using the results of Appendix III we get: 

1 
Ge~ = - -  + Regular terms (AV.7) 

yx 
and 

The sd operator Eq. (101) can now be written 

~¢ = ~ dpO(Po) {3j,(_ p)[A(Y a(x)+ 6(x)2 + ~ 6'(x)2) + fly 6(x)2] S.c,(p) 
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where J* is the source of the field ~p~ that is used in the definition of the antitime 
ordered functional. 

Before pursuing, let us regularize the 5 functions according to 

e 
6(x)-- ,6~(x)= 1 ~  (AV.10) 

so that we may forget about the arrows on the 2 variables. Owing to the invariance 
of the lagrangian under the transformation: 

(AV.I 1) 

we have the identity 

cij~t_p)c~j~(v ) - 6j~(p)g).~(v) = O~(_p)6.~(p) + 5.~(_p)6j~(p). (AV.12) 

Taking into account [Eq. (43)] we get: 

:7]  = O(x) 

- -- x6 re(p) + O(x 2) 
7 

gl = o 

which yields 

[ d , ~ ] = ~ d p O ( p o ) { ~ . ~ ( - p ) [ 2 A x c S ( x ) + A x E 6 ' ( x ) + f l x Z 6 ( x ) ] ( - T x ) c ~ ( p  ) 

(AV.13) 

+ 

(AV.14) 

Since the propagator attached to the f¢ and c~ legs have only simple poles the fi 
dependent term in the righthand side of Eq. (AV.14) is of order e. This does not 
happen for the term involving 6 ~  because the (if, if) propagator has a double pole. 

However we have 

A 
x G(~rj(p z) . . . .  G~(p  a) + Regular terms. (AV.l 5) 

Since the (f¢, ~) propagator has no pole we have: 

A -  
x6.te(p)Z = - 7-6j~(p)Z + Regular terms. (AV.t6) 
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Thus 

[~,  5~] = ~ dpO(Po) {~.~(- p)[2A x 6(x) + A xZ c~'(x) - A x ~(x)] ( -  ~/ x) eSY~p) 

x 2 6 (x) [~y~ (_ p) 6~  (e) + 6~T~( - p)6~ (P)]I + O(e) (A V. t 7) + 7 

The vanishing_of the A dependent terms is due to the absence of double poles 
in the ff and (g propagators. 

As a consequence we get: 

[ d ,  5;] = [57., d ]  + O(~) (AV.18) 

where 57* is the Slavnov operator which characterizes the anti-time ordered 
functional. 

Indeed Eq. (AV.18) is a consequence of the symmetry of both d and [ ~ ,  .9;] 
with respect to the transposition and the complex conjugation of the sources. 
We are now in condition to state the following identity: 

dpO(po)   + 

+ ~.~;(- e, Sy. (p) + 3~;(_ .)5f~ (.,] } e z ~ s,..(d)l_~: o 

= S~hy,(__J) y dpO(po)yX = 5(x)[{6.i;(-p), 2*} 5~,(p) 

+ 6~ (_ p){6~f~(p), 5;} + [5 ~*, 3.i~ (- p,] 6s~ tv) (A V. t 9) 

+ 3y;,_v)E#~,,p>, 5;]]  + O(e) e~Sph,,(J__)lJ_=o 

= S*phy,(J._) {~ dp O(po)y x 2 3(x) [3y~(_ ,)[5 ~*, e TM] cS#t~tpl 

- 3.~(_ ~)[~*,  e TM] ~.~,~,)+ 3~ (_ , ) [ e  TM , 5;] gy~(p) 

- 3~g(_ p)[e  TM, 5;] 6.~(;)] + O(e)} G ~ y , ~ ) I ~  = o = o(e).  

In the first step of this reduction, the O(e) term takes into account contributions 
of the kind: 

S ; h y ~  ) y dp O(po)'? x 3 6(x) ~.i~(- p)5~(p)e~ Sphy~)lj = o. 

The second step makes use of the Slavnov identities 

=o 
(AV.20) 

G . ( / * ) s  =0 

and takes advantage of the zero source condition by commuting 5 ~ to the left 
and 0~* to the right. 

The last step is a trivial consequence of Eq. (AV.t8). Going back to the expres- 
sion for ~¢, and taking into account the symmetry property, one gets Eq. (104) 
of Section IV. 



Renormalization of the Abelian Higgs-Kibble Model 155 

Appendix VI. A Class of Local Gauge Invariant Operators 

In order to define a local operator O(x) of dimension d, we shall first consider 
an effective lagrangian. 

£P~)(x) = ~af(SP., J_,tl) (x) + co(x) Na[ O(x)] (AVI.1) 

where co is a classical field of Dimension 4-d. 
The first criterion for gauge invariance is 

~ Z M ,  j/, co) = O(co 2) (AVI.2) 

where 5 P is the operator defined in Eq. (43). Assuming that Eq. (AVI.2) has 
solutions, they are in one to one correspondence with those found at the tree level. 
They will be further specified by as many physical normalization conditions as are 
necessary to specify physical operators of this type at the tree level (namely 
modulo the ideal generated by operators which vanish on the physical subspace). 
It follows that O is ambiguous up to a linear combination of operators whose 
tree approximations vanish on the physical subspace. 

The proof of gauge invariance then proceeds as usual (Chapter III). Keeping 
terms of the first order in co, one looks for the most general solution of 

i Ai~Z(/ ,_~ ' co) G,Z(J_,~, co) = (AVI.3) 

which is of the form 

a(~ ~) = A,  + .[ dx co(x) IS,  f~ Of(x)]  (AVI.4) 

where the second term in the right hand side of Eq. (AVI.4) is a perturbation of 
the co dependent part of the solutions of Eq. (AVI.2) in the tree approximation. 
Testing now Eq. (AVI.4) with the physical normalization conditions Which 
specify O(x) shows that the problem reduces to check that the perturbations of 
operators which have null physical restriction in the tree approximation retain 
this property to all orders. 

Finally the stability of the physical subspace under application of O(x), 
up to the zero norm states is a consequence of Eq. (AVI.2) as follows from a slight 
generalization of the argument in Chapter IV: defining S(co) by replacing Z(J_,q_) 
by Z(g,_~, co) in the LSZ definition of S in the overall Fock space, O(x) is defined 
according to 

h., a o(x) 

O*(x)= hi &o(x)6S* S,~=0 

(AVI.5) 
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Let E o be the projector on the physical subspace generated by cp~ and AT quanta. 
One wishes to show that 

i.e. 

E o Or(x) Eo O(y) E o = E o O*(x) O(y)E o 

fiS t fS  E°o,=o fiSt , 8S I 
E° 6o(x) 6o9(y) =E°  f - ~ S E ° S  ~ E ° o , :  o 

(AVI.6) 

(AVI.7) 

where the unitarity of S has been used. 
Equation (AVI.7) follows simpty from 

E o SE o S ~ E o = E o (A VI.8) 

which is the result of Chapter IV and from the identities 

fS* f S  E o o = o = E o  fS* Eo3--c~-~-y) Eoo~= ° 
E° &o(x) foo(y) &o(x) 

Eo._fS t SEo = E o  fS* EoSEo ° o 
fo(x) ~=o &o(x)  : 

(AVI.9) 

which are consequences of the first criterion for gauge invariance: 

I~-6~ -, 5 p] = 0  (AVI.l 0) 

and of the argument in Chapter IV. 
Example. a) d = 2 C = + 1. 

O is a linear combination of {cp~, q~, ¢2,z AuAu ' ~c}, 
5PO is a linear combination of {~02 g, qh (P2g, g0,Au, O, gA~}; so is the term O((~) 
in 5PZ(g, tl, co). 

Thus there is no anomaly i.e. there exists one invariant local operator which 
is a perturbation of 

which is non zero in the physical subspace. This operator is completely determined 
by e.g. 

(a, O(x) e~,~.(y)a> = lab(x- y) 

and can serve as a gauge invariant interpolating field operator for q)l,~n. 
b) d = 3 C = - 1 vector operator. 
It is trivial that c? u Gu~ solves the problem: 

[(El g.~ - ~ )  fs~x~, 5 q  = 0 
n 

o~l-I,(Do.i~,-o~ ov)f, ~x,~Zp~r~zb=.=o=O ( ~ = ~ , m g ) .  
1 
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Appendix  V H  

This appendix is devoted to the main steps involved in the treatement of an 
extended class of gauges involving quadratic terms odd under charge conjugation. 
In the tree approximation, the Slavnov transformation [cf. Eq. (24)] is now taken 
to be: 

6A u = 2 ~ 5 

b@l = --~,e@295 

6q~z = 2e(@1 +v)g  (AVII.1) 

6c = 2(auA u + ~o @2 -~- 0"@1 @2) = •ff 

(~17" = 0 .  

The most general lagrangian fulfilling the corresponding Slavnov identity is now: 

¢ -  Z A 
4 G,~ G,v + Z~ (D, @)* D, ¢ + #2 0 .  @ _ g(q~. @)2 

(AVII.2) 

" ]  I / + c T - f f c  +/3 - Fc+ ............ + @~ 
2 e 2 

where now 

a~(x) 
aa(y) - -  = .~¢g(x, y) = [ [ ]  + 0 e v + e(0 + a v) + e cr(92 _ cp 2)] (x) 3 (x - y ) .  (A VII .3 )  

Keeping the normalization conditions Eq. (3t) unchanged Eq. (32) is unchanged 
except for Eq. (32.3) which now reads 

2 6 (AVII.4) 

But due to Eq. (32.8) (/3 = 0), the overall algebraic system Eq. (32) is unchanged. 
We now turn to the details of the Slavnov identity which we shall express in linear 
form as in Eq. (43). Before doing so we need to introduce at least one external 
field y coupled to @1 @2, to which we assign dimension two and odd charge con- 
jugation quantum number. The corresponding term however undergoes a variation 
under the Slavnov transformation (AVII.1), which forces us also to introduce at 
least one field coupled to (@2_ @z2)~. However, for later use, we shall right away 
introduce three fields of dimension one,/3 = (/3i,/32,/33) coupled to three independ- 
ent linear combinations of: cg - ( ~ ,  cg2, cg3) - 2 = (@i , @2~, AuAu~) and also a field 
of dimension dimension zero z coupled to Au~0 S .  Thus we have introduced 
external fields coupled to a system of operators which is closed under Slavnov 
transformations. The most general lagrangian invariant under charge conjugation, 
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~b// neutral and consistent with power counting is now 

+ Y(aI q~t g°2 + azgo2 + a3 cguAI~) 
(AVII.5) 

+ [3i(Bu~ s + Miqol c+ vi'c+ wi [] c-) 

-1- "ca4Au~ at, c-I- a5 y2 + J1 q)l + ']2 q~2 -I- J~A~ + ~C + ¢~ 

and the Slavnov identity assumes the general form which will be needed later: 

5P~Zc = ~ Z c +  ~ d x E -  ~ 3 ,  (AVII.6) 
+ ~ {,h [] a~ + ,~2 a~ + & a,, + ~a~} + d. ~a3 (x) Z c  = o 

where however in spite of the huge number of parameters involved in (AVII.5) 
the coefficients in 5~ are always constrained by 

d. b = 0 (A VII.7) 

because bi oo (B- 1)1 i - (B- 1)2 i and di oo Bi 3 (i = 1, 2, 3). One can in fact verify di- 
rectly that this is the only constraint on the coefficients of the Slavnov identity. 

We are now ready to prove that one can fulfill a Slavnov identity of the type 
(AVII.6) to all orders in h, with coefficients constrained by Eq. (AVII.7). Per- 
forming a Slavnov variation of the type (AVII.1) on an effective lagrangian of the 
form ~ N4 ~(_q?, J,_~, 7, fi, z) [cf. Eq. (AVII.5)] yields: 

3 2  

5~o Z = ~ i  c~A~Z (AVII.8) 
1 

where the first 23 A~'s are listed in Eq. (26), and the last nine A[s are: 

(24) j' dxETc-'j (x) 
(25) ~ dxEy [] c-] (x) 

(26) 5dx[TN3[~¢l]]  (x) 

(2V) fdxDU3E~°~g](x)  

(28) j'dx[TN3Eaq~] ](x) 
(29) ~ dxEyN3[gAuAu] ] (x) 

(30, 31, 32) ~ dx[fl, N4[AuYSuc-'] ] (x). (AVII.9) 

After elimination of the A~'s which are naive variations, one is left with an ~eff, 
including source terms such that only A2~, A22, A23 and a linear combination of 
A30, A3~, A32, namely: A~a = b ~  dx[flN4[AugSuc-']] (x) remain on the right hand 
side of the Slavnov identity which reads: 

~,~Zc=(c21A21d-c22A22-~-Cz3Aza-~C33A33)Z C . (AVII.IO) 

Now recall that ~ is the naive Slavnovidenti ty associated with the Slavnov 
transformation we started with, hence d. b=O. Now compute ~ 2 Z  c, which 

1 Ifa monomial is of the form e M(g0) where ~ is an external field to which dimension d was assigned, 
N,~[eM(q~)] means eN4_e[M(~p)]. 
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because of this condition has the same form as the ~ H  equation of motion 
integrated through ~. 

We have: 

.SP2Zc-=.~[c21z]214-c22z122 q-c23z123.4-c33A33]Zc. (AVII.11) 

The same argument as before shows that Y 2 Z  c has coefficients identical with 
those occuring in the q)ll equation of motion, except for the mass term, and that 

c21 =C2z =c23 = c 3 3 = 0 .  (AVII.t2) 

At this point the Lagrangian depends on 24 parameters since 28 relations were 
imposed on the initial 52 parameters. Together with the 14 independent parameters 
of the Slavnov identity we have 38 parameters which can be fixed by the 9 nor- 
malization conditions in Eq. (31)2 together with 26 others fixing the couplings 
with the external fields 3. It is a matter  of routine to veri~- that the corresponding 
system is soluble the condition d. b = 0 being preserved. Three parameters are 
then left free: e2, a, o-. The gauge parameter  o- could be fixed by imposing an extra 
normalization condition on I~{~.  We now extend the proof  of the gauge in- 
variance of the scattering operator. In order to do so, we shall decompose again 
the insertion A~. generating an infinitesimal variation of the gauge parameter  2 
according to 

A~ = zi~. + A s (A VII.I 3) 

and we shall show that it is possible to choose the two insertions zi x and A s saris- 
lying the same requirements as in Chapter IIl,  Eq. (68) and Eq. (73). First of all, 
let us write Eq. (A VII.6) in the form. 

~cf~Zc=_ i c i s i+  ,[dx[),b. eSg+d, fia~](x) Z c (AVII.14) 

the first six sis are listed in Eq. (76) the remaining four are: 

s~ ; ~{ d x D  [] 6 3 (x) 
(AVtI.15) 

The derivative of ?-f, with respect to the parameter  2 is ob~ined  by differenciating 
the c~'s and the vectors b and d. Since we know that b - d = 0  [Eq. (AVII.7)] 
independently on 2, we have the equation: 

d'. 0~b + b0~ d =  0. (AVII.16) 

2 Using the same kind of arguments as in Appendix III it can be shown that the condition given 
in Eq, (31,8) is a suitable normalization condition and that the mass term in the ,/5/7 equation of motion 
has the same coefficient as the corresponding term in j 2  Zc" 

~ The simplest additional normalization conditions are: 

z 1 = z 2 = a = B l l = B 2 2 = B 3 3 = a ~ =  

z' I = a  2 = a  3 = a  5 = f f = v = w = B i . e j = 0 .  
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We can parametrize ~. b and #x d b y  introducing the two cartesian triplets: 

b, bl,b2 
d, dl, d 2 

in the form: 

(A VII. 17) 

Table AVII.I  

Insertion Covariance 

h dx[~.fiDaJ(~) =  7rf 

h dx[-~. #a 3 (x) a~ = G r f  

h 
d~  = ~ 5 dx[b . fl d, . @] (x) 

zl# = i - ~  ~ dx[b, . fl d. 6#] (x) 

- - C l  S 1 

- -  C 2 S 2 - -  C 9 S 9 

- - C 1 S 3 - - C 9 S  8 

- - S  7 

- - S  8 

- -  S 9 

dx[g,. Ha3 (x) 

f d x f d 2 b ' f f 6 ~ -  b 2 7 Y ' 6 ~ ]  ( x )  

a ; f -  y. x~dii+z(~b2d 
i= 1,2 (A VII.l 8) 

a j - -  E 
i= 1,2 

Thus we have to find a non physical zi, satisfying the equation: 

9 

1 
(,) - (AVII.19) 

+ ydx/ti=l,2E xi ydi'ag+,=,,2E ~iia)-bi'ff'5~+z{'~)(b27i'~5#-d2b'fia~)}(x)" 

The insertion A, is a linear combination of a basis of covariant non physical 
insertions which can be found as follows. 

First we introduce, in analogy with Eq. (78) three operators Qi,~ with 606 = 61.. 
By the same construction as in Chapter III we get three insertions A ° of co- 
variances cisi (i = 4, 5, 6). 

Then using the generalized action principle [6] we can complete the basis of 
covariant non physical insertions as indicated in Table (AVII,1). 
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It is evident that one can find a particular solution of Eq. (AVII.19) as a 
linear combination of these insertions and of the three A °'s. In the same way one 
can get other non physical insertions which are listed in Table (AVII.2). 

Table A VII.2 

Insertions Covariance 

A ° = j dx J~(~) 0 

~ = ~ ~ dx[~ a~] (x) && + c5 s5 + c6 s6 

A~= ~ ~ dx[J26&] (x) c2s2 + c3s3 - c5s5 

A.y = ~-Sdx[*~ay] (x) - -C6S6-{ -  Z CiSi-~]b'~)fl i=7,g,9 

zJ;: = ~ [. dx D a J2] (x) c3 ss + c2 s9 - c6 s5 

d'~ = h ~ dx [7 O. 6&] (x) s 7 - c 6 & 

zl~ = T 5  dxEbl, f iDb¢]  (x) 0 

A; ~ = ~..j dx[~,. ,~a~] (x) o 

~;~ = ~ 5 dx[~,. #3,,3 (x) o 

h dx[-~,. # 4  a~] (x) 0 

h 

h g  
a~ = £ dx 7~(~) -~5 d~[@] (~) = - -=- 5 d~[;,(...# @] (~) 

It is clear that combining linearly the insertions listed in Tabte(AVII.2) 
with those previously considered we obtain l0 symmetrical non physical inser- 
tions; in fact, because of the  orthogonality condition Eq. (AVII.7) b is a linear 
combination of the ~'s and d of the bfs (i = 1, 2). 

Now, following the same procedure as in Chapter III, we complete the con- 
struction of Ax by studying a basis of symmetrical insertions A s. Since we know 
that, given the Slavnov identity, the complete lagrangian [Eq. (AVII.5)] depends 
on 24 parameters (6 of them fixing the propagators and the couplings of the 
quantized fields, and 18 specifying the external field dependence), it follows that 
there are 24 independent symmetrical insertions. We have already constructed 
18 independent AS's which are non physical. Thus to complete the proof of gauge 
invariance we have to find six symmetrical insertions satisfying Eq. (70). Five of 
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them are determined by the independent terms of the tree approximation 
f¢2 

lagrangian [Eq. (AVII.2)] excluding ~ - -  + ?.//dc. The sixth one is the analog of 

A s [Eq. (98)]. They verify Eq. (70) as can be seen in the tree approximation. 
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