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Abstract. Transforming any lattice system in a polymer model, we use known 
analytic and cluster properties of the latter to derive similar ones for general 
lattice models with two-body interactions. These properties of the lattice model 
hold when the temperature is high enough. 

Introduction 

Our purpose here is to study various lattice models in some weak coupling regime. 
In particular we will prove that, at high enough temperatures, the free energy and 
the correlation functions of these models are analytic functions of any parameter 
on which the hamiltonian depends analytically. Moreover, under the same 
conditions and forfinite range interactions, the two-point functions will be proved 
to decay exponentially. 

These models contain as special cases, lattice gases with two-body interactions, 
classical Heisenberg models and lattice approximations of field theoretical models. 
They describe also some anharmonic crystals, of interest for ferroelectricity. 
Results of this kind were already obtained for some of these models [1, 2]. 
However, the technique used relied heavily on further properties of the model in 
question, such as the boundedness of the values taken by the spin variables. They 
could not therefore be generalized to lattice approximations of field models for 
example. 

Our strategy here is the following: we transform any lattice model in a 
so-called polymer model, which can be seen as a generalized lattice gas, with hard 
core interactions. These polymer models were studied previously [3,4] and 
various analytic and clustering properties were established for their gaseous phase 
(i.e. in the weak coupling region). The remaining task is therefore to estimate the 
parameters of the polymer model in terms of those of the corresponding lattice 
models. This is done in the case of two-body interactions only in order to simplify 
as much as possible the analysis. Our expansion is very much related to the old 

* Supported by the Fonds National Suisse de la Recherche Scientifique 

0010-3616/78/0059/0053/$03.40 



54 H. Kunz  

Mayer expansion for continuous systems and this suggest that there should exist a 
simple unifying approach to all these systems. It seems also that there exist some 
connection with the cluster expansion of Glimm-Jaffe-Spencer. 

The idea to transform a lattice model into a polymer one is not new. It 
appeared in the physical litterature mainly in connection with the so called cell- 
cluster theory of liquids [10], and has been called by Hurst and Green the general 
association problem [11]. The systems discussed however were lattice models with 
descrete spin variables. 

In the meanwhile, some of the problems we discuss in this paper have been 
attacked by other workers [5, 6] using different techniques. Their results, however, 
are similar to ours. 

1. General Lattice Systems and Polymer Models 

Our purpose here is to show how quite generally any lattice system can be recast 
into an associated polymer model. Let us recall first what we mean by a general 
lattice system. To each point x62~ ~ is associated a given subsystem whose "states" 
are numbered by the variables sx6iR d. A configuration s A in a finite box A C71 ~ is 
given by the iA[-tuple: s A = {s~]x6A}. The potential energy of a configuration SA, in 
the box A, is a real function : (IRdlAI0 A)-~IIL denoted by UA(SA). It is choosen to be 
such that Ux(sx)=O Vx6~g ~. The Gibbs probability distribution of this system is 
given by 

Q,~l exp --~UA(SA) 14~fl(dSA) (1) 

where 

wa(dsA) = I-I w~(dsx) , (2) 
x6A 

wa(ds) being a measure on IR a normalised to t, i.e. 

wa(ds)= 1,  (3) 
ira 

and 

QA = S wt~(dsA)e- ~ VA(SA) (4) 

in the partition function. In physical applications one takes 

e-~V(s)#(ds) 
w~(ds) = , ( 5 )  

Rd 

#(ds) being a measure independent offl, and V(s) a real continuous function on IRa 
The correlation functions of such a system are defined as 

eA,X(SX) = QA 1 ~ wp(dSA\x)e- Pva(,~) VX C A . (6) 

The formula we have written make sense if 0 < QA < cO, VA C~ ~ is finite, a 
property we will suppose to hold from now on. 

Let us now define more precisely a polymer model and its associated partition 
function and correlation functions. 



Analy t i c i t y  wi th  U n b o u n d e d  Sp ins  55 

We consider a finite set A C2g v consisting of ]A[ points called sites, which are 
denoted by small letters, x, y.. .  

With X = {x~ .... , x,} a finite subset of A, a "polymer X" is a rigid system of n 
particles which can be placed on A in such a way as to cover X. The polymers 
consisting of one particle will be called "monomers", of two particles "dimers", ... 
of particles "n-mers'. 

Polymers are placed on A and we assume that each site is covered by one and 
only one particle. 

A configuration of the polymer system is therefore defined as a partition 
{X1,Xz, . . . ,Xk} of the set A ; we recall that by definition of a partition, we have 

k 
A =  [.)X~, Xi4=0, XimXj=O if i4=j, we will denote from now on this partition by 

i = 1  

the symbol 

k 

A =  ~ X  i . 
i = 1  

The state of the system is defined as usual by a probability measure 
VA({X1,...,Xk} ) on the configuration space; for polymer systems this measure is 
caracterised by a positive, bounded function ~(X) defined on subsets X C A, which 
is interpreted as the "activity of the polymer X", and 

k 

Va({X1,...,Xk} ) =p• t H q~(X,) (7) 
i = I  

where 
k 

P A + ]  = [ I  +(x,) (83 
k i = l  

k A = i ~ I X  i 

is the partition function. 
The correlation functions QA(X ~ ;... ;Xp) are defined as the probability of finding 

polymers X> ...,Xp. With the above probability measure we have 

oa(X1 .....  Xe)=0 ifXic'xX~=P0 for some i4:j 

or Xi~t A (9) 

P 

Ca(X1 .... .  Xp)=na[~]  -~ H ~(x,) ~ H ~(r~) 
i=1 A\ ~ x,=zrj J 

otherwise. 
From this follows that all the correlation functions can be expressed in terms of 

the various ratios of partition functions: 
Namely 

eA(Xi ;... ;Xp)= 1-I ~(X~)OA X~ (10) 
i i 

where 

7Q A(X) --- 7~A(X) ~ J  (11) 
r A  L ' P J  
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and 

{10 X C A  (12) 
zAx)= X C A . 

In order to map a lattice system into a polymer model, we need to introduce 
some well known algebraic formalism. 

Let M a be the complex vector space of functions Fx(sx)ElLl(1R<AL, cop(.)) 
defined on all the subsets X C A. This vector space becomes an algebra with unit 
element ]l, when we introduce the following * product. 

(F*G)x(Sx)= ~ Fr(sr)Gx\r(sx\r),  F, G E M ,  (13) 
YCX 

11 being the vector defined by 

x - °  t 4, 
11x(Sx) = X 4= O . 

If M~ denotes the subspace of M A formed by the functions F such that 
Fo(so)=0, we define as usual on M~ an exponential F. 

r V =  ~ F  *o . (15) 
n= 0 

It appears also useful to introduce the following mapping on this algebra 

( D ,x F)r(sr) = F x ~ r(Sx,, r)ax ~ r,o . (16) 

This has the basic property 

[O~(V , G)] r(sr) = {(Ds V* G)~(sr) + (F * Osx G)r(sr)}ax~ r,o , (17) 

from which follows that 

[D,x(V G)] y(sr) = [D~ G • F G] r(sy)ax ~ r,0 (18) 

and 

[D,x(FG)]r(sr)= ~ [D,x G , , . . , D s x , G , F G ] r ( s r ) a x ~ r ,  o . (19) 

X=i~=lXi 

This formulation allows us to define in a simple way the Ursell functions 
~PEM A of our lattice system. They are defined by 

7J~(G)=I and e-eV~(s~)=(F~P)x(Sx) when ]X]>I .  (20) 

We can now state precisely the correspondance between a lattice and a 
polymer model. 

Theorem 1. 

1) Qa = PA[~] (21) 

where 

q~(X) = ~ we(ds x) Tx(Sx) (22) 
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Pal(b] being the polymer partition function of a system of activities {~(X)}. 

2) OA.x(Sx) = ~ ~ wl3(dsl,)Fsx(Sg)OA(Xk310 (23) 
g 

where 

PA\X[¢] (24) 
O A ( X )  = X A ( X )  p A [ q ) ]  

and 

F,x(Sr) = [(r  T ) - I ,  Dsx( F T)] r(Sr)ax~ r,o (25) 

(FT) -1 being the • inverse of FT. 
N.B. when Y=0 in the formula we do not integrate. 

IAI 
Proof a) QA = ~O)p(dSA)(FT)A(Sr) = ~, fO-)~(dSA) Z 

k = l  

IAi k 

~, Z ]~ ¢(A,)=PA[q~] " 
k= 1 A>. .A  k i = 1 

A i ~ A  j = 0 

A i = A  
i = l  

2) ~A,x(Sx) = Q~I 1 f 

k 

[I ~Asa) 
A t . . . A  k i = 1  

A i ~ A  3 = 0 

kw A I = A  
l=1 

a)~(dsa\x)(rT)A(SA) = QA 1 ~ O)e(dSA\x)[Dsx (FT)] (SA\X) 

=Q5l~%(dsA\x) ~ ~ (D~x,T*...*D~,,T)(sr)(F~t')(sA\x~O 
X = ~ Xi Y C A \ X  

i = 1  

= ~, ~ ~e)p(dsr)(D.,,T*...*D~,T)(sr)oA(XwY) . 
X=.~IX I YnX=O 

But since 

[D~x(CT)](sr)= ~ [D~,q T*...*D~x~T*FT](sr)bxnr,o 
X= ~ X i  

i = i  

from the definition of Fsx(Sr) we get 

F~(Sr) = ax~r.o Y'. (r  ~g)- 1(St\z) [O~x(r 79] (Sz) 
Zc Y 

=ax~r,o Y~ (r~)-~(sr~z) Y. (D~ ~,...,O~ ~,r~')(sz) 
ZCY X= ~. Xi 

i = 1  

since 

Zc'O; =0 

and 

F :x(sr)=ax~r,+ (D~x~T*...*D~,,T)(sy) 
r 

X= y.X~ 
i = l  

which concludes the proof. 
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2. Analyticity and Clustering Properties of the Polymer Model 

The following result has been obtained about the analyticity properties of the 
polymer model [4]. This is the analogue of the results obtained by Ruelle and 
Penrose about the convergence of the Mayer expansion for imperfect classical 
gases. 

Theorem 2. Let A(~) be the set of complex activities ~ such that 

]]l(bt[l~-- sup ~ lq)(X)l~ txl < oo for some ~elR + (26) 
x X ~ x  

and 

IX[>_-2 

then forany q)~A(~). 
1) Pa[~/,] + 0 .  

Moreover, if one of the two conditions are satistied 
a) (b(X) is finite ranged (i.e. ~(X)=0 when diamX>d),  
b) ~b(X) is translation invariant 

then. 

2) There exists a positive, decreasing function 5(2) such that 

lira e(2) = 0 

and a function ~ )  such that 

tO A(x)-  O(x)l <= ~lxts(;~) 

where 2 is the minimum distance from x ~ X  to the boundary of A. 

3) OA and ~ defined on the Banach space of activities {~b(X)} with the norm Ili~lll~ 
is norm analytic in A(() the norm of ~a and ~ being defined as 

II~AII = s u p  t ~ A ( X ) l ~ -  IX] (28) 
XC~v 

4) llOall¢ < M(~), (29) 

m({) being some constant function of R({) and ~. 

It is also known that the correlation functions have good clustering properties, 
when the monomer activity is sufficiently large. More precisely, we have the 
following general result [3, 7]. 

Theorem 3. Let A' be the set of complex activities such that z = inf ]~b(x)[ > Zo, where 
x 

z o is the positive root of the equation 

oo 

t Y', Zo"SUp Z [+(X)I. (30) 
2 .= 2 x x~x 

Ix1 =. 
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Then if @eA'c~A(~) and if one of the two conditions is satisfied 

a) ~b(X) is finite ranged, 
b) ~(X) is translation invariant. 

Then 

Z-n 

sup ~ [Or(X)l=<z-l+ (31) 

Ixl =, 1 -  

~r(X) being the truncated correlation fimctions associated to O(X). 

In fact, using standard techniques, it is also possible to prove in some cases, 
exponential weak and strong clustering [7, 8]. 

Theorem 4. I f  ~sA'c~A(~) 

( r ~ ) ( x ~ r ) : ( r ~ ) ( x ) ( r ~ ) ( ~  when d(X,~)>~ (32) 

where d(X, }~ is the distance between the sets X and Y and ~o(X)= ~b(X)-blxl, 1 then 
the following properties hold 

1) [~3(Xu I 0 -  ff(X)O(Y)l < Lc Ixl + IYle- ka(X,Y), (33) 

, x -~L~x) when ~[ > 1 (34) 2) IU(X)I_-<Lc e 

where L(X) is the length of the minimal tree built on X, and 

°~z° c' - 1 t c -  k= ln  z , L -  (35) 
( ~ -  1)z 2' ( ~ -  1)z' ~z o 1 - a z-° 

Z 
being any number such that 

Z 
1 <~x < - - .  (36) 

Z o 

3. Analyticity Properties of the Lattice Model  with 2-Body Potentials 

The general strategy would be to exploit known results about the polymer model, 
such as those described above, in order to get similar ones for a general lattice 
system. To achieve this, we need to estimate the polymer activities, as well as the 
functions Fsx(sy) , in terms of the lattice model potential. This analysis, although 
possible in the general case, can be made simple enough only when we restrict 
ourselves to the case of two-body potentials. This is what we will do from now on. 
It is defined by the condition that 

UA(SA)= ~ ~0x,,(SxA) VAC~ ~ (37) 
(x, y)C A 

Cpx,y(-,. ) being the two-body potential. 
We will suppose that the two-body potential satisfies the following conditions : 

Iq, x,(s:~, s,)l __%< J(x,  y)v(sx)v(s,,) (38) 
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where v(s):lRa-dR + is a function such that 

VxeIR ]w~(ds)]e ~2~) < oo 

and 

J(x, y) >0,  with 

(39) 

*f 

with 
Ifll 

Ref l>0  and ? > 2 + - -  
Refi 

f2 denoting the support of the measure co13(ds) and 

: =  sup Z JL. 
X t~ Z v 

I(m,n)= sup ~ A y ] s~l (44) 
X s x  

then we have 

I(m, n) <__ a ~ (45) 

a being any positive number. 

Proof. In the appendix we show that the A's satisfy the following recursion 
formula in the case of two-body interactions. 

r __  - 13U<:>(sx)  - M~v2(s~)  [ A Y  
A,,-,5:c(,r, ee ,,¢,+ ~ ~we(dsw) 

t O ~ T c Y  

13,1 2 

, ~ r ,  : ,~  j .x .~rj  • (46) 

- -  (lilt +~  Re13) 
inf [ J, [fll~ J s, upv(s) ] 

(43) 

J = sup ~ J(x, y) < oo . (40) 
x y ~ Z  v 

These conditions ensure that our system is superstable and upper-lower 
regular in the sense of [9], when the potential is translation invariant. 

Let us define now the following quantity, which will play an essential role in 
the analysis. 

flJ 
--2-~ y v2(sx)~ . . AYsx = S w13(dsr)e x~: rsxtsy) Y 4 = 0 

A~ x = Fs~ (s o )e- ~q~ x~'~'2<~) (41) 

being for the moment an arbitrary number. 
It can be estimated in terms of the potential as follows : 

Lemma 2. Let 
Jv2(s) 

B~ = ]fl[ ~ ~ [wa(ds)lv(s)e 2 (42) 
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Here x is any point of X and X'  = X \ x  

U(~)(Sx) = ~ 9~y(s~, Sy) when IX[ > 2 
y~X' 

= 0  when ~X[=I . 

Condition (38) on the potential implies that 

(x,y)CA x~A 

and consequently there is at least one x~X ,  noted w(X) such that 

U w(x) (Sx) ~ - -  J v 2 ( S w ( x ) ) .  

in Formula (46), we take then for x, always w(X), therefore 

when Ref i>0  and 7>2.  
The recursion formula gives 

m--1 

I ( m , n ) < I ( m , n - 1 ) + s u p  Z 
X,Sx k=O 

where 
J~t Refit , 

b . . . .  (t) = e ~ Refl(V-2)v2(sx) ~ ]w~(ds')e ~ j~2(~)]e_~o.~( .... ")- 1[ 

hence if 

b = sup Z b~.,~(t) 
X,Sx t ~ v  

we get 

~, I-I b . . . .  (t)I(k ; n -  1 + m -  k) 
r : l T [ = m - k  tsT 

61 

b l 
I(m,n)<__I(m,n- 1)+ ~ f i  I ( m -  t, n -  1 +l)  (47) 

/ = 1  • 

since I(1, 0)= 0 and I(0, 1)= 1, (45) follows simply from (47) by induction on m + n if 
b < By.. This is therefore what we have to prove now. Using the inequality [e xy - iI 
< (e y2-1)~-(e y2- 1) ~ and property (38) of the potential, we get 

ReflJ7 

b <  sup ~ [w~(ds')[e 5 ~2(~,)~(1_ e-Sx~I~I~2(~))~(elPlsx*~2(s')- 1) ~ 
X,S t 

since 

Ref l>0  and 7 > 2 +  I/~l 
Refi 

when wp(ds) has compact support, we can take s e ~  and Schwartz inequality gives 
US 

JV2(S*) + 

b < [fllJ ( sup v(s)] .( twp(ds')v(s')e ~ ~ (Itq ,R~¢) 
\ s e ~  / 
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whereas in the general case we get 

_ J ~ ' )  + 

b<lfll~j~[wp(ds,)[v(s,)e 2 (~ ~R~#). 

This crucial estimate allow us to use Theorem 2 to get the desired analytic 
properties of our class of lattice models. 

Theorem 5. I f  the potential energy is given by 

Z s) 
(x,y)cA 

where the two-body potential ~o~y and the measure wp(ds) satisfy Conditions (38) and 
(39). I f  moreover the two-body potential is finite ranged i.e. q~xy(s,s')=O when 
]x -y]>  6 or translation invariant, i.e. ~o~y(s,s')=(o~_y(s,s') then in the domain 
defined by 

Re/?>0 B~+2(B~D~)~Ne -1 (48) 

where 

D r = ~ Iw~(ds)[e ~Rep~(~) (49) 

I/?1 ? being any number larger than 2 + - -  
Re/? 

The following properties hold 

1) QA+O, 

2) lim QA,x(Sx)= Qx(Sx) , 
A..~;g v 

exist and extends to an analytic function of/? and of any parameter on which w~( . ) 
or q~ depends analytically. I f  the potential is translation invariant, then so are the 
correlation functions Qx(Sx). 

_ Ref l  J~  ~ v2 ( sx ) - -  
3) lqA.x(Sx)t<Me z x~,: ~txl (50) 

1 
where ~ -  B~ + (B~D~) ~ and ?~I is some constant depending on B r 

Proof In inequality (45), we choose a=B~  1 and we get 

I(m, n) <(eB,)"e" . (51) 

We can now estimate the polymer activities ~b(X), since ~b(x)= 1 and 

/?J?' vZ~s , 

~(X)=o(wp(dsx)e As~ when X ' = X \ x  (52) 

because fsx(Sx, ) = T(Sx~x, ), as can be seen from (22) and (25). 
The correlation functions OA,x(Sx) are given by: 

flJ) '  x- v2t~ 

O A,x(Sx) = e-2- ~ ~% .... ~ A~,~OA(X u D 
Y 

according to (23). 
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Inserting (51) in (52), we get that R(~) defined in Theorem 2 is bounded above 
by 

(Bre~) choosing ~ -  e -  1 
~- 1 + Dve 1 - (B ,e~)  B~ +(B~D~) ~ ' 

we can check that Condition (27) of Theorem 2 is satisfied if (48) holds. Therefore 
~eA(~). 

Theorem 2, Part 4, tells us then that 

IOA(X)I < M(~)~Lxl. 

Using the estimate (51) for l(m, n), we obtain 

ReflJ 
[OA,x(Sx)[ ~ e 2 xsX ~' 'iv1 

with 

~=~e  and M . . . . . .  
M(~) 

1 - ~eB 7 

which is (50). 
Part 1 of our theorem follows from Part 1 of Theorem 2. 
For  the same reasons ~(X) depends analytically on fl or any parameter on 

which q~ depends analytically by Theorem 2, Part 3. The same is true of ~A,x(Sx) 
and of qx(Sx) by (50), and this proves Part 2 of our theorem. 

It remains to see under which physical Conditions (48) is satisfied. We want to 
discuss here the range of temperatures, i.e. fl for which (48) holds, by looking at 
three important special cases defined by various conditions on the measure w~(. ). 

Notice first that if we write 7 as 7 = 2 + ,~ R-@efi with ,~ > 1 then we have 

tN + ~2 <~ ~ ~-(2  2) (s). -- 
B,=ifi[ ~lwa(ds)lv(s)e lnf[ff, lfl]½JSsUPV(s)] (53) 

therefore if we fix 2 > 1 independent of fl, then 

lim B),(fl) = 0 
#oO 

if 

lira [fi[ ~ ~ [w B(ds)[v(s ) = O . 
/ ~ 0  

And since 

2 tilt(1 +~-)v (s) 
n , <  ~ [wa(ds)le 

we see that 

lim B~(fi) + 2(B~(fl)D~(fl)) ~ = 0 
poO 

if 

(54) 

(55) 

lim lfll~(S tw~(ds)j (S tw6(ds)jv(s))--0 (56) 
p--*O 
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and (54) hold. Therefore (48) will always be satisfied at sufficiently high 
temperatures if wp(. ) fulfills the condition (54) and (56). 

Let us consider now three special cases: 
a) w~(ds)= w(ds) with w(ds) satisfying (39), then clearly (54) and (56) hold 

e-~V(s)~(ds) 
b) wts(ds) = ~ e_aVis)#(ds) 

with #(ds) >_ 0 and ~ #(ds) > O, S #(ds) elt~l(v(s) + ~,2¢~)) < ~ when 0 < I/~l --</3o, V:, > 0. 
Then, there exists a constant d independent of fi such that 

[~#(ds)e-PV(~)[>d>O when 0<[fl I<fll=<fio 

and w,(ds) will be analytic in fl inside this circle and (54) and (56) will be satisfied. 
c) If 

e- t~V (s) - ph.S des 
w,(ds) = ~ e_~V~)_~h.Sdds 

where V(s)= V(lsl) is a polynomial of degree 2n in Isl with a positive coefficient for 
the term of highest degree, then taking 

v(s) = lsI" with m < n 

we will have 

1~ d~se- pv(~) - ~h.x[ >= d > 0 

when Refl > 0 and fi in some domain D in the complex plane containing the origin. 
w,(ds) will be analytic in this domain and since when fi is real 

n - - m  

we see that (54) and (56) will be satisfied when fl is in the domain D. 
We can summarise these results in the following 

Theorem 6. I f  w~(. ) satisfies one of the three Conditions a, b, c, then there 
exists a domain D in the complex fl plane containin9 a segment (0, flo) of the positive 
real axis, such that if wts ( . ), and the potential satisfies the conditions of Theorem 5. 

1) QA¢0,  

2) lira 0a.x(Sx)= ex(Sx) 
A ~ 2 ~  v 

exist and extends to an analytic function of  ft. 
ReJy 

3) ]QA,x(Sx)I<Me 2 ~xv2(sx)~tXI 

4. Clustering Properties of the Two-Point Function of the Lattice Model 

We will not in this section discuss the clustering properties of general n-point 
functions. Moreover, we will restrict our attention to finite range interactions. The 
main reason for this, as will appear clearly in the course of the proof, is that the 
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connection between correlation functions of the lattice model and the polymer 
model being quite complicated in the general case of n-point function, more precise 
estimates on the functions A r would be needed than those we have obtained so s x  

far. 
Our result is the following: 

Theorem 7. Suppose that the two-body potential and the measure wa(ds) satisfy 
conditions (38) and (39). I f  the potential is finite ranged, then in the domain defined 
by 

(1 + 2B~e) [Br + (2B~Dye) ~] < e - 1 (57) 

we have 

[Oxy(s, s ' ) -  O~(s)Qy(s')[ N A(s)A(s')e-ml~-,1 (58) 

Refly 

where m is a function of By and Dy, and A(s)= Ae ~ j~2(s), A being some function 
of B r 

Proof The idea is of course to use Theorem 4, and various estimates established 
before for the A r sx" 

belongs to A' when (57) holds because z o <Bye+(2ByDye2) ~ as can be seen 
easily by using the estimate 

I(m, 1) <=e(eBy) m (59) 

obtained from (51). 
Moreover in the course of the proof of Theorem 5, we have shown that 

• eA By + (ByDy) ~ (60) 

On the other hand, since (Fq~)(X)= ~ (F(P)(Y)(-1) Ixl-lrl and (F4~)(Y)=Qy 
Y c X  

f rom Theorem l, with Qr, .r  =Qr~Qy~ when d(Y1, Y2)~5, we see that  
(Fq~)(X1uX2)=(F(p)(XO(Fgo)(X2) when d(Xi,X2)~c~ and all the conditions nec- 
essary to apply Theorem 4 are fulfilled. 

We will need moreover the following estimates: 

Tx(Sx)=O if diamX>-T[(~ (61) 

since T x is the Ursell function of a system with a two-body potential of range 5 
E83. 

On the other hand 
Ref lJ7 2, , 

v ~s~ 
1~ wa(dsr)Txr(S~, sr)l < e e(eB~)" (62) 

Y:Igl=ra 

by (59) and similarly 
Ref l J  

Y('C2($xi)-{-v2(S:~:2)) 2/ o :mt . . . - -  
l~wp(dsr)Tx,xzr( s . . . . . . .  Y)lhe 2 e teoy! trrt. 1) 

g : l g t = m  

(63) 
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since 
flJ 2 2 -T~(V (s~0+v (s~2)) e . . . . . . .  , A r 

e Jw,atasl ')Txixzrtsx~uxzur) = xtxz--  

[e'  1 Theorem 2, Part 4, gives us, since ~ s A  B,~ +(D~B~) ~ 

( e-1 ~txl 
lO(x)l < M ~,B, + (D~B,)U 

and by Theorem 4 

]0(X ~ Y) - O(X)0(IO[ _-< L [2 -e-/~ZeB, + (2B'D~e2)g ]Ixl+ IYI e-  ka(x, r) 
1 - - (2B~De) ~] 

if we choose for the constant e in this theorem 

2 
c~- 1 + B~e+(2B~D~e2)  ~ " 

Z A Q A ~ .  
Y=Yt+Y2 

(64) 

(65) 

Using Theorem 1, Part 2, we see that we can write the two-point truncated 
correlation function as follows: 

e . . . .  (s ,s')-ox,(s)e~2(s')  

= ~(X 1Y2) - -  ~(X 1)~(X2) -1- Dx,xz(S, if) -1- Ex~x2(S) -J- Ex2 x ,( St ) 

+ Fx,x~(S, s') - G:,,~2(s, s') 

where 

Dx,x2(s,s') = ~ ~wt~(dsr)T .... r (S ,S ' ,Sr )O(x lx2 lO,  
Y~(xlx2) 

G,x2(s) = 2 ~ wp(dsy)%l~:(s' s,.)[~(x,x 2 ~3- ~(xg~(xl ~3 , 
Y,x1 

Y i ~ : O  
Y 2 # O  

Y l C S Y 2  = l~ 

• [O(xl Ylx2  Y2)- O(xl Y1)O(x2 I12)3 , 

G~x~(S,S')= Y ~ w~(dsy,)'G,~,(s,s,O ~w~(ds~) 
glnY2~O 

" %,y2(S', Sy)O(X 1 ~:])O(x2Y~). 

Let us analyse now each of these terms. 
From (61), (63), (64), we get 

/ R \~+2 
ID~,~(s,s')[<g(s)g(s')Me2m>=l~_x~llB,+(~,D,)~) ( r e + l )  

<=Mlg(S)g(s,)e-k, Ix, -~21 
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where g(s)=e R~srv2(s) and Mx, K 1 are some constants, KI>0.  Since d(xi;x2IO 
>_- [xi - x2l - diam xi Y and diamxi Y =< (I YI + 1)3 in the Is' appearing in the sum 
defining Ex:2(s, s') we get 

IExlx2(S)[ <= g(s)Le (2 eSr +(2S~D~e2) ~ 

m=o eB~ +(2B~D~)-~ _~m " Ira-11~-~211 (eB.e I_eB_(2B~,D,  e2)~] 

(eB  } eB~+(2B~D~e ) I e-kEl~l-~l-('~+l)~l + 
z_. _ eB~ - (2B~D~e2) ~ ] m = [~- ~ lx~ - x211 + i 1 

using (65) and (59). 
From this it follows that 

[E~(s)J = M2g(s)e- k~l~l - ~1 

when (57) holds. 
F . . . .  is treated in the same way, but this time we use the inequality 

d(xi Yi ; x2 Y2) >---[x~ - x2 t -  diamx 1 I:1 - diamx2 Y2 

and note that 

diamx~Yi <=([Yl[+ l)5 diamxzY2 <=([Y2[+ l)6 

for the Y's appearing in the sum defining F,:,~2(s, s') we get 

IF~:~(s, s')l -< M3 g(s)g(s')e- k~ Ix, - x~l . 

It remains to discuss G ~  

( e - t  ]l Y~l+lrzt+2 

• IS w ,~(ds~ j ' e , : : , ( s ' ,  s~)l 

by (55). But if YlnY2:4=O, Ix i -x21<diamxiY i+diamxzY2  and since diamxi~ ~ 
----([Yxl + i)~, diamx 2 Y2 <(I Y21 + 1)3 in the sum, we see that 

[G~:~(s, s')l <-_ g(s)g(s')MZB; 2 B, + ~/~D~/ 

<= M,, e- ~41:~l - xzl . 

Collecting all these estimates, we see that we have proven the desired cluster 
property of the two-point functions. 

It is clear from the discussion following Theorem 5, that condition (49) will be 
satisfied if the measure w a belongs to the three classes a, b, and c discussed, and if 
the temperature is high enough. We can therefore conclude that at high enough 
temperatures, the two-point function will cluster exponentially for finite range 
potentials. 
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Appendix 

We want  to derive here the basic recursion formula. For  notat ional  simplicity, 
from now on Fx(sx) =- F(sx) VF 

Fsx(Sr) = (W- 1, D~ x W) (sr)6x~ r,0 

where 

W = (F T) = e-  ~v . 

If 

X= xuX'  

then 

F~(sr) = ~ r , o  3", W -  ~(S~\z)W(s~x,~z)6x,  ~ , o  
Zc g 

but  i fX '#O ,  

--fl Z Oxy(Sx'SY) --fl y~--'~X OXY($X'SY) -- [~Ux'uZ(SX'uZ) 
W ( s x u x ' u z )  = e r~z 

= e - a ~ ' ~ (  .... ~) . . . . .  ( Z K(s~ ST) 1 vVtSx,~z ) 1 + TEz " ] 

where 

K(s~,sT)= [I(e -~'*( ..... )-- t) when T+O 
t~T 

K(sx, ST) = 0 when T= 0 .  

Then we have 

. . . .  1~ ~ -/~ y~x 
~xy(Sx,Sy) 

F s x ( S r ) = ~ x n Y , ,  E V l /  ( S r \ z )  e 
z c  Y 

• (1+ rc~zK(Sx, Sr))W(sx,~z)6x,~r,0 

=e-~V'x)(s")fxnr,, ~ W- t(Sr\z)(Ds~,, W)(sz)6x'nr,o 
ZCY 

+e-'V(~)(~':)6 ~ K(sx, sr) ~ W-l(Sr\z) xc~Y,~ 
TCY T c Z c Y  
T#O 

• W(sx,~z)6x,~r,o 

with 

U~X~(Sx) = (pxy(sx, sy) when IX[ > 1 
y~X' 
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and we have therefore the desired equation 

f s x ( S g ) = ( ~ x n Y ,  o e -¢v (x ' ( s x )  F s x , ( S Y ) +  E g(s~,sr)F~x,ur(Sr\r) 
TCY 
T:~ O 

Tc~X" = 0 

when X = x  (i.e. X '  = 0 )  the same equation is valid but now we have Ut~)(sx)=0. 
F r o m  th is  e q u a t i o n ,  w e  e a s i l y  d e r i v e  the  e q u a t i o n  for A 

A--Y = r , ,  , ~ ~I: v ( ~ ) _  . . ~,~ 3 watasr) e x X l~sx(Sy) , 

- #  Z 7(s J 
t ) ,4Y\T ] • A rs,. + ~ ~ w~(dsw)K(Sx, ST)e . . . . . . .  ,~.,. 

Tfi Y 
T~:O 

TnX'  = 0 

J 2 
where 7 ( s x ) =  - ~-7v (s~). 
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