
AAECC 2, 257-274 (1992)

AAECC
Applicable Algebra in
Engineering, Communication
and Computing
�9 Springer-Verlag 1992

Completing a Finite Special String-Rewriting System
on the Congruence Class of the Empty Word

Friedrich Otto

Fachbereich Mathematik/Informatik, Gesamthochschule Kassel, Postfach 101380,
W-3500 Kassel, FRG

Received September 4, 1990; revised version September 9, 1991

Abstract. Based on a polynomial-time test for determining whether a finite special
string-rewriting system R is e-confluent, a procedure for completing a finite special
system R on [e]R is derived. The correctness and completeness of this procedure
are proved. In addition, the special case of finite special string-rewriting systems
presenting groups is considered.

Keywords: String-rewriting system, Monoid-presentation, e-confluence,
Completion procedure

1. Introduction

In the present paper we are interested in special string-rewriting systems. A string-
rewriting system R on an alphabet Z is called special if each rule of R is of the form
l ~ e, where I is a non-empty word and e denotes the empty word. These systems
are of particular interest for the following reasons. On the one hand, the process of
rewriting modulo a finite special string-rewriting system is particularly simple, since
it only amounts to the insertion and deletion of subwords. On the other hand, each
finitely presented group G can be presented by a finite special string-rewriting
system R on some alphabet X, i.e., G is isomorphic to the factor monoid
9JIR:= Z*/+--~* of the free monoid E* generated by Z modulo the Thue congruence
~--~ induced by R. However, although finite special string-rewriting systems are
fairly simple with respect to the structure of their rules, it is in general not possible
to obtain much information on the Thue congruence ~--~* or on the monoid 93l R
from a given finite special string-rewriting system R on E. For example, it is undecid-
able in general whether the monoid 9J~ n presented by a finite special string-rewriting
system R is a group [8]. In fact, the undecidability of Markov properties can be
carried over to the class of monoids that are presented by finite special
string-rewriting systems, thus establishing that many algebraic properties of 9~ n are
undecidable in this setting [14].

258 F. Otto

The situation improves dramatically when attention is restricted to finite special
string-rewriting systems R that are confluent. Let ~ denote the reduction relation
induced by R, which is obtained by allowing the rules of R to only be applied from
left to right. Then R is called confluent if, for all u, w2;*, u*-~,*v implies that u ~*w
and v ~*w for some w~27". Thus, ifR is a finite special string-rewriting system that
is confluent, then each congruence class mod ~ * contains a unique word of minimal
length, and given any word u~27", the minimal word v congruent to u can easily be
obtained. Hence, the word problem for R is easily decidable, but also many other
problems become easily decidable in this setting [1].

If R is a finite special string-rewriting system on 27 that is not confluent, then
one way to try to solve the word problem for R consists in trying to construct a
finite special string-rewriting system S on 2; such that S is equivalent to R, i.e., the
congruences ~* and ~ * coincide, and S is confluent. For example, let 27 = (a, b, c}
and R = {(abacab, e), (abac, e), (acab, e)). Then abR~abacab~Re, and so R is not
confluent. However, S = {(ab, e), (ac, e)} is a finite special system that is equivalent to
R and that is confluent. On the other hand, let 2 = {b, c} and R = { (b z, e), (bcbc, e)}.
Then CbcR~b%bc~Rb, and so R is not confluent. If w~2;* satisfies w+--~*e, then
j w Ib = 0 rood 2 and I w Ic = 0 rood 2 as can easily be seen, where I wlb([w Ic) denotes the
number of occurrences of the letter b (c) in w. Thus, neither b nor any factor of cbc
is congruent to e rood R, i.e., whenever S is a special string-rewriting system that is
equivalent to R, then cbc,-~,*b, but cbc and b are both irreducible rood S. Hence,
there is no special and confluent string-rewriting system on 27 that is equivalent to R.

It has been shown that a finitely presented group G can be presented by a
finite special and confluent string-rewriting system if and only if G is isomorphic to
the free product of finitely many (finite or infinite) cyclic groups [2-1. Thus, the
monoid 9J~ R presented by 2;={a,b,c,d} and R={(ad, e), (da, e), (bZ, e), (c2,e),
(bcbe, e)} cannot be presented by any finite special and confluent string-rewriting
system on any set of generators F, since ~R is isomorphic to the free product
7/,(2~2 x Z2) of the free group 7/, of rank 1 and the direct product Z2 x 7Z. z of the
cyclic group ~2 of order 2 with itself. However, let Ro:= R u { (cbcb, e) }. Then Ro is
a finite special system that is equivalent to R. Of course, Ro is not confluent either,
but it has the following interesting property: for all w~27", if W~*oe, when w-~o e,
i.e., R o is confluent on [e-1Ro or e-confluent. In particular, this implies that the process
of reduction rood R o yields a procedure to test membership in [e]R. Furthermore,
since the monoid ~R is a group, the word problem for R is reducible to the
membership problem for [e]R. Hence, the process of reduction mod Ro gives a
method to solve the word problem for R. In fact, many problems become decidable
when they are restricted to the class of finite special string-rewriting systems R that
are e-confluent, e.g., the word problem, the conjugacy problem, the generalized word
problem, etc. [12, 13]. Also the class of groups that can be presented by these systems
in strictly larger than the class of groups presented by finite special and confluent
string-rewriting systems. In fact, each group G that is isomorphic to the free product
of a finitely generated free group and finitely many finite groups can be presented
by a finite special string-rewriting system R that is e-confluent, and it has been
conjectured that no other groups have such presentations [6].

Here we present a specialized completion procedure that, given a finite special
string-rewriting system R on some alphabet 27 as input, tries to construct a
finite special system S on 27 that is equivalent to R and that is e-confluent.

Completing a Finite Special String-Rewriting System 259

This procedure consists of two subroutines called NORMALIZATION and
CONTEXT_RESOLVING, where the latter introduces new rules in order to make
the string-rewriting system considered e-confluent, while the former deletes
superfluous rules in order to keep the system as small as possible. It is shown that
this procedure either terminates with a finite special system S, or it enumerates an
infinite special system S. In either case is S equivalent to R and e-confluent. Further,
it is shown that this procedure terminates whenever there exists a finite special
system that is equivalent to R and e-confluent. Thus, our specialized completion
procedure is correct and complete.

The above completion procedure, which is presented in Sect. 3, is based on a
test for determining whether a finite special string-rewriting system is e-confluent
[-1 1]. This test, although being polynomial-time, is technically rather involved. For
the special case of finite special string-rewriting systems presenting groups, a much
simpler test is derived in Sect. 4. Based on this simplified test a specialized comple-
tion procedure for finite special string-rewriting systems presenting groups is then
presented. This procedure consists of three subroutines called NORMALIZATION,
SYMMETRIZATION, and CONTEXT_RESOLVING, where the latter two
introduce new rules in order to make the string-rewriting system considered
e-confluent, while the former one deletes superfluous rules. Again this completion
procedure is shown to be correct and complete.

Finally, in Sect. 5 we point to the relation between the subroutine SYM-
METRIZATION in our second completion procedure and the notion of symmetrized
group-presentation as it is considered in small cancellation theory [5], and we state
a few problems for future research.

2. Preliminary Results

Let 2? be a finite alphabet. Then Z* denotes the set of words over 27 including the
empty word e. A special string-rewriting system R on 2; is a subset of 2? + x {e},
where Z + = 2~*-{e} denotes the set of non-empty words over 2;. The elements
(l,e) of R are called (rewrite) rules. For all u, veZ* and (l,e)~R, ulv--*Ruv, i.e.,
~R is the single-step reduction relation induced by R. Its reflexive and transitive
closure --** is the reduction relation induced by R. For u, ve27*, if u~]v,
then u is an ancestor of v, and v is a descendant of u. By V*(v) we denote the set of all
ancestors of v, and •*(u) denotes the set of all descendants ofu. For a subset L N Z*,
~7*(L) = U V*(u), and A*(L)= U A*(u).

u~L u ~ L

By ,--** we denote the smallest equivalence relation on 2;* that contains the
single-step reduction relation --*R. It is called the Thue congruence generated by R.
For w~27", [w]R = {u~,~*[u,-**w} is the congruence class of w mod R. Since ~ * is
in fact a congruence relation on 27", the set ~ R : = {[w]RIw~s of congruence
classes is a monoid under the operation [u]~ o Iv] R = [uv]R with identity [e]R. This
monoid is uniquely determined (up to isomorphism) by Z and R, and hence,
whenever 931 is a monoid that is isomorphic to 931 R, we call the ordered pair (27; R)
a (monoid-) presentation of ~ with generators 27 and defining relations R.

We say that a subset L ~ 2~* is closed under cyclic permutation if uv~L implies
vu~L for all u, v~ 27". The following observation will be useful for our investigations.

260 F. Otto

Lemma 2.1. Let R be a special string-rewriting system on 27. Then the set V*(e) of
ancestors of the empty word mod R is closed under cyclic permutation if and only if,
for all u, ve27 +, if (uv, e)eR, then vu--** e.

Proof. Obviously, the above condition is necessary for V*(e) to be closed under
cyclic permutation. Thus, it remains to prove that it is also sufficient. Assume to the
contrary that WE(e) is not closed under cyclic permutation, and let ze27 + be a word
of minimal length such that z ~*e , but there is a cyclic permutation Zl of z such
that z 1 -/**e. Then there is a cyclic permutation y = ax of z, where ae27 and xe27*,
such that y - - a x ~*e while xa ~ e . Assume that there exists a word Xl such that
x ~R x 1 and axl ~ e. Then xa --~R x 1 a, and since [x i [< [X 1, the choice of z implies
that with ax 1 ~*e also x la~*e , thus contradicting the choice of y = ax. Hence,
whenever X~RXl, then ax:~*e. Thus, the reduction a x ~ * e consists of a
single step only, i.e. (ax, e)eR. But then the above condition yields that xa ~*e, again
contradicting the choice ofy. Thus, V~(e) is indeed closed under cyclic permutation,
if the above condition is satisfied. []

Given a finite special string-rewriting system R on 27, and a regular set L ~ 22*
specified through a nondeterministic finite state acceptor (nfsa), an nsfa for the set
A*(L) can be constructed in polynomial time [1]. Since, for all we27*, we V*(e) if
and only if ee A](w), this means that the membership problem for the set V*(e) is
decidable in polynomial time for each finite special string-rewriting system R.
Together with Lemma 2.1 this yields the following result.

Theorem 2.2. The following problem is decidable in polynomial time:
INSTANCE: A finite special string-rewriting system R on 27.
QUESTION: Is V*(e) closed under cyclic permutation?

Let R be a special string-rewriting system on 22. We say that R is confluent on
[W]R for some word we,S*, if there exists a word woelRR(R) such "that
[W]RC~IRR(R) = {Wo}. Here IRR(R) denotes the set of words that are irreducible
modR, i.e. IRR(R)= {we27*[A*(w)= {w}}. Thus, R is confluent on [w] R if all
words in that class reduce to the same irreducible word, which then can serve as
a normal form for this class. The system R is called e-confluent if it is confluent
o n [el R. In [11] a necessary and sufficient condition for R to be e-confluent is
derived. This condition involves the following technical notions.

Let (l l, e) and (12, e) be two rules of R. If l: = xIEy for some x, ye27* satisfying
xy + e, or if l lX = yl2 for some x, y e 27" satisfying 0 < l Y[< Ill 1, then the pair (e, xy),
respectively (x, y), is called a critical pair of R. By UCP(R) we denote the set
{(x,y)l(x,y) is a critical pair of g such that A~(x)~ A*(y)-- ~ } of unresolvable
critical pairs of R. Observe that for R finite, this set can be computed in polynomial
time.

The system R is called normalized if no left-hand side of a rule of R contains
another left-hand side as a factor. If R is normalized, then R can only admit critical
pairs of the second form. Further, if (p, q) is a critical pair of R, then p and q are
irreducible.

For ue27 +, let RFR(U) denote the set

RFR(U) = {ve27*13k ~ 1 qu 1 ,Uk, Vl Vke27+: U = U~"'Ul, V = Vl ""Vk, and

(UlV:, e), (u2v 2, e), . . . , (UkVk, e) eR},

Completing a Finite Special String-Rewriting System 261

i.e., RFR(u) consists of all those words v that are right-inverses of u mod R, where
there exists a reduction uv ~*e each step of which straddles the boundary between
u and v. Thus, if R is finite, then v~RFR(u) implies that Iv[< (2 - 1) ' [u l , where
)~:= max {1l] I(l, e)~R}, i.e. RFR(u) is a finite set. Analogously, the set

LFR(u) = {ve.S*l~k >= 1 ~u 1 ,Uk, V l , . . . , V k e Z ~ + : U ~-" U 1 ""Uk, V ~-" V k ' " V l , a n d

(VxU 1 , e), (v2u 2, e) (VkUk, e) ~ R }

is finite for each finite special system R. Further, given a finite special system R and
a word u e2~ +, nfsas for the sets RFR(u) and LFR(u) can be constructed in polynomial
time [11]. Finally, in order to cover all possible cases we take RFR(e):= {e} and
LFR(e):= {e}.

In [11] the following technical result is obtained.

Theorem 2.3. Let R be a normalized special string-rewriting system on ~,. Then R is
e-confluent if and only if the following two conditions hold for each pair (p, q)e U C P(R):
(i) Vpl, P2, P3, X, y~2J*: if p = PlPEP3 and (xpEy , e)eR such that P2 ~ e

and LFR(pl) ~ ;2~ ~ RFR(P3),
then A*(x.LFR(pl).q.RFR(pa).y) • IRR(R) = {e}, and

(ii) Vql,qE,qa, x,y~Z,*:ifq = qlq2q3 and (xq2y, e)ER such that q2 ~ e

and LFR(ql) ~ ;2~ ~ RFg(q3),
then A*(x.LFR(ql). p. RFR(qa).y) n IRR(R) = {e}.

In particular, this result implies that it is decidable in polynomial time whether
a finite special and normalized string-rewriting system R is e-confluent.

Observe that, if R is a finite system, then the sets of the form {x}.LFg(pl).
{q}.RFR(Pa).{y}, respectively {x}.LFR(ql).{p}.gFR(qa).{y}, are always finite.
Therewith the sets of irreducible descendants of these sets are finite as well.

The completion procedure we are about to describe will be based on
Theorem 2.3. If a normalized finite special string-rewriting system R does not satisfy
the two conditions stated there, we add further rules to R, thus trying to obtain
another special system R' such that R' is e-confluent, and R and R' are equivalent,
i.e., the congruences *-** and ~--*~, coincide. However, in order to keep the system R'
normalized, we will also delete rules whenever that is possible. The basis for this is
the following observation.

Let R be a finite special string-rewriting system on 2?, and let (11, e) and (12, e) be
rules of R. If 11 is a proper factor of 12, i.e., 12 = XIxy for some words x, y~Z*, xy :~ e,
then XyR"--xl~y = 12--*Re. For R to be e-confluent it must be possible to reduce xy
to e. Obviously, during this reduction the rule (12, e) cannot be used. Thus, ifxy ~ e ,
then the system R - { (12, e) } generates the same reduction relation as the system R.
In particular, R - { (12, e)} is equivalent to R, and the one system is e-confluent if
and only if the other system is. Thus, instead of dealing with R we can deal with the
smaller system. On the other hand, if xy~*e, then R is not e-confluent. Hence, to
complete R on [e]R, rules must be introduced that allow to reduce xy to e. So instead
of R we may consider the system (R - { (12, e) }) w { (xy, e) }, which is equivalent to R,
and which is smaller in the sense that a rule has been replaced by a smaller one.
This process will be called normalization.

262 F. Otto

3. The Completion Procedure for Finite Special String-Rewriting Systems

Let R be a finite special string-rewriting system on X. We would like to obtain
a special system S that is equivalent to R and e-confluent. To this end we
first normalize R, and then we check whether or not R itself is e-confluent. If it
is, we are done; otherwise, we must try to construct S from R. However, if R
is not e-confluent, then one of the conditions of Theorem 2.3 is violated. There-
fore, we have some information on a particular situation that violates the
property of e-confluence for R. We now present a completion procedure that
exploits this information. It consists of two subroutines: NORMALIZATION and
CONTEXT_RESOLVING. The former realizes the process of normalization
explained at the end of the previous section, while the latter adds new rules if the
conditions of Theorem 2.3 are violated. Since the latter may destroy the effect of
the former, and since new rules may lead to new unresolvable critical pairs, we have
to keep applying these two subroutines repeatedly until a stable system is
obtained.

Procedure 3.1. E-completion for finite special string-rewriting systems:
INPUT: A finite special string-rewriting system R on some alphabet 2J;
begin i ~- 0; R i ~'- R;
NORMALIZATION:

while 311,12, x , yE .~* :xy ~ e A 12 : X l ly ^ (11, e)~Ri A (12, e) ~ R i do
begin R i ~- R i - { (12, e) };

if e q~ A ~,(xy) then Ri ~- Ri • { (xy, e) }
end;
comment: At this point Ri is normalized;

CONTEXT_RESOLVING:
compute UCP(Ri); R ' i *- (~;
for all (p, q)~ U C P (R i) do
begin for all p~,p2,P3, X , y ~ * do

ifp = PaP2P3 A P2 ~= e A (xp2y, e) ~ R i then
begin Sp ,:- (&* , (x 'LFR, (Px) 'q 'RFR,(p3)" y) c~ I R R (Ri)) -- {e};

ifSp ~: ~ then R ' i ~ R ' i w { (l , e)] l E S p }
end;
for all q l , q z , qa, x, y ~ Z * do
if q = qlq2q3 A q2 ~ e A (xqEy, e)~:Ri then
begin Sq ~ (A* (x 'LFR, (qO 'p 'RFR~(qa) ' y) c~ IRR(R~)) - {e};

if Sq ~ ~ then R' i ~ R' i ~ { (1, e)[16 Sq }
end;

end;
if R'~ @ ~ then
begin Ri+ 1 ~- R i ~ R'i;

i * - i + 1;
(*) goto NORMALIZATION

end;
comment: At this point R~ is normalized and e-confluent;
OUTPUT: Ri

end.

Completing a Finite Special String-Rewriting System 263

We claim that the above procedure determines a finite special string-rewriting
system Ri that is e-confluent and equivalent to R, whenever such a system exists.
Otherwise it enumerates an infinite special system R oo having both these properties.
As a first step towards proving this result we consider the subroutine NORMAL-
IZATION. The following facts easily follow from the remarks at the end of Sect. 2.

Lemma 3.2. Let R be a finite special string-rewriting system on Y,. Then on input R,
the subroutine N O R M A L I Z A T I O N determines a finite special string-rewriting
system Ro on Z such that R o is normalized, --*R c= ~ o , and R o is equivalent to R.

Given a finite special string-rewriting system R as input, Procedure 3.1
computes a (finite or infinite) sequence of finite special string-rewriting systems
R o, R 1 , R z where Ri_ x denotes the system that is determined by the subroutine
NORMALIZATION during the i-th execution of the body of the goto-loop (,).
Recall that if R~ is finite, then the sets Sp and Sq((p, q)e UCP(Ri)) are finite. Thus, R'~
is finite, which in turn yields that Ri + 1 is finite.

Lemma 3.3. For all i > O, the following statements hold:
(a) R i is normalized,
(b) R i is equivalent to R, and
(c) --,* __= ~ * c --,*

R i ~ R i + I "

Proof. R o is determined by the subroutine NORMALIZATION from the input
system R. Thus, by Lemma 3.2 R o is normalized and equivalent to R, and
~* ~--**o. We proceed by induction on i. For i > 1, Ri is determined by the
subroutine NORMALIZATION from the system R~_ 1 uR'~_ 1- Hence, by Lemma
3.2 R i is normalized and equivalent to R i_ I~AR'i- 1' and ~R,-, W --~R,-' ,=C--~*g,"
Further, by the induction hypothesis R~ 1 is equivalent to R, and --** c --,*

- - ~ R i - 1"

Thus, - '* =~ ~*R,, and since ~--~g~ ~ =~ ~--'*R,-I' R i - 1 w R'i_l is equivalent to R, which
implies that Ri is equivalent to R. This completes the proof of Lemma 3.3. []

From this lemma we can now easily derive the fact that Procedure 3.1 is correct,
i.e., it satisfies the following statement.

Corollary 3.4. Let R be a finite special string-rewriting system on X. I f Procedure 3.1
terminates on input R, then it yields a finite special system R i on X that is normalized,
e-confluent, and equivalent to R.

Proof. Procedure 3.1 terminates on input R, if, for some i___ 0, then system R'~ is
empty. In this case the finite special system R i is taken as output. By Lemma 3.3 R~
is normalized and equivalent to R. Since R' i = ~ , R i satisfies conditions (i) and (ii)
of Theorem 2.3. Hence, R~ is also e-confluent. []

Thus, whenever Procedure 3.1 terminates, then the system R~ constructed has
indeed all the properties we want. It remains to show that this procedure does
terminate whenever a special system S exists that is finite, equivalent to R, and
e-confluent. As a first step towards proving this fact, we analyse the situation when
Procedure 3.1 does not terminate.

Lemma 3.5. Let R be a finite special string-rewriting system on Z. I f Procedure 3.1
does not terminate on input R, then it enumerates an infinite special system R ~ that
is normalized, equivalent to R, and e-confluent.

264 F. Otto

Proof. Assume that Procedure 3.1 does not terminate on input R. Then it
enumerates an infinite sequence Ro,R1,R 2 of finite special string-rewriting
systems on X.

Because of Lemma 3.3(c) we have IRR(Ri+ 1) ~ 1RR(Ri). In fact, if(l, e)~R'i, then
I~IRR(Ri) (see the construction of R'~ in the subroutine CONTEXT_RESOLVING),
while Ir i+1), since 4"R,+1 =~ ~R, U ~R~ by Lemma 3.2. Thus, since Procedure
3.1 does not terminate after the i+ 1st execution of the body of the goto-loop (.),
R'i + ~ implying that IRR(R~+ 1) = IRR(Ri). Further, if a rule (l, e) is deleted in the
process of normalizing the system R i, then Ir and therewith I(~IRR(Rj)
for all j > i. This means that the rule (l, e) is not reintroduced at a later stage.

Now let i > 0 and let (1, e)eR~. If this rule is contained in Rj for all j > i, then
this rule is called persistent. If (l, e) is not persistent, then it is deleted in the process
of normalizing the system Rj for somej > i. Thus, Rj must contain a rule (11, e) such
that 11 is a proper factor of l. Now either (11, e) is a persistent rule, or (la, e) is again
deleted in the process of normalizing the system Rk for some k >j, which means
that R k contains a rule (Iz,e) such that l 2 is a proper factor of l~. However, this
can only happen a finite number of times. Hence, there exist an index 2 and a rule
(x, e) such that x is a proper factor of l, and (x,e)eRp for all p > 2. Thus, each rule
(l, e)e U R~ is either persistent, or there is a persistent rule (x, e) such that x is a

i > 0

proper factor of I.
Let R~ := {(l, e)] 3j > 0Vi >j:(1, e)eRi} be the set of persistent rules. The above

discussion shows that Ro~ is an infinite special system. Procedure 3.1 can be
interpreted as enumerating this system. Of course, this enumeration is not an
effective one, since Procedure 3.1 does not identify the persistent rules. The
discussion above also shows that IRR(R| ("] IRR(Ri). In fact, the following
holds, i__> o

Claim 1: ~R = ~* for all i > 0.

Proof. It suffices to show that l ~ e for all (l,e)e ~ Ri. Assume to the contrary
i > 0

that there exists a rule (l, e)e U R~ such that l ~ * e, and assume that (l, e) is chosen
i > 0

from all the rules having this property such that I11 is minimal. Since l%~e, we
have (l,e)q~R~. Hence, there is an index j such that the rule (l,e) is deleted in the
process of normalizing Rj, i.e., l = xl~y for some x, yEZ,*, xy ~=e, and some rule
(ll,e)eRj. Since Ilxl<[ll, we have 11 ~* R e according to the choice of (l,e).
Further, the way in which the subroutine NORMALIZATION works guarantees
that xy ~ j e . Since I xyl<[I[, all the rules (z, e)eRj used to reduce xy to e have the
property that z ~ e . Thus, l = xlay ~*oxy ~ * e , contradicting the choice of (l, e).
This proves the claim. []

Hence, ~ R = ~* by Lemma 3.3(c). On the other hand, if (1,e)eR~, then Rm
(l, e)eRj for somej > 0, and so l~-~*e by Lemma 3.3(b). Thus, R~ is equivalent to R.

Claim 2: R~o is normalized.

Proof. Assume that (ll,e) and (xlly, e) are both in R~, where xy + e. Then there
is an index j > 0 such that (l~,e), (xl~y, e)eRj. However, this contradicts the fact
that Rj is normalized. []

Completing a Finite Special String-Rewriting System 265

Finally, we can prove the following claim.

Claim 3: R~ is e-confluent.

Proof. Let (p,q)~UCP(Ro~), let pi,P2,pa,x, ye.Y,* such that P=PiP2P3, P2 + e,
and (xpEy, e)eR~, and let u~LFR~(pl) and wRFR~(pa). We must verify that
A* (xuqvy) c~ IRR(R~) = {e} holds.

Since (p,q)sUCP(Roo), there are rules (ll,e), (12,e)eR~ such that liq = pl2,
where 0 < l Pl < Ill I, and p and q do not have a common descendant m od R oo. Since
R~ only contains the persistent rules, there is an index j > 0 such that (I1, e), (/2, e),
(xpEy , e)~R i for all i >j . Hence, (p, q) is a critical pair for all R~, i __>j. Since ~*i ~ -~*
for all i > j by Claim 1, we see that this pair cannot be resolved mod Ri for any i >j ,
i.e., (p,q)eUCP(Ri) for all i >j .

Since uELFR~(Pi), we have upl --** e, and each step in this reduction straddles
the boundary between u and p~. Only a finite number of rules is used in this
reduction, and hence, there is an index k ~ j such that up~ ~ * e coincides with the
reduction upi -~*e . Hence, u~LFg~(pi). In fact, u6LFRi(pl) for all i >__ k. Analogously
it is shown that vERFR~(P3) for all i that are sufficiently large. Thus, xuqvys{x}.
LFR,(pO" {q} "RFR,(pa)" {y} for all sufficiently large indices i. Let i 0 be such an index.
If xuqvy -~* o e, then xuqvy ~*ooe by Claim 1, i.e., e6 A ~ (xuqvy). If xuqvy -r o e, then

xuqvy~*weIRR(Rio) - {e}, and so (w, e)eR~o. Thus, W~*o+le by Lemma 3.2, and
hence, xuqvy ~ * w ~ * e by Claim 1. This means that in any case e~/ *(xuqvy) .

Finally, assume that x u q v y - ~ z for some zelRR(Roo) - {e}. Then ze ~ IRR(RI),
i->_0

and xuqvy-~*z for all sufficiently large indices i. However, zeIRR(R~) and
R' xuqvy--**z imply that (z, e)s ~, which in turn yields that zr i), thus con-

tradicting the above observation. Hence, A*(xuqvy)c~IRR(R~)= {e}. Since this
holds for all uELFR~(pl) and vERFR~(P3) , we can conclude that A*| q.
RFR=(p3)'y)c~IRR(R~) = {e}. Thus, it follows that R~ is indeed e-confluent.

This completes the proof of Lemma 3.5. []

Thus, on input a finite special string-rewriting system R, Procedure 3.1 always
"computes" a special string-rewriting system R~ that is normalized, equivalent to
R, and e-confluent. Procedure 3.1 terminates if and only if this system R~ is finite.
Hence, it remains to characterize the condition under which this system R oo is indeed
finite.

To this end let R be a finite special string-rewriting system on 27, and let S(R)
denote the following special system:

S(R) = { (l, e) lle [e]R, but no proper factor of l belongs to [e]R}..

Lemma 3.6. S(R) is normalized, e-confluent, and equivalent to R.

Proof. Obviously, *--'S(R)c= ,--~*, and S(R) is normalized. On the other hand, if
we[e]R, then W--,~R)e. To prove this fact we proceed by induction on Iwt. If no
proper factor of w belongs to [e]R, then (w, e)~S(R). Otherwise, w = ulv for some
u, vEY,*, uv + e, and (1,e)~S(R). Then W~StR)UV, and uw--,*e. Since luvl < Iwl, we
can conclude that uv ~*(R)e by the induction hypothesis. Thus, W~S(R)UV ~*tR)e.
Hence, S(R) is equivalent to R, and S(R) is e-confluent. []

266 F. Otto

As it will turn out, S(R) is not just some normalized special string-rewriting
system that is equivalent to R and e-confluent, but S(R) is in fact the only system
having all these properties.

Lemma 3.7. Let T be a special string-rewriting system that is normalized, e-confluent,
and equivalent to R. Then T coincides with the system S(R).

Proof. Let (l,e)eT. Then N--~*e, and so l--*~(R)e. Thus, either (l,e)eS(R), or l = uxv
for some u, ve~,*, uv~=e, and some rule (x,e)eS(R). In the latter case, x,--~e
implying that x~-,~e, i.e., x ~*e, since T is e-confluent. However, this contradicts
the fact that T is normalized. Thus, T ~ S(R). Analogously, the converse inclusion
can be verified, i.e., T actually coincides with S(R). []

Thus, for each finite special string-rewriting system R there is a unique
normalized special system that is e-confluent and equivalent to R. This coincides
with the situation for length-reducing string-rewriting systems that are confluent
everywhere [3]. For R the corresponding system S(R) is either finite, in which case
Procedure 3.1 must terminate on input R according to Lemma 3.5, or S(R) is infinite,
in which case Procedure 3.1 cannot terminate on input R according to Corollary
3.4. In either case Procedure 3.1 "computes" the system S(R).

If T is a finite special system that is e-confluent and equivalent to R, then the
process of normalization yields a finite subsystem T 1 of T that is still e-confluent
and equivalent to R (see the discussion at the end of Sect. 2). Thus, T1 = S(R), and
so S(R) is finite in this case.

Combining all these results we obtain the following.

Corollary 3.8. Let R be a finite special string-rewritin 9 system on ,Y,. On input R,
Procedure 3.1 computes a normalized special string-rewriting system S(R) on ~, such
that S(R) is e-confluent and equivalent to R. Procedure 3.1 terminates if and only if
the system S(R) isfinite, which happens if and only if there exists a finite special string-
rewritin9 system S on Z, such that S is e-confluent and equivalent to R.

Thus, Procedure 3.1 succeeds whenever there exists a finite special system that
has all the required properties. Unfortunately, the following problem is undecidable
[9.14]:
INSTANCE: A finite special string-rewriting system R on 22
QUESTION: Is the corresponding system S(R) finite?

This means that it is undecidable in general whether or not Procedure 3.1 will
terminate given a finite special string-rewriting system R as input. We close this
section with a detailed example.

Example 3.9. Let 27 = {a, h, c, d} and R = {ad --+ e, da -* e, b 2 ~ e, c z --* e, bcbc --* e}.
Then the monoid ~R is the free product Z*(7/2 x Z2) , which cannot be presented
by any finite special and confluent string-rewriting system [2]. The system R is
normalized, and UCP(R) = {(b, cbc), (c, bcb)}. For the critical pair (p, q):= (b, cbc)
the subroutine CONTEXT_RESOLVING performs the following computations:

(1) Pl = e, P 2 ---= b, P3 = e: Then LFR(pl) = {e} = RFR(P3).

Now the following words xp2yedom(R) are considered:

(i) x = e, y = b: A*(x'LFR(pl) 'q'RFR(P3)'y)c~IRR(R) = A*(cbcb)c~IRR(R)
= {cbcb}.

Completing a Finite Special String-Rewriting System 267

(ii) x = b, y = e: A*(x'LFR(pl)'q'RFR(p3)'y)c~IRR(R) = A~(bcbc)c~IRR(R) = {e}.
(iii) x = e, y = cbc: A~(cbccbc)n lRR(R)= {e}.
(iv) x = bc, y = c: A*(bccbcc)nlRR(R) = {e}.

(2) ql = e, q2 = cbc, q3 = e: T h e n LFR(ql) = {e} = RFR(q3).
(i) x = b, y = e: A*(x'LFR(ql) 'p.RFR(q3).y)c~IRR(R)= A*(bb)nlRR(R) = {e}.

(3) ql = e, q2 = cb, q3 = C: T h e n LFR(ql) = {e} a n d RFldq3) = {c}.
(i) x = b, y = c: A*(bbcc)c~IRR(R) -- {e}.

(4) ql = c, q2 -- bc, q3 = e: T h e n LFR(q~) = {c, bcb} a n d RFR(q3) = {e}.
(i) x = e, y = bc: A*({c, bcb}.bbc)nlRR(R) = {e}.
(ii) x = bc, y = e: A*(bc.{c, bcb}.b)c~IRR(R)= {e}.

(5) ql = e, q2 = c, q3 = bc: T h e n LFR(ql) = {e} a n d RFR(q3) = {bc, cb, c2bc}.

F o r x = c a n d y = e we o b t a i n •*(cb. {bc, cb, cZbc})c~IRR(R)= {e, cbcb}, while all
o t h e r pos s ib l e choices of x a n d y y ie ld A * (x" LFR (q 1)" b" RFR(q 3) Y) c~ IRR (R) = { e}.

(6) qx = c, q2 = b, q3 = c: T h e n LFR(qt) = {c, bcb} a n d RFR(q3) = {c}.

F o r x = e a n d y = b we o b t a i n A*({c , bcb}'bcb) c~ IRR (R) = {e, cbcb}, while all o t h e r
cho ices j u s t y ie ld the set {e}.

(7) ql = cb, q2 = c, q3 = e: T h e n LFR(qO = {bc, bZcb} a n d RFR(q3)= {e}.
Aga in , for x = c a n d y = e we o b t a i n the set {e, cbcb}, while all o t h e r poss ib l e cho ices
yie ld the set {e}.

The cr i t ica l p a i r (c, bcb) is s y m m e t r i c to the first one. Hence , we o b t a i n the sys t em
R I : = Row {cbcb--*e}. As it t u rns ou t this sys tem is n o r m a l i z e d a n d e-conf luent .
P r o c e d u r e 3.1 t e r m i n a t e s wi th o u t p u t R 1. []

4. E-Completing Special String-Rewriting Systems that Present Groups

Let R be a spec ia l s t r i ng - r ewr i t i ng sys tem on 22. If the m o n o i d 9J~ R is a g r o u p , t hen
for all u , v ~ , * , uv~*e impl ies t h a t vu~]e , too , i.e., the c o n g r u e n c e class [e]R is
c losed u n d e r cycl ic p e r m u t a t i o n . If, in a d d i t i o n , R is e -conf luent , t hen [e]R = V] (e)
a n d hence, V~(e) is c losed u n d e r cycl ic p e r m u t a t i o n . F o r finite R, this p r o p e r t y is
dec idab l e in p o l y n o m i a l t ime (T h e o r e m 2.2).

N o w let us r e c o n s id e r E x a m p l e 3.9. The m o n o i d ~RR is a g roup , (bcbc, e)ER, b u t
c(bcb)-b*e. Hence , V*(e) is n o t c losed u n d e r cycl ic p e r m u t a t i o n , a n d this
i m m e d i a t e l y impl ies t h a t R is n o t e -conf luent . In fact, for spec ia l s t r i ng - r ewr i t i ng
sys tems p r e sen t i n g g r o u p s we have the fo l lowing s impl i f ied test for e-conf luence .

Theorem 4.1. Let R be a normalized special string-rewritin9 system on Z such that
the monoid 791R is a 9roup. Then R is e-confluent if and only if the following two
conditions are satisfied:

1. V*(e) is c losed u n d e r cycl ic p e r m u t a t i o n , a n d
2. V(p,q)EUCP(R):(A*(q'RFR(p))c~IRR(R))- {e} = ~ = (A*(p'RFR(q))

c~ IRR(R)) -- {e}.

Proof. F i r s t a s s u m e tha t R is e -conf luent . T h e n [e]R = V*(e), a n d s ince ~Jl R is a
g roup , [e] R is c losed u n d e r cycl ic p e r m u t a t i o n . Thus , c o n d i t i o n (1.) is sat isf ied.

268 F. Otto

Further, let (p,q)EUCP(R), and let veRFR(p). Then p~--~*q, and p v ~ e . Thus,
qv*--,*e, and so, since R is e-confluent, e is the only irreducible descendant of qv.
Hence, (A*(q-RFR(p)) c~ IRR(R)) - {e} = ~ , and by symmetry, (&*(p'RFR(q)) c~
I R R (R)) - {e} = ~ .

To prove the converse implication let (p, q)s UCP(R). By [10, Theorem 2.1] it
suffices to show that Lp(e) = Lq(e), where Lp(e) = {x#ylx, yelRR(R), xpy ~*e} and
Lq(e) = {x#ylx, yeIRR(R), xqy ~*e}. Here # is an additional letter that is not in 27.
So let x, ye lRR(R) such that xpy~*e. By (1.) V~(e) is closed under cyclic
permutation, and so pyx ~*e, too. Since R is a special system, this implies that there
exists a word ze2* such that yx ~ z and zeRFR(p). By (2.) qz ~*e implying that
qyx ~* qz ~ e. Again by (1.) this yields xqy ~* e, i.e., x# ys Lq(e). Thus, Lp(e) ~ Lq(e).
By symmetry we also obtain the converse inclusion, and so Lp(e) = Lq(e). []

Observe that if R is a finite special system, then, for each (p, q)e UPC(R), the sets
{q}.RFR(p) and {p}.RFR(q) are finite, and therewith the sets of descendants
A*(q.RF,(p)) c~ IRR(R) and A*(p'RFR(q)) c~ IRR (R) are finite, too.

We now present a procedure that on input a finite special string-rewriting system
R presenting a group tries to construct a special string-rewriting system S that is
e-confluent and equivalent to R. This procedure contains three subroutines:
NORMALIZATION, SYMMETRIZATION, and CONTEXT_RESOLVING.
The first one realizes the process of normalization, and the second introduces new
rules if necessary to obtain a system R t that is equivalent to R such that V~,(e) is
closed under cyclic permutation. It is based on Lemma 2.1. The third one finally
takes care of condition (2.) of Theorem 4.1. Since applications of the subroutines
SYMMETRIZATION and CONTEXT_RESOLVING may destroy the effect
obtained by previous applications of the subroutines NORMALIZATION and
SYMMETRIZATION, respectively, we have to keep applying all three subroutines
until a stable system is obtained.

Procedure 4.2. E-completion for finite special string-rewriting systems presenting
groups:

INPUT: A finite special string-rewriting system R on some alphabet 2; such that
the monoid gJl R presented by (22 ; R) is a group;

begin i ~- 0; R i ~ R;
NORMALIZATION:

while 31i, 12, X, y E , ~ * : x y ~ e A 12 = xlly A (11, e) ~ R i A (12, e)~Ri do
begin R i <-- R i - {(12, e)};

ife~A~,(xy) then Ri~-Ri~{(xy , e)}
end;
comment: At this point the system R i is normalized;

SYMMETRIZATION:
while 3ll , 12~22 + :(lf12, e) ~ R i A e~ A* (1211) do

R i ~ R i w { (/ i l l , e) };
comment: At this point V*i(e) is closed under cyclic permutation;

(,) if 311,12, x, y e Z * : x y ~: e ^ 12 = xlly A (ll, e)~Ri A (/2, e)~Ri then
goto NORMALIZATION;

comment: At this point R i is normalized, and V*(e) is closed under cyclic
permutation;

Completing a Finite Special String-Rewriting System 269

CONTEXT_RESOLVING:
compute UCP(Ri); R'~ ~ Zi;
for all (p, q)~ UCP(R~) do
begin Sp *- (A~,(q'RFR,(p)) c~ IRR(Ri)) -- {e};

Sq *- (A* (p'RFm(q)) c~ I R R (Ri)) - {e};
if Sp ~ ~ then R' i *- R' i u {(1, e)] 16S;};
if Sq ~ ~ then R'i ~- R'i u { (l,e)] leSq}

end;
if R'~ ~= ~Z~ then
begin Ri+ 1 ~- R i u R'i,

i ~ i + 1;
(**) goto NORMALIZATION;

end;
comment: At this point R~ is normalized and e-confluent;
OUTPUT: R~

end.

We claim that the above procedure determines a finite special string-rewriting
system Ri that is e-confluent and that is equivalent to R, whenever such a system
exists. Otherwise it enumerates an infinite special system R~ having both these
properties. As a first step towards proving this claim we show that on input a finite
special system R the innermost goto-loop (*) is executed only a finite number of
times before the subroutine CONTEXT RESOLVING is entered.

Lemma 4.3. Let R be a finite special string-rewriting system on Y, such that the
monoid 9~ R is a group. Then, on input R, a finite number of iterations of the innermost
goto-loop (*) yields a finite special string-rewriting system R o satisfying the following
conditions:

(i) R o is equivalent to R,
(ii) R o is normalized,

(iii) V*o is closed under cyclic permutation, and
(iv) ~R ~ ~*o"

Proof. By Lemma 3.2 the subroutine NORMALIZATION determines a finite
special system R' satisfying conditions (i), (ii), and (iv). Now the subroutine SYM-
METRIZATION may add some rules of the form (12l~, e), where (ltl2, e)eR'. Since
R' is finite, only finitely many rules of this form can be added, and hence, this
subroutine terminates with a finite special 4 system R" containing R'. Since the
monoid 9Jlg is a group, R" is equivalent to R, and by Lemma 2.1 V*,,(e) is closed
under cyclic permutation. If the system R" is also normalized, then Ro:= R" satisfies
all the conditions (i) to (iv), and the goto-loop (,) is left. Otherwise the subroutine
NORMALIZATION is called again with R".

Cycling through the subroutines NORMALIZATION and SYMMETRIZA-
TION no rule (x, e) is ever generated such that [x[> 2, where 2 = max {llll (I, e)e R}.
Further, even if a rule (Iz, e) is deleted in the subroutine NORMALIZATION, we
still have 12 ~*e. Thus, this rule will not be added again later on, neither in the
subroutine NORMALIZATION nor in the subroutine SYMMETRIZATION.
Hence, the goto-loop (,) terminates after a finite number of iterations, and it yields
a finite special string-rewriting system Ro with the stated properties. []

270 F. Otto

Given a finite special string-rewriting system R as input such that the monoid
~ s is a group, Procedure 4.2 computes a (finite or infinite) sequence of finite special
string-rewriting systems Ro, R1,R 2 Here Ri-1 denotes the system that is
determined by the subroutines NORMALIZATION and SYMMETRIZATION
(i.e., in the goto-loop (,)) during the i-th execution of the body of the outer goto-loop
(**). Based on Lemma 4.3 the following properties of these systems can be derived.

Lemma 4.4. For all i >= O, the followin9 statements hold:
(a) Ri is normalized,
(b) R i is equivalent to R,
(c) V*(e) is closed under cyclic permutation, and
(d) --}~ = ~ * ~ ~ *

R , ~ R i + I "

Proof. Analogously to the proof of Lemma 3.3. []

It now easily follows from Theorem 4.1 and Lemma 4.4 that Procedure 4.2 is
correct.

Corollary 4.5. Let R be a finite special string-rewriting system on Z such that the
monoid 9Jl R is a group. I f Procedure 4.2 terminates on input R, then it yields a finite
special system Ri on Z that is normalized, e-confluent, and equivalent to R.

As a first step towards proving that Procedure 4.2 is also complete, we now
investigate the situation when this procedure does not terminate.

Lemma 4.6. Let R be a finite special string-rewriting system on E such that the
monoid ~R is a group. I f Procedure 4.2 does not terminate on input R, then it
enumerates an infinite special system R~ that is normalized, e-confluent, and equivalent
to R.

Proof. Assume that Procedure 4.2 does not terminate on input R, i.e., it enumerates
an infinite sequence R o, R1, R2,.. . of finite special string-rewriting systems on Z. By
Lemma 4.4(d) ~* c ~* for all i>0 . In fact, since Procedure 4.2 does not

R , ~ R , + I

terminate with the system Ri, we have R' i ~ ~3, and so -~* c -~* ug" ~= -~*R,* , and
IRR(Ri+OcIRR(Ri) . In particular, a rule that is deleted in' t~e process of
normalizing the system R~ is not reintroduced at a later stage.

As in the proof of Lemma 3.5 we observe that Procedure 4.2 enumerates an
infinite special system R~o := {(l, e)] 3j > 0 Vi >j:(l, e)~Ri} of persistent rules. Again
this system, the rules of which Procedure 4.2 does not identify effectively, satisfies
IRR(Ro~)~ 0 IRR(Ri). In addition, the following properties of R~ can be

i__>0

established in much the same way as in the proof of Lemma 3.5:
1. ~g, c ~* for all i > 0, and therewith R~ is equivalent to R, Roo
2. R~ is normalized, and
3. R~ satisfies condition (2.) of Theorem 4.1.

Finally V*(e) is closed under cyclic permutation, since if u, v~E* are such that
(uv, e)~R~, then (uv, e)~Rj for some j > 0. By Lemma 4.4(c) V*(e) is closed under
cyclic permutation, and so vu~*e . Hence, by (1.) above v u ~ * e . Thus, V~ (e) is
closed under cyclic permutation ~y Lemma 2.1. |

Now Theorem 4.1 implies that R~ is e-confluent. This completes the proof of
Lemma 4.6. []

Completing a Finite Special String-Rewriting System 271

According to Lemma 3.7 S(R) = { (1, e) lle [el R, but no proper factor of/belongs
to [e]R} is the only special system that is normalized, e-confluent, and equivalent
to R. Thus, Corollary 4.5 and Lemma 4.6 yield the following result.

Theorem 4.7. Let R be a finite special string-rewritin 9 system on 27, such that the
monoid 9J~ R is a group. Then on input R, Procedure 4.2 computes a normalized
special string-rewriting system S(R) on 22 such that S(R) is e-confluent and equivalent
to R. Procedure 4.2 terminates if and only if the system S(R) is finite, which in turn
happens if and only if there exists at all a finite special string-rewritin9 system
S on 22 that is e-confluent and equivalent to R.

Again termination of Procedure 4.2 is undecidable, since the following problem
is undecidable by [9, Theorem 5.1.33:
INSTANCE: A finite special string-rewriting system R on 27 such that the monoid

93t R is a group.
QUESTION: Is the corresponding system S(R) finite?

We close this section by presenting two examples to illustrate the way Procedure
4.2 works. Each time we start with a finite special string-rewriting system R
presenting a group. By stepping through Procedure 4.2 applied to input R we
construct a special string-rewriting system S that is e-confluent and equivalent to R.

Example 4.8. (Example 3.9 revisited). Let Z = {a, b, c, d} and R = {ad ~ e, da ~ e,
b2-*e, c2-*e, bcbc~e}. Then 9J~ R is the group 7~*(~, 2 X 7~,2).

On input (22; R) Procedure 4.2 first computes the string-rewriting system R o :=
R w {cbcb ~ e} using the subroutines NORMALIZATION and SYMMETRIZA-
TION. This system is equivalent to R, it is normalized, and V R*o(e) is closed under
cyclic permutation. Then the subroutine CONTEXT_RESOLVING is entered, and
the following computations take place:

UCP(Ro) -= {(cbc, b), (bcb, c)},
RFRo(b) = {b, cbc}, RFRo(C) = {c, bcb},
RFRo(Cbc) = {b, cbc, bc 2, c2b, bcbcb, c2bc 2, bcb2c, cb2cb, c2bcbcb, bcbcbc 2,

bcbcbcbcb, bcb3cb}, and
RFRo(bcb) = {c, bcb, cb 2, b2c, cbcbc, b2cb 2, cbc2b, bc2bc, b2cbcbc, cbcbcb 2,

cbcbcbcbc, cbc3bc}.
Further, A*o(b.RfRo(Cbc)) c~ IRR (Ro) = {e},
A *o(Cbc. RF eo(b)) c~ I RR (Ro) = {e} = A *o(c. RF Ro(bcb))c~ IRR (Ro), and
A*o(bCb'RFRo(C))c~IRR(Ro) = {e}, and hence, R 0 = ~ . Thus, Ro is a finite special
string-rewriting system on 27 that is equivalent to R, and that is e-confluent. []

Example 4.9. Let Z = {a,b,c, f ,g} and R = {ab-*e, ba~e , c3~e , fg -~e , gf-~e,
b f b f ~ e , f c29~e} . Then R is normalized, and the monoid 9Jr R is obviously a
group. Actually, 9Jr R ~ 7Z,Z2, and so this monoid can be presented by a finite special
and confluent string-rewriting system on some alphabet F [23. However, no finite
special and confluent string-rewriting system is equivalent to R, since a ~--~* f b f , but
no factor of f b f is congruent to e mod R. On input R, Procedure 4.2 performs the
following computations.

First the subroutine SYMMETRIZATION is applied to R. It yields the system
S 1 :.-~-R w { f b f b ~ e, c2gf-+ e, cgfc--* e, 9fc2-+ e}. Since $1 is not normalized, the
subroutine NORMALIZATION is called. It disposes of the rules cZgf-+e,

272 F. Otto

cg f c ---, e, and gf c 2 ~ e while introducing the rule c z ~ e. Because of this new rule,
the rules c 3 --* e and fcZg --> e are then also deleted, and the rule c --* e is introduced.
Finally, the rule c 2 --* e is deleted, i.e., the system Ro = {ab ~ e, ba --* e, c --, e, f9 ~ e,
g f ~ e, bfbf--* e, fbfb--* e} is obtained. This system is normalized, and V~o is
closed under cyclic permutation. Now UCP(Ro) = {(a, fbf) , (g, bfb)}, i.e., the sets
RFRo(a), RFRo(fbf), RFRo(g), and RFRo(bfb) must be determined. As can be
checked easily, RFRo(a)= {b}, RFRo(9)= {f},

RFRo(fbT) = {b, bfg, bfbfb, gfb, 9ag, gabfb, gfbfg, g fb fb fb , bfbag, bfbabfb,
b fb fb fy , b fb fb fb fb} , and

RFRo(b fb) = { f, fba, f b fb f, ab f, aga, agfb f, ab fba, ab fb fb f, f b f ga, fb fb fba,
f b f g f b f , f b f b f b f b f } .

While A*o(fb f'RFRo(a)) c~ IRR(Ro) = {e} = A*o(bfb'RFRo(g)) c~ 1RR(Ro), we have
A~o(a.RFRo(fbf))~IRR(Ro)= {e, agag} and A*o(g'RFRo(bfb))~IRR(Ro)=
{e, gaga}. This gives the string-rewriting system R~:= R o u {agag ~ e, gaga---' e},
which is normalized. Further, V~(e) is closed under cyclic permutation, and
UCP(R1)= { (a, f bf), (g, bfb), (b, 9ag), (f, aga)}. Now RF,~ (a)= {b, 9ag}, RFR, (b)=
{a, f b f } , RFRI(g)= {f, aga}, and RFR~(f)= {g, bfb}. Further, RFR~(fbf)=
RFRo(fbf) and RFR~(bfb) = RFRo(bfb), while RVR~(gag) = {a, agf, agaga, fga,
f b f , f baga, fgag f , f gagaga, agab f , agabaga, agagag f , agagagaga } and RF 1 (aga) =
{g, gab, gagag, bag, bfb, bfgag, bagab, bagagag, 9agfb, gagagab, gagfgag,
9agagagag}. Finally,

A* (a.RFR~(fbT))c~IRR(Rt)= {e} = A ~ (T b f "RFR~(a))c~IRR(RO,

and the same is true for the other three critical pairs. Thus, R~ is a finite special
string-rewriting system on ~ that is equivalent to R, and that is e-confluent. []

5. Concluding Remarks

The examples presented at the end of the previous sections are fairly simple ones.
The reason for this is the fact that they have been done by hand calculations.
Naturally it would be interesting to investigate the behavior of our completion
procedures for some more complex examples. For example, one of the questions
one would like to answer by constructing appropriate examples is the following: for
each k > 1, does there exist a finite special string-rewriting system R such that, on
input R, Procedure 3.1 (respectively, Procedure 4.2) halts after executing the body
of the (outermost) goto-loop exactly k + 1 times, i.e. the system Rk is e-confluent,
but the system R k_ 1 is not? Due to the number and size of the sets LFR,(u) and
RFR,(v) involved, this will be possible only by using an actual implementation of
these completion procedures. Such an implementation is currently under way.

A part of Procedure 4.2 is the subroutine SYMMETRIZATION. Given a finite
special string-rewriting system R presenting a group, this subroutine adds rules of
the form lzll --*e, if(1jz,e)eR and 121~ -/**e. In this way a finite special system S is
obtained that is equivalent to R such that V s (e) is closed under cyclic permutation.
This subroutine was motivated by the notion of a symmetrized group presentation
[-5]. Let 22 = {a~ a,} be a finite alphabet, let 2 = {ci 1 ci,} be an alphabet in
one-to-one correspondence to Z such that 22 ~ X = ~ , and let-:22--* 2 denote the

Completing a Finite Special String-Rewriting System 273

obvious bijection. For a subset L ~ (Z w Z) * , R(L) denotes the Thue system
R(L):= { (u, e) lu~_L} u { (afi~, e), (~a~, e)[i = 1 , n}. Then the monoid 9Y~R~L) pre-
sented by (ZwZ;R(L)) is a group, and the ordered pair (S ; L) is called a
group-presentation for this group. Define a mapping - 1:(27 w ~)* ~ (27 w ~)*
through: e- 1: = e, (wai)- 1:= ~ti(w- 1), and (wfti)- 1: = ai(w- 1) for all w~(Z" w ~,)*, and

1 * , - 1 1 i = l n. Then, fora l lw~(Zu~,)* ,ww- *--~[~(L)e,,-*~(L)W w,i.e.,w- i sa formal
inverse ofw. Observe that ~ii is a formal inverse ofa~, i.e., each generator has a formal
inverse of length 1 in the setting of group presentations. This is not true in general
for finite special string-rewriting systems presenting groups.

A word w6(2; u Z)* is called freely reduced if it does not contain a factor of the
form agai or ci~a~; it is called cyclically reduced if it is freely reduced, and if it is not
of the form w = a~ud~ or w = ?tgua~. Obviously, if a word w is cyclically reduced, then
so is each cyclic permutation ofw. Now a subset L ~ (27 w ~)* is called symmetrized,
if the following holds for each word w6L: w is cyclically reduced, and each cyclic
permutation of w as well as of w- 1 belongs to L. If L is symmetrized, then the set
V~tL)(e) is closed under cyclic permutation by Lemma 2.1. Thus, when applied to
a finite group-presentation the subroutine SYMMETRIZATION essentially
constructs a symmetrized group-presentation equivalent to the given one.

If a finite symmetrized set L ~ (2' w e f t satisfies certain combinatorial condi-
tions (called small cancellation conditions [4, 5]), then the word problem for (27; L)
can be solved by Dehn's algorithm. This algorithm essentially consists in computing
normal forms modulo a finite length-reducing string-rewriting system S on (27 w 2')
that is equivalent to R(L) and that is e-confluent. LeChenadic [4] presents a process
he calls the group symmetrization algorithm that on input a finite symmetrized
group presentation (27; L) satisfying certain small cancellation conditions generates
the finite length-reducing system S mentioned above.

Procedures 3.1 and 4.2 only deal with finite special string-rewriting systems. For
which classes of less restricted string-rewriting systems can corresponding comple-
tion procedures be developed? A specialized completion procedure for finite
monadic string-rewriting systems presenting groups has been proposed in [7].
Recall that a string-rewriting system R on X is monadic, if each rule (1, r)~R satisfies
Ill > l r l and I r] < 1. It is shown in [73 that is decidable in polynomial time whether
a finite monadic string-rewriting system R presenting a group is e-confluent. On the
other hand, for finite monadic string-rewriting systems in general the problem of
deciding confluence on a given congruence class seems to be very hard. It has been
shown to be decidable, but the algorithm given in [103 uses doubly exponential
time. Thus, as a first step towards generalizing Procedure 3.1 to the class of all finite
monadic string-rewriting systems, a much more efficient algorithm for testing
cor/fluence on a given congruence class must be developed for finite monadic
systems.

6. References

1. Book, R. V.: Decidable sentences of Church Rosser congruences. Theor. Comput. Sci. 23,
301 312 (1983)

2. Cochet, Y.: Church Rosser congruences on free semigroups. In: Algebraic Theory of
Semigroups. Colloquia Mathematica Societatis Janos Bolyai 20, pp. 51-60. Amsterdam:
North-Holland 1976

274 F. Otto

3. Kapur, D., Narendran, P.: The Knuth-Bendix completion procedure and Thue systems. SIAM
J. Comput. 14, 1052-1072 (1985)

4. LeChenadec, Ph.: Canonical Forms in Finitely Presented Algebras. London: Pitman, New
York, Toronto: Wiley 1986

5. Lyndon, R. C., Schupp, P. E.: Combinatorial group theory. Berlin, Heidelberg, New York:
Springer 1977

6. Madlener, K., Otto, F.: About the descriptive power of certain classes of finite string-rewriting
systems. Theor. Comput. Sci. 67, 143-172 (1989)

7. Madlener, K., Narendran, P., Otto, F.: A specialized completion procedure for monadic
string-rewriting systems presenting groups. In: Albert, J. L., Monien, B., Artalejo, M. R. (eds.)
Automata, Languages, and Programming. Proceedings of the 18th Int. Coll., Lecture Notes
Computer Science, Vol. 510, pp. 279-290. Berlin, Heidelberg, New York: Springer 1991

8. Narendran, P., O'Dunlaing, C., Otto, F.: It is Undecidable Whether a Finite Special
String-Rewriting System Presents a Group. Discrete Math. (to appear)

9. O'Dunlaing, C.: Finite and Infinite Regular Thue Systems; Ph.D. Dissertation, Department
of Mathematics, University of California at Santa Barbara (1981)

10. Otto, F.: On deciding the confluence of a finite string-rewriting system on a given congruence
class. J. Comp. Sys. Sci. 35, 285-310 (1987)

11. Otto, F.: The problem of deciding confluence on a given congruence class is tractable for finite
special string-rewriting systems. Preprint No. 4/90, FB Math., GhK Kassel, West Germany
(1990); also: Math. Systems Theory (to appear)

12. Otto, F., Zhang, L.: Decision problems for finite special string-rewriting systems that are
confluent on a given congruence class. Acta Informatica 28, 477-510 (1991)

13. Zhang, L.: Conjugacy in special monoids. J. Algebra 143, 487-497 (1991)
14. Zhang, L.: The word problem and Markov properties for finitely presented special monoids.

Submitted for publication

