AAECC 2, 257-274 (1992) TCC

Applicable Algebra in
Engineering, Communication
and Computing

© Springer-Verlag 1992

Completing a Finite Special String-Rewriting System
on the Congruence Class of the Empty Word

Friedrich Otto

Fachbereich Mathematik/Informatik, Gesamthochschule Kaséel, Postfach 101380,
W-3500 Kassel, FRG

Received September 4, 1990; revised version September 9, 1991 .-

Abstract. Based on a polynomial-time test for determining whether a finite special
string-rewriting system R is e-confluent, a procedure for completing a finite special
system R on [e]y is derived. The correctness and completeness of this procedure
are proved. In addition, the special case of finite special string-rewriting systems
presenting groups is considered.

Keywords: String-rewriting system, Monoid-presentation, e-confluence,
Completion procedure

1. Introduction

In the present paper we are interested in special string-rewriting systems. A string-
rewriting system R on an alphabet X is called special if each rule of R is of the form
[—e, where [is a non-empty word and e denotes the empty word. These systems
are of particular interest for the following reasons. On the one hand, the process of
rewriting modulo a finite special string-rewriting system is particularly simple, since
it only amounts to the insertion and deletion of subwords. On the other hand, each
finitely presented group G can be presented by a finite special string-rewriting
system R on some alphabet X, ie., G is isomorphic to the factor monoid
My = 2*/% of the free monoid 2 * generated by X modulo the Thue congruence
% induced by R. However, although finite special string-rewriting systems are
fairly simple with respect to the structure of their rules, it is in general not possible
to obtain much information on the Thue congruence <% or on the monoid Wi,
from a given finite special string-rewriting system R on X. For example, it is undecid-
able in general whether the monoid 9, presented by a finite special string-rewriting
system R is a group [8]. In fact, the undecidability of Markov properties can be
carried over to the class of monoids that are presented by finite special
string-rewriting systems, thus establishing that many algebraic properties of My are
undecidable in this setting [14].

258 F. Otto

The situation improves dramatically when attention is restricted to finite special
string-rewriting systems R that are confluent. Let —% denote the reduction relation
induced by R, which is obtained by allowing the rules of R to only be applied from
left to right. Then R is called confluent if, for all u, veX*, u>¥v implies that u -}w
and v -} w for some we Z*. Thus, if R is a finite special string-rewriting system that
is confluent, then each congruence class mod <>} contains a unique word of minimal
length, and given any word ue £'*, the minimal word » congruent to u can easily be
obtained. Hence, the word problem for R is easily decidable, but also many other
problems become easily decidable in this setting [1].

If R is a finite special string-rewriting system on X that is not confluent, then
one way to try to solve the word problem for R consists in trying to construct a
finite special string-rewriting system S on X such that S is equivalent to R, i.e., the
congruences <} and < coincide, and S is confluent. For example, let 2 = {a,b,c}
and R = {(abacab,e), (abac,e), (acab,e)}. Then ab g abacab —ge, and so R is not
confluent. However, S = {(ab,), (ac,) } is a finite special system that is equivalent to
R and that is confluent. On the other hand, let X = {b, ¢} and R = {(b?, ¢), (bcbc, €) }.
Then che g b*cbec —gb, and so R is not confluent. If we X* satisfies w<}e, then
|wl, = 0mod 2 and |w|, = 0 mod 2 as can easily be seen, where [w|,(|w|,) denotes the
number of occurrences of the letter b (c) in w. Thus, neither b nor any factor of cbe
is congruent to emod R, i.e., whenever S is a special string-rewriting system that is
equivalent to R, then chbe—¥b, but ¢be and b are both irreducible mod S. Hence,
there is no special and confluent string-rewriting system on X that is equivalent to R.

It has been shown that a finitely presented group G can be presented by a
finite special and confluent string-rewriting system if and only if G is isomorphic to
the free product of finitely many (finite or infinite) cyclic groups [2]. Thus, the
monoid My presented by X ={a,b,c,d} and R={(ad,e), (da,e), (b*e), (c, e),
(bcbe,e)} cannot be presented by any finite special and confluent string-rewriting
system on any set of generators I, since My is isomorphic to the free product
Z+(Z, x Z,) of the free group Z of rank 1 and the direct product Z, x Z, of the
cyclic group Z, of order 2 with itself. However, let Ry:= Ru{(chch,e)}. Then R, is
a finite special system that is equivalent to R. Of course, R, is not confluent either,
but it has the following interesting property: for all we 2*, if we} e, when w —7% e,
ie., Ryis confluent on [e]g, or e-confluent. In particular, this implies that the process
of reduction maod Ry, yields a procedure to test membership in [e];. Furthermore,
since the monoid My is a group, the word problem for R is reducible to the
membership problem for [e]gz. Hence, the process of reduction mod R, gives a
method to solve the word problem for R. In fact, many problems become decidable
when they are restricted to the class of finite special string-rewriting systems R that
are e-confluent, e.g., the word problem, the conjugacy problem, the generalized word
problem, etc. [12, 13]. Also the class of groups that can be presented by these systems
in strictly larger than the class of groups presented by finite special and confluent
string-rewriting systems. In fact, each group G that is isomorphic to the free product
of a finitely generated free group and finitely many finite groups can be presented
by a finite special string-rewriting system R that is e-confluent, and it has been
conjectured that no other groups have such presentations [6].

Here we present a specialized completion procedure that, given a finite special
string-rewriting system R on some alphabet ¥ as input, tries to construct a
finite special system § on X that is equivalent to R and that is e-confluent.

Completing a Finite Special String-Rewriting System 259

This procedure consists of two subroutines called NORMALIZATION and
CONTEXT_RESOLVING, where the latter introduces new rules in order to make
the string-rewriting system considered e-confluent, while the former deletes
superfluous rules in order to keep the system as small as possible. It is shown that
this procedure either terminates with a finite special system S, or it enumerates an
infinite special system S. In either case is S equivalent to R and e-confluent. Further,
it is shown that this procedure terminates whenever there exists a finite special
system that is equivalent to R and e-confluent. Thus, our specialized completion
procedure is correct and complete.

The above completion procedure, which is presented in Sect. 3, is based on a
test for determining whether a finite special string-rewriting system is e-confluent
[11]. This test, although being polynomiai-time, is technically rather involved. For
the special case of finite special string-rewriting systems presenting groups, a much
simpler test is derived in Sect. 4. Based on this simplified test a specialized comple-
tion procedure for finite special string-rewriting systems presenting groups is then
presented. This procedure consists of three subroutines called NORMALIZATION,
SYMMETRIZATION, and CONTEXT_RESOLVING, where the latter two
introduce new rules in order to make the string-rewriting system considered
e-confluent, while the former one deletes superfluous rules. Again this completion
procedure is shown to be correct and complete.

Finally, in Sect. 5 we point to the relation between the subroutine SYM-
METRIZATION in our second completion procedure and the notion of symmetrized
group-presentation as it is considered in small cancellation theory [5], and we state
a few problems for future research.

2. Preliminary Results

Let 3 be a finite alphabet. Then X* denotes the set of words over X including the
empty word e. A special string-rewriting system R on X is a subset of X x {e},
where X+ = 2* — {e} denotes the set of non-empty words over X. The elements
(I,e) of R are called (rewrite) rules. For all u,veX* and (], e)eR, ulv—zuv, ie,
—p is the single-step reduction relation induced by R. Its reflexive and transitive
closure —% is the reduction relation induced by R. For u,veX*, if u-juv,
then u is an ancestor of v, and v is a descendant of u. By V¥(v) we denote the set of all
ancestors of v,and A%(u) denotes the set of all descendants of u. For a subset L < X'*,
VAL = Vi), and AYL) =) A3,
uel uel

By <% we denote the smallest equivalence relation on 2* that contains the
single-step reduction relation —g. It is called the Thue congruence generated by R.
For weX*, [w]g = {ue Z*|u—%w} is the congruence class of w mod R. Since <} is
in fact a congruence relation on X*, the set My:= {[w]z|weX*} of congruence
classes is a monoid under the operation [u]g°[v]g = [uv]z with identity [e]g. This
monoid is uniquely determined (up to isomorphism) by X and R, and hence,
whenever M is a monoid that is isomorphic to Mg, we call the ordered pair (X; R)
a (monoid-) presentation of It with generators X and defining relations R.

We say that a subset L = 2'* is closed under cyclic permutation if uve L implies
vueL for all u, ve £*. The following observation will be useful for our investigations.

260 » F. Otto

Lemma 2.1. Let R be a special string-rewriting system on X. Then the set V(e) of
ancestors of the empty word mod R is closed under cyclic permutation if and only if,
for allu,ve X, if (uv, e)eR, then vu —%e.

Proof. Obviously, the above condition is necessary for V¥(e) to be closed under
cyclic permutation. Thus, it remains to prove that it is also sufficient. Assume to the
contrary that V¥(e) is not closed under cyclic permutation, and let ze £ * be a word
of minimal length such that z—%e, but there is a cyclic permutation z, of z such
that z, A%e. Then there is a cyclic permutation y = ax of z, where ae X’ and xeX*,
such that y = ax —»}e while xa-p%e. Assume that there exists a word x; such that
x—gx; and ax; —»%e. Then xa —gx,a, and since |x, | <|x|, the choice of z implies
that with ax, »¥e also x;a—%e, thus contradicting the choice of y = ax. Hence,
whenever x —gx;, then ax;-p%e. Thus, the reduction ax—%e consists of a
single step only, i.e. (ax, e} R. But then the above condition yields that xa —%e, again
contradicting the choice of y. Thus, V¥(e) is indeed closed under cyclic permutation,
if the above condition is satisfied. [

Given a finite special string-rewriting system R on X, and a regular set L £ X'*
specified through a nondeterministic finite state acceptor (nfsa), an nsfa for the set
A¥(L) can be constructed in polynomial time [1]. Since, for all we X*, we Vi(e) if
and only if ee A%(w), this means that the membership problem for the set Vi(e) is
decidable in polynomial time for each finite special string-rewriting system R.
Together with Lemma 2.1 this yields the following result.

Theorem 2.2. The following problem is decidable in polynomial time:
INSTANCE: A finite special string-rewriting system R on Z.
QUESTION: Is Vi(e) closed under cyclic permutation?

Let R be a special string-rewriting system on 2. We say that R is confluent on
[w]g for some word weX*, if there exists a word wyoeIRR(R) such ‘that
[WlgrNIRR(R) = {wy}. Here IRR(R) denotes the set of words that are irreducible
mod R, ie. IRR(R) = {weX*| A¥w)={w}}. Thus, R is confluent on [w]g if all
words in that class reduce to the same irreducible word, which then can serve as
a normal form for this class. The system R is called e-confluent if it is confluent
on [e]g. In [11] a necessary and sufficient condition for R to be e-confluent is
derived. This condition involves the following technical notions.

Let (I;,e) and (I,,e) be two rules of R. If [, = xl,y for some x, ye X* satisfying
xy £ e, orif |, x = yl, for some x, ye 2'* satisfying 0 < |y| < |I|, then the pair (e, xy),
respectively (x, y), is called a critical pair of R. By UCP(R) we denote the set
{(x, y)I(x,y) is a critical pair of R such that A¥(x)n A%(y)= &} of unresolvable
critical pairs of R. Observe that for R finite, this set can be computed in polynomial
time.

The system R is called normalized if no left-hand side of a rule of R contains
another left-hand side as a factor. If R is normalized, then R can only admit critical
pairs of the second form. Further, if (p,q) is a critical pair of R, then p and q are
irreducible.

For ueX*, let RF x(u) denote the set

RFg(u)= {veZ*|3k 21 Juy,..., U, 0y,...,0€Z 1 u=th--uy, v=0,-- vy, and

(ulvla 6), (uZDZa e)’ RS (ukvk’ e)ER}a

Completing a Finite Special String-Rewriting System 261

i.e., RF g(u) consists of all those words v that are right-inverses of u mod R, where
there exists a reduction uv —%e each step of which straddles the boundary between
u and v. Thus, if R is finite, then ve RFz(u) implies that |v| < (4 — 1)-|u|, where
A:=max {|||(l,e)eR}, i.e. RF g(u) is a finite set. Analogously, the set

LFgu)={veX*|3k213uy,...,u,0y,..., 00X T u=uy - th,v= 10,0, and
(Ululae)a (Uzuz, e), LRRE} (Ukuk, e)ER}

is finite for each finite special system R. Further, given a finite special system R and
aword ue X *, nfsas for the sets RF g(u) and LF g(u) can be constructed in polynomial
time [11]. Finally, in order to cover all possible cases we take RF g(e):= {e} and
LFg(e):={e}.

In [11] the following technical result is obtained.

Theorem 2.3. Let R be a normalized special string-rewriting system on X. Then R is
e-confluent if and only if the following two conditions hold for each pair (p, q)e UCP(R):
(1) Vpy1,p2,p3,x, yeX*:if p=p,p,p; and (xp,y,e)eR such that p, + e

and LFg{p) F & + RFg(p3),
then AR(xLF(p,) 4 RFg(p)') N IRR(R) = {e}, and

(i) Vq1,49,,95,%, ye&*:if ¢ = q,9,95 and (xq,,e)eR such that g, ¢

and LFg(q,) # & + RFg(q5),
then AR(x'LFg(q,)'p-RFg(g3):yY)NIRR(R) = {e}.

In particular, this result implies that it is decidable in polynomial time whether
a finite special and normalized string-rewriting system R is e-confluent.

Observe that, if R is a finite system, then the sets of the form {x}-LFg(p,):
{q}-RFg(ps)-{y}, respectively {x} LFg(q;)-{p} RFg(qs)-{y}, are always finite.
Therewith the sets of irreducible descendants of these sets are finite as well.

The completion procedure we are about to describe will be based on
Theorem 2.3. If a normalized finite special string-rewriting system R does not satisfy
the two conditions stated there, we add further rules to R, thus trying to obtain
another special system R’ such that R’ is e-confluent, and R and R’ are equivalent,
i.e., the congruences <% and <%, coincide. However, in order to keep the system R’
normalized, we will also delete rules whenever that is possible. The basis for this is
the following observation.

Let R be a finite special string-rewriting system on X, and let (I,, e) and (I,, e) be
rules of R. If [, is a proper factor of ,, i.e., [, = xl,y for some words x, ye £*,xy £ ¢,
then xy g xl,y = I, »ze. For R to be e-confluent it must be possible to reduce xy
to e. Obviously, during this reduction the rule (/,, e) cannot be used. Thus, if xy —%e,
then the system R — {(I,,)} generates the same reduction relation as the system R.
In particular, R — {(/,,¢)} is equivalent to R, and the one system is e-confluent if
and only if the other system is. Thus, instead of dealing with R we can deal with the
smaller system. On the other hand, if xy A}e, then R is not e-confluent. Hence, to
complete R on [e]g, rules must be introduced that allow to reduce xy to e. So instead
of R we may consider the system (R — {(/,, e)})u{(xy, e)}, which is equivalent to R,
and which is smaller in the sense that a rule has been replaced by a smaller one.
This process will be called normalization.

262 F. Otto

3. The Completion Procedure for Finite Special String-Rewriting Systems

Let R be a finite special string-rewriting system on X. We would like to obtain
a special system S that is equivalent to R and e-confluent. To this end we
first normalize R, and then we check whether or not R itself is e-confluent. If it
is, we are done; otherwise, we must try to construct S from R. However, if R
is not e-confluent, then one of the conditions of Theorem 2.3 is violated. There-
fore, we have some information on a particular situation that violates the
property of e-confluence for R. We now present a completion procedure that
exploits this information. It consists of two subroutines: NORMALIZATION and
CONTEXT_RESOLVING. The former realizes the process of normalization
explained at the end of the previous section, while the latter adds new rules if the
conditions of Theorem 2.3 are violated. Since the latter may destroy the effect of
the former, and since new rules may lead to new unresolvable critical pairs, we have
to keep applying these two subroutines repeatedly until a stable system is
obtained.

Procedure 3.1. E-completion for finite special string-rewriting systems:
INPUT: A finite special string-rewriting system R on some alphabet X
begin i — 0; R; < R;
NORMALIZATION:
while 31,, L, x,yeX*:xy*en l, =xl;y A(l},e)eR; A (l;,e)eR; do
begin R, — R, — {(I,€)};
if e¢ A% (xy) then R; R, U {(xy,e)}
end;
comment: At this point R; is normalized,;
CONTEXT_RESOLVING:
compute UCP(R}); R+ ;
for all (p, q)e UCP(R,) do
begin for all p,, p,,p;,x,yeX* do
if p=p1p,ps A P2 ¥ e A (xp,y, €)€R, then
begin S, (A% (x-LFg(p1)q'RF g (p3)'y) " IRR(R;)) — {e};
if S, + & then R}~ RjU{(L,e)|leS,}
end;
forall q,,q,,45,x,yeX* do
if 4 = 419293 A 42 F € A (xq,y,e)eR, then
begin S, < (A% (x*LFg(q:)'p*RFg(q3) y) " IRR(R))) — {e};
if S, & J then R, R;U{(l,e)|l€S,}
end,;
end;
if R} + (& then
begin R; ., « R;UR;;
i—i+1;
(%) goto NORMALIZATION
end;
comment: At this point R; is normalized and e-confluent;
OUTPUT: R;
end.

Completing a Finite Special String-Rewriting System 263

We claim that the above procedure determines a finite special string-rewriting
system R; that is e-confluent and equivalent to R, whenever such a system exists.
Otherwise it enumerates an infinite special system R, having both these properties.
As a first step towards proving this result we consider the subroutine NORMAL-
IZATION. The following facts easily follow from the remarks at the end of Sect. 2.

Lemma 3.2. Let R be a finite special string-rewriting system on X. Then on input R,
the subroutine NORMALIZATION determines a finite special string-rewriting
system Rq on X such that R, is normalized, —g S —% , and R, is equivalent to R.

Given a finite special string-rewriting system R as input, Procedure 3.1
computes a (finite or infinite) sequence of finite special string-rewriting systems
Ry, Ry, R,,...,where R;_, denotes the system that is determined by the subroutine
NORMALIZATION during the i-th execution of the body of the goto-loop (*).
Recall that if R, is finite, then the sets S, and S,((p, g9)e UCP(R;)) are finite. Thus, R]
is finite, which in turn yields that R;, | is finite.

Lemma 3.3. For all i =0, the following statements hold:
(a) R, is normalized,
(b} R, is equivalent to R, and

© *X S 2k S kst

Proof. R, is determined by the subroutine NORMALIZATION from the input
system R. Thus, by Lemma 3.2 R, is normalized and equivalent to R, and
% E —k,- We proceed by induction on i. For i1, R; is determined by the
subroutine NORMALIZATION from the system R, _, uR,_ Hence, by Lemma
3.2 R, is normalized and equivalent to R,_; UR;_,, and —, U= € 2R
Further, by the induction hypothesis R,_, is equlvalent to R, and »%¥c -% .
Thus, —% € —%,, and since o, S +—>;';i_1, R;_,UR;_, is equivalent to R, which
implies that R, is equivalent to R. This completes the proof of Lemma 33. [J

From this lemma we can now easily derive the fact that Procedure 3.1 is correct,
i.e., it satisfies the following statement.

Corollary 3.4. Let R be a finite special string-rewriting system on X. If Procedure 3.1
terminates on input R, then it yields a finite special system R; on X that is normalized,
e-confluent, and equivalent to R.

Proof. Procedure 3.1 terminates on input R, if, for some i >0, then system R; is
empty. In this case the finite special system R; is taken as output. By Lemma 3.3 R;
is normalized and equivalent to R. Since R; = (¥, R, satisfies conditions (i) and (ii)
of Theorem 2.3. Hence, R; is also e-confluent. [

Thus, whenever Procedure 3.1 terminates, then the system R; constructed has
indeed all the properties we want. It remains to show that this procedure does
terminate whenever a special system § exists that is finite, equivalent to R, and
e-confluent. As a first step towards proving this fact, we analyse the situation when
Procedure 3.1 does not terminate.

Lemma 3.5. Let R be a finite special string-rewriting system on X. If Procedure 3.1
does not terminate on input R, then it enumerates an infinite special system R that
is normalized, equivalent to R, and e-confluent.

264 F. Otto

Proof. Assume that Procedure 3.1 does not terminate on input R. Then it
enumerates an infinite sequence Ry, R,,R,,... of finite special string-rewriting
systems on X.

Because of Lemma 3.3(c) we have IRR(R; ;) £ IRR(R;). In fact, if (I, e)eR/, then
IeIRR(R;) (see the construction of R; in the subroutine CONTEXT_ RESOLVING)
while I¢IRR(R,, ,), since =% 2 —g, U —p, by Lemma 3.2. Thus, since Procedure
3 1 does not terminate after the i+ Ist executlon of the body of the goto-loop (%),

R} + J implying that IRR(R,, ,) = IRR(R;). Further, if a rule (I, e) is deleted in the
process of normalizing the system R;, then I¢/RR(R;), and therewith [¢/RR(R))
for all j = i. This means that the rule (/, ¢) is not reintroduced at a later stage.

Now let i 2 0 and let (I, e)eR;. If this rule is contained in R; for all j = i, then
this rule is called persistent. If (I, ¢) is not persistent, then it is deleted in the process
of normalizing the system R; for some j > i. Thus, R; must contain a rule (/;, e) such
that /, is a proper factor of I. Now either (I,, ¢} is a persistent rule, or (I,,€) is again
deleted in the process of normalizing the system R, for some k > j, which means
that R, contains a rule (I,,e) such that I, is a proper factor of /. However, this
can only happen a finite number of times. Hence, there exist an index A and a rule
(x, e) such that x is a proper factor of [, and (x,e)eR,, for all p = 4. Thus, each rule
(Le)e |) R, is either persistent, or there is a persistent rule (x,e) such that x is a

iz0
proper factor of L.

Let R:={(l,e)|3j 2 0Vi=j:(l,e)eR;} be the set of persistent rules. The above
discussion shows that R, is an infinite special system. Procedure 3.1 can be
interpreted as enumerating this system. Of course, this enumeration is not an
effective one, since Procedure 3.1 does not identify the persistent rules. The
discussion above also shows that IRR(R,,) < ('} IRR(R;). In fact, the following
holds. iz0

Claim 1: —g, < —% foralliz=0.

Proof. Tt suffices to show that [>} e for all (,e)e U R;. Assume to the contrary
iz0
that there exists a rule (1, e)e |] R; such that] +%., & and assume that (I, e) is chosen
iz0

from all the rules having this property such that |/| is minimal. Since [-A% e, we
have (I,e)¢R . Hence, there is an index j such that the rule (I, ¢) is deleted 1n the
process of normalizing R;, ie., [=xl;y for some x,yeX*, xy % ¢, and some rule
(l;,e)eR;. Since |l;|<|[l|, we have [; >} e according to the choice of (I e).
Further, the way in which the subroutine NORMALIZATION works guarantees
that xy —% e. Since {xy| < |l|, all the rules (z, e)eR; used to reduce xy to e have the
property that z—% e Thus, I=xl;y—>% xy—} e, contradicting the choice of (I, e).
This proves the claim. |

Hence, -z < —% by Lemma 3.3(c). On the other hand, if (,e)eR,,, then
(l,e)eR;for somej = 0, and so [«%eby Lemma 3.3(b). Thus, R, isequivalent to R.

Claim 2: R, is normalized.

Proof. Assume that (/;,¢) and (xl,y,e) are both in R, where xy # e. Then there
is an index j = 0 such that (I;,e), (xl,y,e)eR;. However, this contradicts the fact
that R; is normalized. []

Completing a Finite Special String-Rewriting System 265

Finally, we can prove the following claim.
Claim 3: R, is e-confluent.

Pr00f~ Let (p’ q)EUCP(Roo)’ let P1,D2,P3: %, yEZ* Sl.lCh that D=Dp1P2P3, P2 :*: ¢
and (xp,y,e)eR,, and let ucLFy (p;) and veRFg (ps). We must verify that
A% (xuquy)nIRR(R,,) = {e} holds.

Since (p,q)e UCP(R,,), there are rules (I;,e), (I,,e)eR,, such that l,q=pl,,
where 0 < |p| < |l;|, and p and g do not have a common descendant mod R . Since
R, only contains the persistent rules, there is an index j = 0 such that (I;, e), (1,),
(xp,y,e)eR;for alli = j. Hence, (p, q) is a critical pair for all R;, i = j. Since —»§ < —F
for all i = j by Claim 1, we see that this pair cannot be resolved mod R; for any i = j,
ie., (p,q)eUCP(R)) for all i = .

Since ueLFg_(p;), we have up; —%_e, and each step in this reduction straddles
the boundary between u and p;. Only a finite number of rules is used in this
reduction, and hence, there is an index k = j such that up, —} e coincides with the
reduction up, —»%_e.Hence,ueLFg, (p,). Infact,ue LFy (p,)for alli Z k. Analogously
it is shown that veRFg (ps) for all i that are sufficiently large. Thus, xuqvye{x}
LFg.(p1)'{q} RFg(ps) {y} for all sufficiently large indices i. Let i be such an index.
If xuquvy —>;';m e, then xugqvy —% e by Claim 1,i.e.,, ee A% _(xuquy). If xuquy 71’1*5,-0 e, then
xuquy—% weIRR(R;))—{e}, and so (w,)€ R;,. Thus, w—} e by Lemma 3.2, and

hence, xuquy —% w—%_e by Claim 1. This means that in any case ee A} _(xuquy).

Finally, assume that xugvy »% zforsomezeIRR(R,,)— {e}. Thenze [} IRR(R),
iz0

and xuquy—} z for all sufficiently large indices i. However, zeIRR(R;) and
xuquy —% z imply that (z, eJe R;, which in turn yields that z¢ IRR(R,,), thus con-
tradicting the above observation. Hence, A% (xuqvy)"IRR(R,) = {e}. Since this
holds forallue LFg_(p,)and veRF_(p3), we can conclude that A} (x-LFg_(p;)-q
RFg_(p3)'y)nIRR(R,) = {e}. Thus, it follows that R, is indeed e-confluent.

This completes the proof of Lemma 3.5. [J

Thus, on input a finite special string-rewriting system R, Procedure 3.1 always
“computes” a special string-rewriting system R that is normalized, equivalent to
R, and e-confluent. Procedure 3.1 terminates if and only if this system R, is finite.
Hence, it remains to characterize the condition under which this system R is indeed
finite.

To this end let R be a finite special string-rewriting system on X, and let S(R)
denote the following special system:

S(R) = {(, e)|le[e]g, but no proper factor of | belongs to [e]g}.
Lemma 3.6. S(R) is normalized, e-confluent, and equivalent to R.

Proof. Obviously, <, = <%, and S(R) is normalized. On the other hand, if
we[elg, then w—¥, e. To prove this fact we proceed by induction on |w|. If no
proper factor of w belongs to [e]g, then (w,e)eS(R). Otherwise, w = ulv for some
u, veX* uv e, and (I, e)eS(R). Then w g uv, and uvje. Since |uv| <|w|, we
can conclude that uv—%, e by the induction hypothesis. Thus, w — g, uv =3 ze-
Hence, S(R) is equivalent to R, and S(R) is e-confluent. [J

266 F. Otto

As it will turn out, S(R) is not just some normalized special string-rewriting
system that is equivalent to R and e-confluent, but S(R) is in fact the only system
having all these properties.

Lemma 3.7. Let T be a special string-rewriting system that is normalized, e-confluent,
and equivalent to R. Then T coincides with the system S(R).

Proof. Let (I,e)eT. Then e, and so [-, e. Thus, either (/,e)eS(R), or I =uxv
for some u,veX*, uv+e, and some rule (x,e)eS(R). In the latter case, x«}e
implying that x<%e, ie., x »¥e, since T is e-confluent. However, this contradicts
the fact that T is normalized. Thus, T < S{R). Analogously, the converse inclusion
can be verified, i.e., T actually coincides with S(R). [

Thus, for each finite special string-rewriting system R there is a unique
normalized special system that is e-confluent and equivalent to R. This coincides
with the situation for length-reducing string-rewriting systems that are confiuent
everywhere [3]. For R the corresponding system S(R) is either finite, in which case
Procedure 3.1 must terminate on input R according to Lemma 3.5, or S(R) is infinite,
in which case Procedure 3.1 cannot terminate on input R according to Corollary
3.4. In either case Procedure 3.1 “computes” the system S(R).

If T is a finite special system that is e-confluent and equivalent to R, then the
process of normalization yields a finite subsystem T, of T that is still e-confluent
and equivalent to R (see the discussion at the end of Sect. 2). Thus, T; = S(R), and
so S(R) is finite in this case.

Combining all these results we obtain the following.

Corollary 3.8. Let R be a finite special string-rewriting system on X. On input R,
Procedure 3.1 computes a normalized special string-rewriting system S(R) on X such
that S(R) is e-confluent and equivalent to R. Procedure 3.1 terminates if and only if
the system S(R) is finite, which happens if and only if there exists a finite special string-
rewriting system S on X such that S is e-confluent and equivalent to R.

Thus, Procedure 3.1 succeeds whenever there exists a finite special system that
has all the required properties. Unfortunately, the following probiem is undecidable
[9.14]:

INSTANCE: A finite special string-rewriting system R on 2.
QUESTION: Is the corresponding system S(R) finite?

This means that it is undecidable in general whether or not Procedure 3.1 will
terminate given a finite special string-rewriting system R as input. We close this
section with a detailed example.

Example 39. Let X = {a,b,c,d} and R= {ad—e, da—e, b* >e, c* >e, bcbec — e},
Then the monoid My, is the free product Z=(Z, x Z,), which cannot be presented
by any finite special and confluent string-rewriting system [2]. The system R is
normalized, and UCP(R) = {(b, cbc),(c, bcb)}. For the critical pair (p, g):= (b, cbc)
the subroutine CONTEXT_RESOLVING performs the following computations:

(1) p;=e, py=>b, p;=e:Then LFg(p,) = {e} = RFg(p3).
Now the following words xp,yedom(R) are considered:

(i) x=e y=b:A¥(x-LFg(py) q:RFg(ps) y)NIRR(R) = A¥(chbch) N IRR(R)
= {cbcb}.

Completing a Finite Special String-Rewriting System 267

(i) x=b,y=-e:A}¥(x LFg(p,) q-RFg(p3) y)nIRR(R) = A¥(bcbc)nIRR(R) = {e}.
(iii) x =e, y = cbc: A¥(cbeebe) NIRR(R) = {e}.
(iv) x =bc, y=c: A¥(becbec)nIRR(R) = {e}.

(2) q1=e,q,=chc, g3 =e: Then LFg(q,) = {e} = RFg(q3)-
(i) x=b,y=e:Ak(x'LFg(g,) p'RFx(q3)'y)"IRR(R) = A%(bb)nIRR(R) = {e}.

(3) 41=e,q;=cb,q3=c: Then LFg(q,) = {e} and RFg(q;) = {c}.
(i) x=b,y=c:A¥(bbcc)nIRR(R) = {e}.

(4) g1=c g, =bc, g3 =e: Then LFg(q,) = {c,bcb} and RFg(q;) = {e}.
(i) x=e, y=bc: A¥({c,bcb} bbc)nIRR(R) = {e}.
(i) x=be,y=e: A*(bc {c,bcb}-b)NIRR(R) = {e}.

(5) qy=e,q,="c, q5=>bc: Then LF(q,) = {e} and RFg(q;) = {bc,cb,c*bc}.

For x = ¢ and y = e we obtain A %(cb-{bc, cb, c*bc}) N IRR(R) = {e, cbcb}, wh11e all
other possible choices of x and y yield A¥(x-LFg(q,) b-RF R(q3) y)NIRR(R) = {e}.

(6) g,=c q,=>b,q3=c: Then LFg(q,) = {c,bch} and RFg(q;) = {c}.

Forx = eand y = b we obtain A}({c, bcb}-bcb)NIRR(R) = {e, cbch}, while all other
choices just yield the set {e}.

(7) q,=cb, q;=c, q3=e: Then LFg(q,) = {bc,b*cb} and RFg(q;) = {e}.
Again, for x = c and y = e we obtain the set {e, chcb}, while all other possible choices
yield the set {e}.

The critical pair (c, bch) is symmetric to the first one. Hence, we obtain the system
R :=Ryu{cbchb—>e}. As it turns out this system is normalized and e-confluent.
Procedure 3.1 terminates with output R,. [

4, E-Completing Special String-Rewriting Systems that Present Groups

Let R be a special string-rewriting system on X If the monoid My, is a group, then
for all u,veX*, uvfe implies that vue, too, ie., the congruence class [e]y is
closed under cychc permutatlon If, in addltlon R is e-confluent, then [e]z = V% (e)
and hence, V(e) is closed under cyclic permutation. For finite R, this property is
decidable in polynomial time (Theorem 2.2).

Now let us reconsider Example 3.9. The monoid 9y is a group, (bcbc, e)eR, but
c(beb)pre. Hence, Vi(e) is not closed under cyclic permutation, and this
immediately implies that R is not e-confluent. In fact, for special string-rewriting
systems presenting groups we have the following simplified test for e-confluence.

Theorem 4.1. Let R be a normalized special string-rewriting system on X such that
the monoid My is a group. Then R is e-confluent if and only if the following two
conditions are satisfied:

1. Vi%(e) is closed under cyclic permutation, and
2. Y(p,q)e UCP(R):(A}(q* RFg(p)) NIRR(R)) — {e} = & = (LK(p- RFR(q))
NIRR(R)) — {e}.

Proof. First assume that R is e-confluent. Then [e]z = V¥(e), and since My, is a
group, [elg is closed under cyclic permutation. Thus, condition (1.} is satisfied.

268 F. Otto

Further, let (p,q)eUCP(R), and let veRFg(p). Then p—fq, and pv—Fe. Thus,
gue, and so, since R is e-confluent, e is the only irreducible descendant of gv.
Hence, (A%(g-RF(p)) "IRR(R)) — {e} = &, and by symmetry, (A}(p'RFg(q)) N
IRR(R) —{e} = &.

To prove the converse implication let (p, g9)e UCP(R). By [10, Theorem 2.1] it
suffices to show that L (e) = L (e), where L {e) = {x#|x, yeIRR(R), xpy —%e} and
Le)= {x#y|x,yeIRR(R), xqy ~%e}. Here # is an additional letter that is not in X.
So let x,yeIRR(R) such that xpy—%e. By (1) Vi(e) is closed under cyclic
permutation, and so pyx —%e, too. Since R is a special system, this implies that there
exists a word ze X'* such that yx —%z and ze RFg(p). By (2.) gz —}%e implying that
qyx —%qz —%e. Again by (1.) this yields xqy —»%e, i.e., x#yeL,(e). Thus, L,(e) S L,(e).
By symmetry we also obtain the converse inclusion, and so L,(e) = L (e). [

Observe that if R is a finite special system, then, for each (p, g)e UPC(R), the sets
{q} RFg(p) and {p}-RFg(q) are finite, and therewith the sets of descendants
A¥(g-RF(p))nIRR(R) and A%(p'RFg(g))nIRR(R) are finite, too.

We now present a procedure that on input a finite special string-rewriting system
R presenting a group tries to construct a special string-rewriting system S that is
e-confluent and equivalent to R. This procedure contains three subroutines:
NORMALIZATION, SYMMETRIZATION, and CONTEXT_RESOLVING.
The first one realizes the process of normalization. and the second introduces new
rules if necessary to obtain a system R, that is equivalent to R such that V} (e) is
closed under cyclic permutation. It is based on Lemma 2.1. The third one finally
takes care of condition (2.) of Theorem 4.1. Since applications of the subroutines
SYMMETRIZATION and CONTEXT_RESOLVING may destroy the effect
obtained by ‘previous applications of the subroutines NORMALIZATION and
SYMMETRIZATION, respectively, we have to keep applying all three subroutines
until a stable system is obtained.

Procedure 4.2. E-completion for finite special string-rewriting systems presenting
groups:

INPUT: A finite special string-rewriting system R on some alphabet 2 such that
the monoid M, presented by (X' ; R) is a group;
begin i< 0; R;<R;
NORMALIZATION:
while 31,,1,, x,yeX*:xy+en l, =xl;y A(l;,e)eR; A (I;,e)eR; do
begin R; < R; — {(l,,¢e)};
if e¢ A% (xy) then R;<R,u{(xy,e)}
end;
comment: At this point the system R, is normalized;
SYMMETRIZATION:
while 3,,l,e>*:(l,1,,e)eR; A e¢ A% (lx1,) do
Ri<R;v{(,l;;0)};
comment: At this point V (e) is closed under cyclic permutation;
(x) if3l, L, x,yeZ*xy+enl,=xl,yA(l;,e)eR; A(l;,e)eR, then
goto NORMALIZATION;
comment: At this point R; is normalized, and V3 (e) is closed under cyclic
permutation;

Completing a Finite Special String-Rewriting System 269

CONTEXT_RESOLVING:
compute UCP(R)); R;+ &,
for all (p, q)e UCP(R)) do
begin S, (1% (¢ RFx(p)) VIRR(R)) — {e};
S, (A% (p"RF (@) N IRR(R)) — {e};
if S, = & then R« R;U{(,e)|leS,};
if S, & ¢ then R;« R;U{(},¢)|leS,}
end;
if R} + ¢ then
begin R, , <« R,UR};
i—it+1;
(*%) goto NORMALIZATION;
end;
comment: At this point R; is normalized and e-confluent;
OUTPUT: R;
end.

We claim that the above procedure determines a finite special string-rewriting
system R, that is e-confluent and that is equivalent to R, whenever such a system
exists. Otherwise it enumerates an infinite special system R having both these
properties. As a first step towards proving this claim we show that on input a finite
special system R the innermost goto-loop (*) is executed only a finite number of
times before the subroutine CONTEXT_RESOLVING is entered.

Lemma 4.3. Let R be a finite special string-rewriting system on X such that the
monoid My, is a group. Then, on input R, a finite number of iterations of the innermost
goto-loop (*) yields a finite special string-rewriting system Ry, satisfying the following
conditions:

(i) R, is equivalent to R,

(i) R, is normalized,
(iii) V%, is closed under cyclic permutation, and
(i¥) —r S k-

Proof. By Lemma 3.2 the subroutine NORMALIZATION determines a finite
special system R’ satisfying conditions (i), (ii), and (iv). Now the subroutine SYM-
METRIZATION may add some rules of the form (I,!,,¢), where (I,1,,e)eR’. Since
R’ is finite, only finitely many rules of this form can be added, and hence, this
subroutine terminates with a finite special, system R” containing R’. Since the
monoid My is a group, R” is equivalent to R, and by Lemma 2.1 V%.(e) is closed
under cyclic permutation. If the system R” is also normalized, then Ry:= R" satisfies
all the conditions (i) to (iv), and the goto-loop (x) is left. Otherwise the subroutine
NORMALIZATION is called again with R”".

Cycling through the subroutines NORMALIZATION and SYMMETRIZA-
TION no rule (x, e) is ever generated such that |x| > A, where 4 = max {|1||(/, e}eR}.
Further, even if a rule (I,,) is deleted in the subroutine NORMALIZATION, we
still have I, »*e. Thus, this rule will not be added again later on, neither in the
subroutine NORMALIZATION nor in the subroutine SYMMETRIZATION.
Hence, the goto-loop () terminates after a finite number of iterations, and it yields
a finite special string-rewriting system R, with the stated properties. []

270 F. Otto

Given a finite special string-rewriting system R as input such that the monoid
Ny is a group, Procedure 4.2 computes a (finite or infinite) sequence of finite special
string-rewriting systems Rg,R,,R;,.... Here R;_, denotes the system that is
determined by the subroutines NORMALIZATION and SYMMETRIZATION
(i.e., in the goto-loop (*)) during the i-th execution of the body of the outer goto-loop
(*x). Based on Lemma 4.3 the following properties of these systems can be derived.

Lemma 4.4. For all i = 0, the following statements hold:
(a) R;is normalized,

(b) R,is equivalent to R,

(c) Vi.(e)is closed under cyclic permutation, and

@) ~5S %S ...

Proof. Analogously to the proof of Lemma 3.3. [

It now easily follows from Theorem 4.1 and Lemma 4.4 that Procedure 4.2 is
correct.

Corollary 4.5. Let R be a finite special string-rewriting system on X such that the
monoid My, is a group. If Procedure 4.2 terminates on input R, then it yields a finite
special system R; on X that is normalized, e-confluent, and equivalent to R.

As a first step towards proving that Procedure 4.2 is also complete, we now
investigate the situation when this procedure does not terminate.

Lemma 4.6. Let R be a finite special string-rewriting system on X such that the
monoid My is a group. If Procedure 4.2 does not terminate on input R, then it
enumerates an infinite special system R that is normalized, e-confluent, and equivalent
to R.

Proof. Assume that Procedure 4.2 does not terminate on input R, i.e., it enumerates
an infinite sequence Ry, Ry, R,,. .. of finite special string-rewriting systems on . By
Lemma 4.4(d) —% < —% ., for all i=20. In fact, since Procedure 4.2 does not
terminate with the system R;, we have R} + ¢, and so —»} < _’; g —%,., and
IRR(R;, ;)< IRR(R)). In partlcular a rule that is deleted in the process of

normalizing the system R; is not reintroduced at a later stage.

As in the proof of Lemma 3.5 we observe that Procedure 4.2 enumerates an
infinite special system R ,:= {(l,e){3j =0 Vi 2 j:(l,e)eR;} of persistent rules. Again
this system, the rules of which Procedure 4.2 does not identify effectively, satisfies
IRR(R,) <= () IRR(R). In addition, the following properties of R, can be

iz0
established in much the same way as in the proof of Lemma 3.5:
1. —g, & —% foralliz0, and therewith R, is equivalent to R,
2. R, is normalized, and
3. R, satisfies condition (2.) of Theorem 4.1.

Fmally V. (e) is closed under cyclic permutation, since if u, ve X * are such that
(uv,e)eR , then (uv,e)eR; for some j = 0. By Lemma 4.4(c) V3 () is closed under
cyclic permutation, and so vu —% e. Hence, by (1.) above vu—%_e. Thus, V¥ (e) is
closed under cyclic permutation By Lemma 2.1.

Now Theorem 4.1 implies that R, is e-confluent. This completes the proof of
Lemma 4.6. [

Completing a Finite Special String-Rewriting System 27

According to Lemma 3.7 S(R) = {(l,)| e[€], but no proper factor of / belongs
to [e]g} is the only special system that is normalized, e-confluent, and equivalent
to R. Thus, Corollary 4.5 and Lemma 4.6 yield the following result.

Theorem 4.7. Let R be a finite special string-rewriting system on X such that the
monoid My is a group. Then on input R, Procedure 4.2 computes a normalized
special string-rewriting system S(R) on X such that S(R) is e-confluent and equivalent
to R. Procedure 4.2 terminates if and only if the system S(R) is finite, which in turn
happens if and only if there exists at all a finite special string-rewriting system
S on X' that is e-confluent and equivalent to R.

Again termination of Procedure 4.2 is undecidable, since the following problem
is undecidable by [9, Theorem 5.1.3]:
INSTANCE: A finite special string-rewriting system R on X such that the monoid

My is a group.

QUESTION: Is the corresponding system S(R) finite?

We close this section by presenting two examples to illustrate the way Procedure
4.2 works. Each time we start with a finite special string-rewriting system R
presenting a group. By stepping through Procedure 4.2 applied to input R we
construct a special string-rewriting system S that is e-confluent and equivalent to R.

Example 4.8. (Example 3.9 revisited). Let X = {a,b,c,d} and R= {ad—e, da—e,
b* e, c* —e, bche — e}. Then My is the group Z+(Z, x Z.).

On input (X; R) Procedure 4.2 first computes the string-rewriting system R,:=
Ru{cbcb — e} using the subroutines NORMALIZATION and SYMMETRIZA-
TION. This system is equivalent to R, it is normalized, and V% (e) is closed under
cyclic permutation. Then the subroutine CONTEXT_RESOLVING is entered, and
the following computations take place:

UCP(Ry) = {(che,b),(bch, c)}

RFg (b) ={b,chc}, RFg (c)={c,bcb},

RF g (cbc) = {b, che, bc?, ¢*b, bebeb, ¢2be?, beb®c, cb*ch, c*bebeb, bebebe?,

bcbcbcbcb bcb3ch}, and

RF g (bcb) = {c, beb, cb?, b?c, chebe, bcb?, che?b, be?be, b2 cbebe, chebeb?,

cbebebebe, chebe}.
Further, A% (b-RF Ro(cbc))m IRR(R,) = {e},
AR (cbe:RF g (b)) NIRR(Ry) = {e} = A% (c'RF g (bch)) N IRR(R,), and
A% (beb RF g (¢))NIRR(Ry) = {e}, and hence R, = . Thus, R, is a finite special
string-rewriting system on X that is equivalent to R, and that is e-confluent. [

Example 4.9. Let = {a,b,c, f,g} and R={ab—>e,ba—e,c®—e, fg—e, gf —e,
bfbf—e, fc’g—e}. Then R is normalized, and the monoid My is obviously a
group. Actually, My =~ Z*Z,, and so this monoid can be presented by a finite special
and confluent string-rewriting system on some alphabet I" [2]. However, no finite
special and confluent string-rewriting system is equivalent to R, since a<} fbf, but
no factor of fbf is congruent to emod R. On input R, Procedure 4.2 performs the
following computations.

First the subroutine SYMMETRIZATION is applied to R. It yields the system
Si:=RuU{fbfb—e c’qf -e, cgfc—e, gfc* —e}. Since S, is not normalized, the
subroutine NORMALIZATION is called. It disposes of the rules c’gf —e,

272 F. Otto

cgfc— e, and gfc? — e while introducing the rule ¢? - e. Because of this new rule,
the rules ¢® — e and fc2g — e are then also deleted, and the rule ¢ — e is introduced.
Finally, the rule ¢* > e is deleted, i.c., the system Ry = {ab—e, ba—e, c—e, fg—e,
gf —»e, bfbf—e, fbfb—e} is obtained. This system is normalized, and V}% is
closed under cyclic permutation. Now UCP(Ro) = {(a, fbf), (g, bfb}}, i.e., the sets
RF g (@), RFg (fbf) RF ro(9), and RFp (bfb) must be determined. As can be
checked easily, RF g (a) = {b}, RFg (9)={f},

RF g (fbf)={b,bfy, bf bfb,gfb,gag,gabfb,gfbfg,gfbfbfb,bfbag,bfbabfb,
bfbfbfg,bfbfbfbfb}, and
RFg (bfb)y={f, fba, fbfbf,abf,aga,agfbf,abfba,abfbfbf, fbfga, fbfbfba,

fbfgfbf.fbfbfbfbf}.
While A% (fbf- RFRO(a))mIRR(RO) = {e} = A% (bfb RF (9)) N IRR(Ry), we have
A% (a: RFR fbf)NIRR(Ry) = {e,agag} and A% (g-RFg (bfb))nIRR(Ro) =

{e, gaga} This gives the strlng rewrltlng system R1 —Rou{agag—>e gaga— e},
which is normalized. Further, V¥ (e) is closed under cyclic permutation, and
UCP(R,)={(a, /b), (g, bfb), (b,gag, /. aga)} Now RFy, (a)= {b, gag}, RF ,(b)=
{a, fbf}, RFg,(9)={f,aga}, and RFg (f)=1{g,bfb}. Further, RFg (fbf)=
RFg,(fbf) and RFg (bfb)=RFg(bfD), whlle RFg (gag) = {a,agf,agaga, fga,
fbf, fbaga, fgagf, fgagaga, agabf,agabaga, agagag f, agagagaga} and RF |(aga) =
{9, gab, gagag, bag, bfb, bfgag, bagab, bagagag, gagfb, gagagab, gagfgag,
gagagagag}. Finally,

A% (@ RF g, (fbf)NIRR(R)={e} = A} (fbf RFg,(a))NIRR(Ry),

and the same is true for the other three critical pairs. Thus, R; is a finite special
string-rewriting system on X' that is equivalent to R, and that is e-confluent. []

5. Concluding Remarks

The examples presented at the end of the previous sections are fairly simple ones.
The reason for this is the fact that they have been done by hand calculations.
Naturally it would be interesting to investigate the behavior of our completion
procedures for some more complex examples. For example, one of the questions
one would like to answer by constructing appropriate examples is the following: for
each k > 1, does there exist a finite special string-rewriting system R such that, on
input R, Procedure 3.1 (respectively, Procedure 4.2) halts after executing the body
of the (outermost) goto-loop exactly k + 1 times, i.e. the system R, is e-confluent,
but the system R, ., is not? Due to the number and size of the sets LFy (u) and
RFg (v) involved, this will be possible only by using an actual implementation of
these completion procedures. Such an implementation is currently under way.

A part of Procedure 4.2 is the subroutine SYMMETRIZATION. Given a finite
special string-rewriting system R presenting a group, this subroutine adds rules of
the form I,l; — e, if (I;1,,¢)eR and 1,1, $H}e. In this way a finite special system § is
obtained that is equivalent to R such that V ¥(e) is closed under cyclic permutation.
This subroutine was motivated by the notion of a symmetrlzed group presentation
[5]. Let £ ={ay,...,a,} be a finite alphabet, let £ = {a,,...,d,} be an alphabet in
one-to-one correspondence to X such that X n ¥ = ¥, and let :¥ - X denote the

Completing a Finite Special String-Rewriting System 273

obvious bijection. For a subset L<(XuZX)* R(L) denotes the Thue system
R(L):={(u,e)|lueL}u{(a;a;, e),(@a;e)li=1,...,n}. Then the monoid Mgy, pre-
sented by (¥ UZX;R(L)) is a group, and the ordered pair {(X;L) is called a
group-presentation for this group. Define a mapping ~:(ZuUX)*>(ZuX)*
through: e " ':=¢, (wa) " 1:= a,(w™), and (wa;) " ':=a(w™ ") for all we(X U X)*, and
i=1,...,n Then, for all we(Z L X)*, ww_lH}k{(L)eH,";(L)w“lw, ie, w!is a formal
inverse of w. Observe that d; is a formal inverse of a;, i.e., each generator has a formal
inverse of length 1 in the setting of group presentations. This is not true in general
for finite special string-rewriting systems presenting groups.

A word we(X U X)* is called freely reduced if it does not contain a factor of the
form a;a; or a,a;; it is called cyclically reduced if it is freely reduced, and if it is not
of the form w = aua; or w = d;ua;. Obviously, if a word w is cyclically reduced, then
s0 is each cyclic permutation of w. Now a subset L = (X U X)* is called symmetrized,
if the following holds for each word weL: w is cyclically reduced, and each cyclic
permutation of w as well as of w™! belongs to L. If L is symmetrized, then the set
Vxwle) is closed under cyclic permutation by Lemma 2.1. Thus, when applied to
a finite group-presentation the subroutine SYMMETRIZATION essentially
constructs a symmetrized group-presentation equivalent to the given one.

If a finite symmetrized set L < (X U X)* satisfies certain combinatorial condi-
tions (called small cancellation conditions [4, 51), then the word problem for (X; L)
can be solved by Dehn’s algorithm. This algorithm essentially consists in computing
normal forms modulo a finite length-reducing string-rewriting system S on (X L X)
that is equivalent to R(L) and that is e-confluent. LeChenadic [4] presents a process
he calls the group symmetrization algorithm that on input a finite symmetrized
group presentation {X'; L) satisfying certain small cancellation conditions generates
the finite length-reducing system S mentioned above.

Procedures 3.1 and 4.2 only deal with finite special string-rewriting systems. For
which classes of less restricted string-rewriting systems can corresponding comple-
tion procedures be developed? A specialized completion procedure for finite
monadic string-rewriting systems presenting groups has been proposed in [7].
Recall that a string-rewriting system R on X is monadic, if each rule (/, r)e R satisfies
|| > |r| and |r| £ 1. It is shown in [7] that is decidable in polynomial time whether
a finite monadic string-rewriting system R presenting a group is e-confluent. On the
other hand, for finite monadic string-rewriting systems in general the problem of
deciding confluence on a given congruence class seems to be very hard. It has been
shown to be decidable, but the algorithm given in [10] uses doubly exponential
time. Thus, as a first step towards generalizing Procedure 3.1 to the class of all finite
monadic string-rewriting systems, a much more efficient algorithm for testing
confluence on a given congruence class must be developed for finite monadic
systems.

6. References

1. Book, R. V.: Decidable sentences of Church—Rosser congruences. Theor. Comput. Sci. 23,
301-312 (1983)

2. Cochet, Y.: Church—Rosser congruences on free semigroups. In: Algebraic Theory of
Semigroups. Colloquia Mathematica Societatis Janos Bolyai 20, pp. 51-60. Amsterdam:
North-Holland 1976

274 F. Otto

3. Kapur, D., Narendran, P.: The Knuth—Bendix completion procedure and Thue systems. SIAM
J. Comput. 14, 1052-1072 (1985)

4. LeChenadec, Ph.: Canonical Forms in Finitely Presented Algebras. London: Pitman, New
York, Toronto: Wiley 1986

5. Lyndon, R. C,, Schupp, P. E.: Combinatorial group theory. Berlin, Heidelberg, New York:
Springer 1977

6. Madlener, K., Otto, F.: About the descriptive power of certain classes of finite string-rewriting
systems. Theor. Comput. Sci. 67, 143172 (1989)

7. Madlener, K., Narendran, P., Otto, F.: A specialized completion procedure for monadic
string-rewriting systems presenting groups. In: Albert, J. L., Monien, B, Artalejo, M. R. (eds.)
Automata, Languages, and Programming. Proceedings of the 18th Int. Coll., Lecture Notes
Computer Science, Vol. 510, pp. 279-290. Berlin, Heidelberg, New York: Springer 1991

8. Narendran, P, O’Dunlaing, C., Otto, F.. It is Undecidable Whether a Finite Special
String-Rewriting System Presents a Group. Discrete Math. (to appear)

9. O’Dunlaing, C.: Finite and Infinite Regular Thue Systems; Ph.D. Dissertation, Department
of Mathematics, University of California at Santa Barbara (1981)

10. Otto, F.: On deciding the confluence of a finite string-rewriting system on a given congruence
class. J. Comp. Sys. Sci. 35, 285-310 (1987)

11. Otto, F.: The problem of deciding confluence on a given congruence class is tractable for finite
special string-rewriting systems. Preprint No. 4/90, FB Math., GhK Kassel, West Germany
(1990); also: Math. Systems Theory (to appear)

12. Otto, F., Zhang, L.: Decision problems for finite special string-rewriting systems that are
confluent on a given congruence class. Acta Informatica 28, 477-510 (1991)

13. Zhang, L.: Conjugacy in special monoids. J. Algebra 143, 487497 (1991)

14. Zhang, L.: The word problem and Markov properties for finitely presented special monoids.
Submitted for publication

