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Abstract. Based on a polynomial-time test for determining whether a finite special 
string-rewriting system R is e-confluent, a procedure for completing a finite special 
system R on [e]R is derived. The correctness and completeness of this procedure 
are proved. In addition, the special case of finite special string-rewriting systems 
presenting groups is considered. 
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1. Introduction 

In the present paper we are interested in special string-rewriting systems. A string- 
rewriting system R on an alphabet Z is called special if each rule of R is of the form 
l ~  e, where I is a non-empty word and e denotes the empty word. These systems 
are of particular interest for the following reasons. On the one hand, the process of 
rewriting modulo a finite special string-rewriting system is particularly simple, since 
it only amounts to the insertion and deletion of subwords. On the other hand, each 
finitely presented group G can be presented by a finite special string-rewriting 
system R on some alphabet X, i.e., G is isomorphic to the factor monoid 
9JIR:= Z*/+--~* of the free monoid E* generated by Z modulo the Thue congruence 
~--~ induced by R. However, although finite special string-rewriting systems are 
fairly simple with respect to the structure of their rules, it is in general not possible 
to obtain much information on the Thue congruence ~--~* or on the monoid 93l R 
from a given finite special string-rewriting system R on E. For example, it is undecid- 
able in general whether the monoid 9J~ n presented by a finite special string-rewriting 
system R is a group [8]. In fact, the undecidability of Markov properties can be 
carried over to the class of monoids that are presented by finite special 
string-rewriting systems, thus establishing that many algebraic properties of 9~ n are 
undecidable in this setting [14]. 
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The situation improves dramatically when attention is restricted to finite special 
string-rewriting systems R that are confluent. Let ~ denote the reduction relation 
induced by R, which is obtained by allowing the rules of R to only be applied from 
left to right. Then R is called confluent if, for all u, w2;*, u*-~,*v implies that u ~*w 
and v ~*w for some w~27". Thus, ifR is a finite special string-rewriting system that 
is confluent, then each congruence class mod ~ *  contains a unique word of minimal 
length, and given any word u~27", the minimal word v congruent to u can easily be 
obtained. Hence, the word problem for R is easily decidable, but also many other 
problems become easily decidable in this setting [1]. 

If R is a finite special string-rewriting system on 27 that is not confluent, then 
one way to try to solve the word problem for R consists in trying to construct a 
finite special string-rewriting system S on 2; such that S is equivalent to R, i.e., the 
congruences ~*  and ~ *  coincide, and S is confluent. For example, let 27 = (a, b, c} 
and R = {(abacab, e), (abac, e), (acab, e)). Then abR~abacab~Re, and so R is not 
confluent. However, S = {(ab, e), (ac, e)} is a finite special system that is equivalent to 
R and that is confluent. On the other hand, let 2 = {b, c} and R = { (b z, e), (bcbc, e)}. 
Then CbcR~b%bc~Rb, and so R is not confluent. If w~2;* satisfies w+--~*e, then 
j w Ib = 0 rood 2 and I w Ic = 0 rood 2 as can easily be seen, where I wlb([ w Ic) denotes the 
number of occurrences of the letter b (c) in w. Thus, neither b nor any factor of cbc 
is congruent to e rood R, i.e., whenever S is a special string-rewriting system that is 
equivalent to R, then cbc,-~,*b, but cbc and b are both irreducible rood S. Hence, 
there is no special and confluent string-rewriting system on 27 that is equivalent to R. 

It has been shown that a finitely presented group G can be presented by a 
finite special and confluent string-rewriting system if and only if G is isomorphic to 
the free product of finitely many (finite or infinite) cyclic groups [2-1. Thus, the 
monoid 9J~ R presented by 2;={a,b,c,d} and R={(ad, e), (da, e), (bZ, e), (c2,e), 
(bcbe, e)} cannot be presented by any finite special and confluent string-rewriting 
system on any set of generators F, since ~R  is isomorphic to the free product 
7/,(2~2 x Z2) of the free group 7/, of rank 1 and the direct product Z2 x 7Z. z of the 
cyclic group ~2 of order 2 with itself. However, let Ro:= R u { (cbcb, e) }. Then Ro is 
a finite special system that is equivalent to R. Of course, Ro is not confluent either, 
but it has the following interesting property: for all w~27", if W~*oe, when w-~o e, 
i.e., R o is confluent on [e-1Ro or e-confluent. In particular, this implies that the process 
of reduction rood R o yields a procedure to test membership in [e]R. Furthermore, 
since the monoid ~R  is a group, the word problem for R is reducible to the 
membership problem for [e]R. Hence, the process of reduction mod Ro gives a 
method to solve the word problem for R. In fact, many problems become decidable 
when they are restricted to the class of finite special string-rewriting systems R that 
are e-confluent, e.g., the word problem, the conjugacy problem, the generalized word 
problem, etc. [12, 13]. Also the class of groups that can be presented by these systems 
in strictly larger than the class of groups presented by finite special and confluent 
string-rewriting systems. In fact, each group G that is isomorphic to the free product 
of a finitely generated free group and finitely many finite groups can be presented 
by a finite special string-rewriting system R that is e-confluent, and it has been 
conjectured that no other groups have such presentations [6]. 

Here we present a specialized completion procedure that, given a finite special 
string-rewriting system R on some alphabet 27 as input, tries to construct a 
finite special system S on 27 that is equivalent to R and that is e-confluent. 
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This procedure consists of two subroutines called NORMALIZATION and 
CONTEXT_RESOLVING,  where the latter introduces new rules in order to make 
the string-rewriting system considered e-confluent, while the former deletes 
superfluous rules in order to keep the system as small as possible. It is shown that 
this procedure either terminates with a finite special system S, or it enumerates an 
infinite special system S. In either case is S equivalent to R and e-confluent. Further, 
it is shown that this procedure terminates whenever there exists a finite special 
system that is equivalent to R and e-confluent. Thus, our specialized completion 
procedure is correct and complete. 

The above completion procedure, which is presented in Sect. 3, is based on a 
test for determining whether a finite special string-rewriting system is e-confluent 
[-1 1]. This test, although being polynomial-time, is technically rather involved. For  
the special case of finite special string-rewriting systems presenting groups, a much 
simpler test is derived in Sect. 4. Based on this simplified test a specialized comple- 
tion procedure for finite special string-rewriting systems presenting groups is then 
presented. This procedure consists of three subroutines called NORMALIZATION, 
SYMMETRIZATION,  and CONTEXT_RESOLVING,  where the latter two 
introduce new rules in order to make the string-rewriting system considered 
e-confluent, while the former one deletes superfluous rules. Again this completion 
procedure is shown to be correct and complete. 

Finally, in Sect. 5 we point to the relation between the subroutine SYM- 
METRIZATION in our second completion procedure and the notion of symmetrized 
group-presentation as it is considered in small cancellation theory [5], and we state 
a few problems for future research. 

2. Preliminary Results 

Let 2? be a finite alphabet. Then Z* denotes the set of words over 27 including the 
empty word e. A special string-rewriting system R on 2; is a subset of 2? + x {e}, 
where Z + = 2~*-{e} denotes the set of non-empty words over 2;. The elements 
(l,e) of R are called (rewrite) rules. For all u, veZ* and (l,e)~R, ulv--*Ruv, i.e., 
~R is the single-step reduction relation induced by R. Its reflexive and transitive 
closure --** is the reduction relation induced by R. For u, ve27*, if u~]v,  
then u is an ancestor of v, and v is a descendant of u. By V*(v) we denote the set of all 
ancestors of v, and •*(u) denotes the set of all descendants ofu. For  a subset L N Z*, 
~7*(L) = U V*(u), and A*(L)= U A*(u). 

u~L u ~ L  

By ,--** we denote the smallest equivalence relation on 2;* that contains the 
single-step reduction relation --*R. It is called the Thue congruence generated by R. 
For w~27", [w]R = {u~,~*[u,-**w} is the congruence class of w mod R. Since ~ *  is 
in fact a congruence relation on 27", the set ~ R : =  {[w]RIw~s of congruence 
classes is a monoid under the operation [u]~ o Iv] R = [uv]R with identity [e]R. This 
monoid is uniquely determined (up to isomorphism) by Z and R, and hence, 
whenever 931 is a monoid that is isomorphic to 931 R, we call the ordered pair (27; R) 
a (monoid-) presentation of ~ with generators 27 and defining relations R. 

We say that a subset L ~ 2~* is closed under cyclic permutation if uv~L implies 
vu~L for all u, v~ 27". The following observation will be useful for our investigations. 
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Lemma 2.1. Let R be a special string-rewriting system on 27. Then the set V*(e) of 
ancestors of the empty word mod R is closed under cyclic permutation if and only if, 
for all u, ve27 +, if (uv, e)eR, then vu--** e. 

Proof. Obviously, the above condition is necessary for V*(e) to be closed under 
cyclic permutation. Thus, it remains to prove that it is also sufficient. Assume to the 
contrary that WE(e ) is not closed under cyclic permutation, and let ze27 + be a word 
of minimal length such that z ~*e ,  but there is a cyclic permutation Zl of z such 
that z 1 -/**e. Then there is a cyclic permutation y = ax of z, where ae27 and xe27*, 
such that y - - a x  ~*e while xa ~ e .  Assume that there exists a word Xl such that 
x ~R x 1 and axl ~ e. Then xa --~R x 1 a, and since [ x i [ < [ X 1, the choice of z implies 
that with ax 1 ~*e  also x la~*e ,  thus contradicting the choice of y = ax. Hence, 
whenever X~RXl,  then ax:~*e.  Thus, the reduction a x ~ * e  consists of a 
single step only, i.e. (ax, e)eR. But then the above condition yields that xa ~*e, again 
contradicting the choice ofy. Thus, V~(e) is indeed closed under cyclic permutation, 
if the above condition is satisfied. [] 

Given a finite special string-rewriting system R on 27, and a regular set L ~ 22* 
specified through a nondeterministic finite state acceptor (nfsa), an nsfa for the set 
A*(L) can be constructed in polynomial time [1]. Since, for all we27*, we V*(e) if 
and only if ee A](w), this means that the membership problem for the set V*(e) is 
decidable in polynomial time for each finite special string-rewriting system R. 
Together with Lemma 2.1 this yields the following result. 

Theorem 2.2. The following problem is decidable in polynomial time: 
INSTANCE: A finite special string-rewriting system R on 27. 
QUESTION: Is V*(e) closed under cyclic permutation? 

Let R be a special string-rewriting system on 22. We say that R is confluent on 
[W]R for some word we,S*, if there exists a word woelRR(R ) such "that 
[W]RC~IRR(R) = {Wo}. Here IRR(R) denotes the set of words that are irreducible 
modR,  i.e. IRR(R)= {we27*[ A*(w)= {w}}. Thus, R is confluent on [w] R if all 
words in that class reduce to the same irreducible word, which then can serve as 
a normal form for this class. The system R is called e-confluent if it is confluent 
o n  [el  R. In [11] a necessary and sufficient condition for R to be e-confluent is 
derived. This condition involves the following technical notions. 

Let (l l, e) and (12, e) be two rules of R. If l: = xIEy for some x, ye27* satisfying 
xy + e, or if l lX = yl2 for some x, y e 27" satisfying 0 < l Y[ < Ill 1, then the pair (e, xy), 
respectively (x, y), is called a critical pair of R. By UCP(R) we denote the set 
{(x,y)l(x,y) is a critical pair of g such that A~(x)~ A*(y)-- ~ }  of unresolvable 
critical pairs of R. Observe that for R finite, this set can be computed in polynomial 
time. 

The system R is called normalized if no left-hand side of a rule of R contains 
another left-hand side as a factor. If R is normalized, then R can only admit critical 
pairs of the second form. Further, if (p, q) is a critical pair of R, then p and q are 
irreducible. 

For  ue27 +, let RFR(U) denote the set 

RFR(U) = {ve27*13k ~ 1 qu 1 . . . .  ,Uk, Vl . . . . .  Vke27+: U = U~"'Ul, V = Vl ""Vk, and 

(UlV:, e), (u2v 2, e), . . . ,  (UkVk, e) eR}, 
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i.e., RFR(u) consists of all those words v that are right-inverses of u mod R, where 
there exists a reduction uv ~*e each step of which straddles the boundary between 
u and v. Thus, if R is finite, then v~RFR(u) implies that Iv[ < ( 2 - 1 ) ' [ u l ,  where 
)~:= max {1l] I(l, e)~R}, i.e. RFR(u ) is a finite set. Analogously, the set 

LFR(u) = {ve.S*l~k >= 1 ~u 1 . . . .  ,Uk, V l , . . . , V k e Z ~  + : U ~-" U 1 ""Uk,  V ~-" V k ' " V l ,  a n d  

(VxU 1 , e), (v2u 2, e) . . . . .  (VkUk, e ) ~ R }  

is finite for each finite special system R. Further, given a finite special system R and 
a word u e2~ +, nfsas for the sets RFR(u ) and LFR(u ) can be constructed in polynomial 
time [11]. Finally, in order to cover all possible cases we take RFR(e):= {e} and 
LFR(e):= {e}. 

In [11] the following technical result is obtained. 

Theorem 2.3. Let R be a normalized special string-rewriting system on ~,. Then R is 
e-confluent if and only if the following two conditions hold for each pair (p, q)e U C P( R ): 
(i) Vpl, P2, P3, X, y~2J*: if p = PlPEP3 and ( xpEy  , e)eR such that P2 ~ e 

and LFR(pl ) ~ ;2~ ~ RFR(P3), 
then A*(x.LFR(pl).q.RFR(pa).y) • IRR(R) = {e}, and 

(ii) Vql,qE,qa, x,y~Z,*:ifq = qlq2q3 and (xq2y, e)ER such that q2 ~ e 

and LFR(ql) ~ ;2~ ~ RFg(q3), 
then A*(x.LFR(ql). p. RFR(qa).y ) n IRR(R) = {e}. 

In particular, this result implies that it is decidable in polynomial time whether 
a finite special and normalized string-rewriting system R is e-confluent. 

Observe that, if R is a finite system, then the sets of the form {x}.LFg(pl ). 
{q}.RFR(Pa).{y}, respectively {x}.LFR(ql).{p}.gFR(qa).{y}, are always finite. 
Therewith the sets of irreducible descendants of these sets are finite as well. 

The completion procedure we are about to describe will be based on 
Theorem 2.3. If a normalized finite special string-rewriting system R does not satisfy 
the two conditions stated there, we add further rules to R, thus trying to obtain 
another special system R' such that R' is e-confluent, and R and R' are equivalent, 
i.e., the congruences *-** and ~--*~, coincide. However, in order to keep the system R' 
normalized, we will also delete rules whenever that is possible. The basis for this is 
the following observation. 

Let R be a finite special string-rewriting system on 2?, and let (11, e) and (12, e) be 
rules of R. If 11 is a proper factor of 12, i.e., 12 = XIxy for some words x, y~Z*, xy :~ e, 
then XyR"--xl~y = 12--*Re. For R to be e-confluent it must be possible to reduce xy 
to e. Obviously, during this reduction the rule (12, e) cannot be used. Thus, ifxy ~ e ,  
then the system R - { (12, e) } generates the same reduction relation as the system R. 
In particular, R - { (12, e)} is equivalent to R, and the one system is e-confluent if 
and only if the other system is. Thus, instead of dealing with R we can deal with the 
smaller system. On the other hand, if xy~*e,  then R is not e-confluent. Hence, to 
complete R on [e]R, rules must be introduced that allow to reduce xy to e. So instead 
of R we may consider the system (R - { (12, e) }) w { (xy, e) }, which is equivalent to R, 
and which is smaller in the sense that a rule has been replaced by a smaller one. 
This process will be called normalization. 
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3. The Completion Procedure for Finite Special String-Rewriting Systems 

Let R be a finite special string-rewriting system on X. We would like to obtain 
a special system S that is equivalent to R and e-confluent. To this end we 
first normalize R, and then we check whether or not R itself is e-confluent. If it 
is, we are done; otherwise, we must try to construct S from R. However, if R 
is not e-confluent, then one of the conditions of Theorem 2.3 is violated. There- 
fore, we have some information on a particular situation that violates the 
property of e-confluence for R. We now present a completion procedure that 
exploits this information. It consists of two subroutines: NORMALIZATION and 
CONTEXT_RESOLVING.  The former realizes the process of normalization 
explained at the end of the previous section, while the latter adds new rules if the 
conditions of Theorem 2.3 are violated. Since the latter may destroy the effect of 
the former, and since new rules may lead to new unresolvable critical pairs, we have 
to keep applying these two subroutines repeatedly until a stable system is 
obtained. 

Procedure 3.1. E-completion for finite special string-rewriting systems: 
INPUT: A finite special string-rewriting system R on some alphabet 2J; 
begin i ~- 0; R i ~'- R; 
NORMALIZATION: 

while 311,12, x ,  yE .~*  :xy  ~ e A 12 : X l ly  ^ (11, e)~Ri  A (12, e ) ~ R  i do 
begin R i ~- R i - { (12, e) }; 

if e q~ A ~,(xy) then Ri ~- Ri • { (xy, e) } 
end; 
comment: At this point Ri is normalized; 

CONTEXT_RESOLVING:  
compute UCP(Ri);  R '  i *- (~; 
for all (p, q)~ U C P ( R i )  do 
begin for all p~,p2,P3,  X , y ~ *  do 

ifp = PaP2P3 A P2 ~= e A (xp2y,  e ) ~ R  i then 
begin Sp ,:- ( &* , (x 'LFR, (Px  ) 'q 'RFR,(p3)"  y) c~ I R R  (Ri)) --  {e}; 

ifSp ~: ~ then R ' i ~ R ' i w { ( l , e ) ] l E S p }  
end; 
for all q l , q z ,  qa, x,  y ~ Z *  do 
if q = qlq2q3 A q2 ~ e A (xqEy, e)~:Ri  then 
begin Sq ~ ( A*  ( x 'LFR, (qO 'p 'RFR~(qa) ' y )  c~ IRR(R~))  - {e}; 

if Sq ~ ~ then R' i ~ R' i ~ { (1, e)[16 Sq } 
end; 

end; 
if R'~ @ ~ then 
begin Ri+ 1 ~- R i ~  R'i; 

i * - i  + 1; 
(*) goto NORMALIZATION 

end; 
comment: At this point R~ is normalized and e-confluent; 
OUTPUT:  Ri 

end. 
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We claim that the above procedure determines a finite special string-rewriting 
system Ri that is e-confluent and equivalent to R, whenever such a system exists. 
Otherwise it enumerates an infinite special system R oo having both these properties. 
As a first step towards proving this result we consider the subroutine NORMAL- 
IZATION. The following facts easily follow from the remarks at the end of Sect. 2. 

Lemma 3.2. Let R be a finite special string-rewriting system on Y,. Then on input R, 
the subroutine N O R M A L I Z A T I O N  determines a finite special string-rewriting 
system Ro on Z such that R o is normalized, --*R c= ~ o ,  and R o is equivalent to R. 

Given a finite special string-rewriting system R as input, Procedure 3.1 
computes a (finite or infinite) sequence of finite special string-rewriting systems 
R o, R 1 , R z . . . . .  where Ri_ x denotes the system that is determined by the subroutine 
NORMALIZATION during the i-th execution of the body of the goto-loop (,). 
Recall that if R~ is finite, then the sets Sp and Sq((p, q)e UCP(Ri))  are finite. Thus, R'~ 
is finite, which in turn yields that Ri + 1 is finite. 

Lemma 3.3. For all i > O, the following statements hold: 
(a) R i is normalized, 
(b) R i is equivalent to R, and 
(c) --,* __= ~ *  c --,* 

R i  ~ R i +  I " 

Proof. R o is determined by the subroutine NORMALIZATION from the input 
system R. Thus, by Lemma 3.2 R o is normalized and equivalent to R, and 
~* ~--**o. We proceed by induction on i. For i >  1, Ri is determined by the 
subroutine NORMALIZATION from the system R~_ 1 uR'~_ 1- Hence, by Lemma 
3.2 R i is normalized and equivalent to R i_ I~AR'i- 1' and ~R,-, W --~R,-' ,=C--~*g," 
Further, by the induction hypothesis R~ 1 is equivalent to R, and --** c --,* 

- -  ~ R i -  1" 

Thus, - '* =~ ~*R,, and since ~--~g~ ~ =~ ~--'*R,-I' R i -  1 w R'i_l is equivalent to R, which 
implies that Ri is equivalent to R. This completes the proof of Lemma 3.3. [] 

From this lemma we can now easily derive the fact that Procedure 3.1 is correct, 
i.e., it satisfies the following statement. 

Corollary 3.4. Let R be a finite special string-rewriting system on X. I f  Procedure 3.1 
terminates on input R, then it yields a finite special system R i on X that is normalized, 
e-confluent, and equivalent to R. 

Proof. Procedure 3.1 terminates on input R, if, for some i___ 0, then system R'~ is 
empty. In this case the finite special system R i is taken as output. By Lemma 3.3 R~ 
is normalized and equivalent to R. Since R' i = ~ ,  R i satisfies conditions (i) and (ii) 
of Theorem 2.3. Hence, R~ is also e-confluent. [] 

Thus, whenever Procedure 3.1 terminates, then the system R~ constructed has 
indeed all the properties we want. It remains to show that this procedure does 
terminate whenever a special system S exists that is finite, equivalent to R, and 
e-confluent. As a first step towards proving this fact, we analyse the situation when 
Procedure 3.1 does not terminate. 

Lemma 3.5. Let R be a finite special string-rewriting system on Z. I f  Procedure 3.1 
does not terminate on input R, then it enumerates an infinite special system R ~  that 
is normalized, equivalent to R, and e-confluent. 
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Proof. Assume that Procedure 3.1 does not terminate on input R. Then it 
enumerates an infinite sequence Ro,R1,R 2 .... of finite special string-rewriting 
systems on X. 

Because of Lemma 3.3(c) we have IRR(Ri+ 1) ~ 1RR(Ri). In fact, if(l, e)~R'i, then 
I~IRR(Ri) (see the construction of R'~ in the subroutine CONTEXT_RESOLVING), 
while Ir i+1), since 4"R,+1 =~ ~R, U ~R~ by Lemma 3.2. Thus, since Procedure 
3.1 does not terminate after the i+  1st execution of the body of the goto-loop (.), 
R'i + ~ implying that IRR(R~+ 1) = IRR(Ri). Further, if a rule (l, e) is deleted in the 
process of normalizing the system R i, then Ir and therewith I(~IRR(Rj) 
for all j > i. This means that the rule (l, e) is not reintroduced at a later stage. 

Now let i > 0 and let (1, e)eR~. If this rule is contained in Rj for all j > i, then 
this rule is called persistent. If (l, e) is not persistent, then it is deleted in the process 
of normalizing the system Rj for somej > i. Thus, Rj must contain a rule (11, e) such 
that 11 is a proper factor of l. Now either (11, e) is a persistent rule, or (la, e) is again 
deleted in the process of normalizing the system Rk for some k >j, which means 
that R k contains a rule (Iz,e) such that l 2 is a proper factor of l~. However, this 
can only happen a finite number of times. Hence, there exist an index 2 and a rule 
(x, e) such that x is a proper factor of l, and (x,e)eRp for all p > 2. Thus, each rule 
(l, e)e U R~ is either persistent, or there is a persistent rule (x, e) such that x is a 

i > 0  

proper factor of I. 
Let R~ := {(l, e)] 3j > 0Vi >j:(1, e)eRi} be the set of persistent rules. The above 

discussion shows that Ro~ is an infinite special system. Procedure 3.1 can be 
interpreted as enumerating this system. Of course, this enumeration is not an 
effective one, since Procedure 3.1 does not identify the persistent rules. The 
discussion above also shows that IRR(R| ("] IRR(Ri). In fact, the following 
holds, i__> o 

Claim 1: ~R = ~* for all i > 0. 

Proof. It suffices to show that l ~ e  for all (l,e)e ~ Ri. Assume to the contrary 
i > 0  

that there exists a rule (l, e)e U R~ such that l ~ *  e, and assume that (l, e) is chosen 
i > 0  

from all the rules having this property such that I11 is minimal. Since l%~e,  we 
have (l,e)q~R~. Hence, there is an index j such that the rule (l,e) is deleted in the 
process of normalizing Rj, i.e., l =  xl~y for some x, yEZ,*, xy ~=e, and some rule 
(ll,e)eRj. Since Ilxl<[ll, we have 11 ~* R e  according to the choice of (l,e). 
Further, the way in which the subroutine NORMALIZATION works guarantees 
that xy ~ j e .  Since I xyl<[I[, all the rules (z, e)eRj used to reduce xy to e have the 
property that z ~ e .  Thus, l =  xlay ~*oxy ~ * e ,  contradicting the choice of (l, e). 
This proves the claim. [] 

Hence, ~ R =  ~* by Lemma 3.3(c). On the other hand, if (1,e)eR~, then Rm 
(l, e)eRj for somej > 0, and so l~-~*e by Lemma 3.3(b). Thus, R~ is equivalent to R. 

Claim 2: R~o is normalized. 

Proof. Assume that (ll,e) and (xlly, e) are both in R~, where xy + e. Then there 
is an index j > 0 such that (l~,e), (xl~y, e)eRj. However, this contradicts the fact 
that Rj is normalized. [] 
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Finally, we can prove the following claim. 

Claim 3: R~ is e-confluent. 

Proof. Let (p,q)~UCP(Ro~), let pi,P2,pa,x, ye.Y,* such that P=PiP2P3, P2 + e, 
and (xpEy, e)eR~, and let u~LFR~(pl) and wRFR~(pa). We must verify that 
A* (xuqvy) c~ IRR(R~) = {e} holds. 

Since (p,q)sUCP(Roo), there are rules (ll,e), (12,e)eR~ such that liq = pl2, 
where 0 < l Pl < Ill I, and p and q do not have a common descendant m od R oo. Since 
R~ only contains the persistent rules, there is an index j > 0 such that (I1, e), (/2, e), 
(xpEy , e)~R i for all i >j .  Hence, (p, q) is a critical pair for all R~, i __>j. Since ~*i ~ -~* 
for all i > j  by Claim 1, we see that this pair cannot be resolved mod Ri for any i >j ,  
i.e., (p,q)eUCP(Ri) for all i >j .  

Since uELFR~(Pi), we have upl --** e, and each step in this reduction straddles 
the boundary between u and p~. Only a finite number of rules is used in this 
reduction, and hence, there is an index k ~ j  such that up~ ~ * e  coincides with the 
reduction upi -~*e .  Hence, u~LFg~(pi). In fact, u6LFRi(pl) for all i >__ k. Analogously 
it is shown that vERFR~(P3) for all i that are sufficiently large. Thus, xuqvys{x}. 
LFR,(pO" {q} "RFR,(pa)" {y} for all sufficiently large indices i. Let i 0 be such an index. 
If xuqvy -~* o e, then xuqvy ~*ooe by Claim 1, i.e., e6 A ~  (xuqvy). If xuqvy -r o e, then 

xuqvy~*weIRR(Rio) - {e}, and so (w, e)eR~o. Thus, W~*o+le by Lemma 3.2, and 
hence, xuqvy ~ * w  ~ * e  by Claim 1. This means that in any case e~/ \*(xuqvy) .  

Finally, assume that x u q v y - ~ z  for some zelRR(Roo) - {e}. Then ze ~ IRR(RI), 
i->_0 

and xuqvy-~*z for all sufficiently large indices i. However, zeIRR(R~) and 
R' xuqvy--**z imply that (z, e)s ~, which in turn yields that zr i), thus con- 

tradicting the above observation. Hence, A*(xuqvy)c~IRR(R~)= {e}. Since this 
holds for all uELFR~(pl) and vERFR~(P3) , we can conclude that A*| q. 
RFR=(p3)'y)c~IRR(R~) = {e}. Thus, it follows that R~ is indeed e-confluent. 

This completes the proof of Lemma 3.5. [] 

Thus, on input a finite special string-rewriting system R, Procedure 3.1 always 
"computes" a special string-rewriting system R~ that is normalized, equivalent to 
R, and e-confluent. Procedure 3.1 terminates if and only if this system R~ is finite. 
Hence, it remains to characterize the condition under which this system R oo is indeed 
finite. 

To this end let R be a finite special string-rewriting system on 27, and let S(R) 
denote the following special system: 

S(R) = { (l, e) lle [e]R, but no proper factor of l belongs to [e]R}.. 

Lemma 3.6. S(R) is normalized, e-confluent, and equivalent to R. 

Proof. Obviously, *--'S(R)c= ,--~*, and S(R) is normalized. On the other hand, if 
we[e]R, then W--,~R)e. To prove this fact we proceed by induction on Iwt. If no 
proper factor of w belongs to [e]R, then (w, e)~S(R). Otherwise, w = ulv for some 
u, vEY,*, uv + e, and (1,e)~S(R). Then W~StR)UV, and uw--,*e. Since luvl < Iwl, we 
can conclude that uv ~*(R)e by the induction hypothesis. Thus, W~S(R)UV ~*tR)e. 
Hence, S(R) is equivalent to R, and S(R) is e-confluent. [] 
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As it will turn out, S(R) is not just some normalized special string-rewriting 
system that is equivalent to R and e-confluent, but S(R) is in fact the only system 
having all these properties. 

Lemma 3.7. Let T be a special string-rewriting system that is normalized, e-confluent, 
and equivalent to R. Then T coincides with the system S(R). 

Proof. Let (l,e)eT. Then N--~*e, and so l--*~(R)e. Thus, either (l,e)eS(R), or l =  uxv 
for some u, ve~,*, uv~=e, and some rule (x,e)eS(R). In the latter case, x,--~e 
implying that x~-,~e, i.e., x ~*e,  since T is e-confluent. However, this contradicts 
the fact that T is normalized. Thus, T ~ S(R). Analogously, the converse inclusion 
can be verified, i.e., T actually coincides with S(R). [] 

Thus, for each finite special string-rewriting system R there is a unique 
normalized special system that is e-confluent and equivalent to R. This coincides 
with the situation for length-reducing string-rewriting systems that are confluent 
everywhere [3]. For  R the corresponding system S(R) is either finite, in which case 
Procedure 3.1 must terminate on input R according to Lemma 3.5, or S(R) is infinite, 
in which case Procedure 3.1 cannot terminate on input R according to Corollary 
3.4. In either case Procedure 3.1 "computes" the system S(R). 

If T is a finite special system that is e-confluent and equivalent to R, then the 
process of normalization yields a finite subsystem T 1 of T that is still e-confluent 
and equivalent to R (see the discussion at the end of Sect. 2). Thus, T1 = S(R), and 
so S(R) is finite in this case. 

Combining all these results we obtain the following. 

Corollary 3.8. Let R be a finite special string-rewritin 9 system on ,Y,. On input R, 
Procedure 3.1 computes a normalized special string-rewriting system S(R) on ~, such 
that S(R) is e-confluent and equivalent to R. Procedure 3.1 terminates if and only if 
the system S(R) isfinite, which happens if and only if there exists a finite special string- 
rewritin9 system S on Z, such that S is e-confluent and equivalent to R. 

Thus, Procedure 3.1 succeeds whenever there exists a finite special system that 
has all the required properties. Unfortunately, the following problem is undecidable 
[9.14]: 
INSTANCE: A finite special string-rewriting system R on 22 
QUESTION: Is the corresponding system S(R) finite? 

This means that it is undecidable in general whether or not Procedure 3.1 will 
terminate given a finite special string-rewriting system R as input. We close this 
section with a detailed example. 

Example 3.9. Let 27 = {a, h, c, d} and R = {ad --+ e, da -* e, b 2 ~ e, c z --* e, bcbc --* e}. 
Then the monoid ~R is the free product Z*(7/2 x Z2) , which cannot be presented 
by any finite special and confluent string-rewriting system [2]. The system R is 
normalized, and UCP(R) = {(b, cbc), (c, bcb)}. For the critical pair (p, q):= (b, cbc) 
the subroutine CONTEXT_RESOLVING performs the following computations: 

(1) Pl = e, P 2  ---= b, P3 = e: Then LFR(pl) = {e} = RFR(P3). 

Now the following words xp2yedom(R ) are considered: 

(i) x = e, y = b: A*(x'LFR(pl) 'q'RFR(P3)'y)c~IRR(R) = A*(cbcb)c~IRR(R) 
= {cbcb}. 
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(ii) x = b, y = e: A*(x'LFR(pl)'q'RFR(p3)'y)c~IRR(R) = A~(bcbc)c~IRR(R) = {e}. 
(iii) x = e, y = cbc: A~(cbccbc)n lRR(R)= {e}. 
(iv) x = bc, y = c: A*(bccbcc)nlRR(R) = {e}. 

(2) ql  = e, q2 = cbc, q3 = e: T h e n  LFR(ql ) = {e} = RFR(q3 ). 
(i) x = b, y = e: A*(x'LFR(ql) 'p.RFR(q3).y)c~IRR(R)= A*(bb)nlRR(R)  = {e}. 

(3) ql  = e, q2 = cb, q3 = C: T h e n  LFR(ql) = {e} a n d  RFldq3) = {c}. 
(i) x = b, y = c: A*(bbcc)c~IRR(R) -- {e}. 

(4) ql  = c, q2 -- bc, q3 = e: T h e n  LFR(q~) = {c, bcb} a n d  RFR(q3 ) = {e}. 
(i) x = e, y = bc: A*({c, bcb}.bbc)nlRR(R) = {e}. 
(ii) x = bc, y = e: A*(bc.{c, bcb}.b)c~IRR(R)= {e}. 

(5) ql  = e, q2 = c, q3 = bc: T h e n  LFR(ql) = {e} a n d  RFR(q3 ) = {bc, cb, c2bc}. 

F o r  x = c a n d  y = e we o b t a i n  •*(cb. {bc, cb, cZbc})c~IRR(R)= {e, cbcb}, while  all  
o t h e r  pos s ib l e  choices  of x a n d  y y ie ld  A * (x" LFR (q 1)" b" RFR(q 3) Y) c~ IRR (R) = { e}. 

(6) qx = c, q2 = b, q3 = c: T h e n  LFR(qt ) = {c, bcb} a n d  RFR(q3 ) = {c}. 

F o r  x = e a n d  y = b we o b t a i n  A*({c ,  bcb}'bcb) c~ IRR (R) = {e, cbcb}, while  all  o t h e r  
cho ices  j u s t  y ie ld  the  set {e}. 

(7) ql  = cb, q2 = c, q3 = e: T h e n  LFR(qO = {bc, bZcb} a n d  RFR(q3)= {e}. 
Aga in ,  for  x = c a n d  y = e we o b t a i n  the set {e, cbcb}, while  all  o t h e r  poss ib l e  cho ices  
yie ld  the  set {e}. 

The  cr i t ica l  p a i r  (c, bcb) is s y m m e t r i c  to  the  first  one.  Hence ,  we o b t a i n  the  sys t em 
R I : =  Row {cbcb--*e}. As it t u rns  ou t  this  sys tem is n o r m a l i z e d  a n d  e-conf luent .  
P r o c e d u r e  3.1 t e r m i n a t e s  wi th  o u t p u t  R 1. [ ]  

4. E-Completing Special String-Rewriting Systems that Present Groups 

Let  R be a spec ia l  s t r i ng - r ewr i t i ng  sys tem on 22. If  the  m o n o i d  9J~ R is a g r o u p ,  t hen  
for  all  u , v ~ , * ,  uv~*e  impl ies  t h a t  vu~]e ,  too ,  i.e., the  c o n g r u e n c e  class [e]R is 
c losed  u n d e r  cycl ic  p e r m u t a t i o n .  If, in a d d i t i o n ,  R is e -conf luent ,  t hen  [e]R = V] (e )  
a n d  hence,  V~(e) is c losed  u n d e r  cycl ic  p e r m u t a t i o n .  F o r  finite R, this  p r o p e r t y  is 
dec idab l e  in p o l y n o m i a l  t ime  ( T h e o r e m  2.2). 

N o w  let us r e c o n s id e r  E x a m p l e  3.9. The  m o n o i d  ~RR is a g roup ,  (bcbc, e)ER, b u t  
c(bcb)-b*e. Hence ,  V*(e)  is n o t  c losed  u n d e r  cycl ic  p e r m u t a t i o n ,  a n d  this  
i m m e d i a t e l y  impl ies  t h a t  R is n o t  e -conf luent .  In  fact,  for  spec ia l  s t r i ng - r ewr i t i ng  
sys tems  p r e sen t i n g  g r o u p s  we have  the fo l lowing  s impl i f ied  test  for  e-conf luence .  

Theorem 4.1. Let R be a normalized special string-rewritin9 system on Z such that 
the monoid 791R is a 9roup. Then R is e-confluent if and only if the following two 
conditions are satisfied: 

1. V*(e) is c losed  u n d e r  cycl ic  p e r m u t a t i o n ,  a n d  
2. V(p,q)EUCP(R):(A*(q'RFR(p))c~IRR(R))- {e} = ~ = (A*(p'RFR(q)) 

c~ IRR(R)) -- {e}. 

Proof. F i r s t  a s s u m e  tha t  R is e -conf luent .  T h e n  [e]R = V*(e), a n d  s ince ~Jl R is a 
g roup ,  [ e ] R  is c losed  u n d e r  cycl ic  p e r m u t a t i o n .  Thus ,  c o n d i t i o n  (1.) is sat isf ied.  
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Further, let (p,q)EUCP(R), and let veRFR(p). Then p~--~*q, and p v ~ e .  Thus, 
qv*--,*e, and so, since R is e-confluent, e is the only irreducible descendant of qv. 
Hence, (A*(q-RFR(p)) c~ IRR(R)) - {e} = ~ ,  and by symmetry, (&*(p'RFR(q)) c~ 
I R R ( R ) ) -  {e} = ~ .  

To prove the converse implication let (p, q)s UCP(R). By [10, Theorem 2.1] it 
suffices to show that Lp(e) = Lq(e), where Lp(e ) = {x#ylx,  yelRR(R),  xpy ~*e} and 
Lq(e) = {x#ylx,  yeIRR(R),  xqy ~*e}. Here # is an additional letter that is not in 27. 
So let x, ye lRR(R)  such that xpy~*e.  By (1.) V~(e) is closed under cyclic 
permutation, and so pyx ~*e,  too. Since R is a special system, this implies that there 
exists a word ze2*  such that yx ~ z  and zeRFR(p). By (2.) qz ~*e  implying that 
qyx ~*  qz ~ e. Again by (1.) this yields xqy ~*  e, i.e., x#  ys  Lq(e). Thus, Lp(e) ~ Lq(e). 
By symmetry we also obtain the converse inclusion, and so Lp(e) = Lq(e). [] 

Observe that if R is a finite special system, then, for each (p, q)e UPC(R), the sets 
{q}.RFR(p) and {p}.RFR(q) are finite, and therewith the sets of descendants 
A*(q.RF,(p)) c~ IRR(R) and A*(p'RFR(q)) c~ IRR (R) are finite, too. 

We now present a procedure that on input a finite special string-rewriting system 
R presenting a group tries to construct a special string-rewriting system S that is 
e-confluent and equivalent to R. This procedure contains three subroutines: 
NORMALIZATION, SYMMETRIZATION, and CONTEXT_RESOLVING. 
The first one realizes the process of normalization, and the second introduces new 
rules if necessary to obtain a system R t that is equivalent to R such that V~,(e) is 
closed under cyclic permutation. It is based on Lemma 2.1. The third one finally 
takes care of condition (2.) of Theorem 4.1. Since applications of the subroutines 
SYMMETRIZATION and CONTEXT_RESOLVING may destroy the effect 
obtained by previous applications of the subroutines NORMALIZATION and 
SYMMETRIZATION, respectively, we have to keep applying all three subroutines 
until a stable system is obtained. 

Procedure 4.2. E-completion for finite special string-rewriting systems presenting 
groups: 

INPUT: A finite special string-rewriting system R on some alphabet 2; such that 
the monoid gJl R presented by (22 ; R) is a group; 

begin i ~- 0; R i ~ R; 
NORMALIZATION: 

while 31i,  12, X, y E , ~ *  : x y  ~ e A 12 = xlly A (11, e ) ~ R i  A (12, e)~Ri do 
begin R i <-- R i - {(12, e)}; 

ife~A~,(xy) then Ri~-Ri~{(xy ,  e)} 
end; 
comment: At this point the system R i is normalized; 

SYMMETRIZATION: 
while 3ll ,  12~22 + :(lf12, e ) ~ R i  A e~ A* (1211) do 

R i ~ R i w { ( / i l l ,  e) }; 
comment: At this point V*i(e ) is closed under cyclic permutation; 

(,) if 311,12, x, y e Z * : x y  ~: e ^ 12 = xlly A (ll, e)~Ri A (/2, e)~Ri then 
goto NORMALIZATION; 

comment: At this point R i is normalized, and V*(e) is closed under cyclic 
permutation; 
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CONTEXT_RESOLVING: 
compute UCP(Ri); R'~ ~ Zi; 
for all (p, q)~ UCP(R~) do 
begin Sp *- ( A~,(q'RFR,(p)) c~ IRR(Ri)  ) -- {e}; 

Sq *- ( A* (p'RFm(q)) c~ I R R  (Ri)) - {e}; 
if Sp ~ ~ then R' i *- R' i u {(1, e)] 16S;}; 
if Sq ~ ~ then R'i ~- R'i u { (l,e)] leSq} 

end; 
if R'~ ~= ~Z~ then 
begin Ri+ 1 ~- R i u  R'i, 

i ~ i +  1; 
(**) goto NORMALIZATION; 

end; 
comment: At this point R~ is normalized and e-confluent; 
OUTPUT: R~ 

end. 

We claim that the above procedure determines a finite special string-rewriting 
system Ri that is e-confluent and that is equivalent to R, whenever such a system 
exists. Otherwise it enumerates an infinite special system R~ having both these 
properties. As a first step towards proving this claim we show that on input a finite 
special system R the innermost goto-loop (*) is executed only a finite number of 
times before the subroutine CONTEXT RESOLVING is entered. 

Lemma 4.3. Let R be a finite special string-rewriting system on Y, such that the 
monoid 9~ R is a group. Then, on input R, a finite number of iterations of the innermost 
goto-loop (*) yields a finite special string-rewriting system R o satisfying the following 
conditions: 

(i) R o is equivalent to R, 
(ii) R o is normalized, 

(iii) V*o is closed under cyclic permutation, and 
(iv) ~R ~ ~*o" 

Proof. By Lemma 3.2 the subroutine NORMALIZATION determines a finite 
special system R' satisfying conditions (i), (ii), and (iv). Now the subroutine SYM- 
METRIZATION may add some rules of the form (12l~, e), where (ltl2, e)eR'. Since 
R' is finite, only finitely many rules of this form can be added, and hence, this 
subroutine terminates with a finite special 4 system R" containing R'. Since the 
monoid 9Jlg is a group, R" is equivalent to R, and by Lemma 2.1 V*,,(e) is closed 
under cyclic permutation. If the system R" is also normalized, then Ro:= R" satisfies 
all the conditions (i) to (iv), and the goto-loop (,) is left. Otherwise the subroutine 
NORMALIZATION is called again with R". 

Cycling through the subroutines NORMALIZATION and SYMMETRIZA- 
TION no rule (x, e) is ever generated such that [x[ > 2, where 2 = max {llll (I, e)e R}. 
Further, even if a rule (Iz, e) is deleted in the subroutine NORMALIZATION, we 
still have 12 ~*e. Thus, this rule will not be added again later on, neither in the 
subroutine NORMALIZATION nor in the subroutine SYMMETRIZATION. 
Hence, the goto-loop (,) terminates after a finite number of iterations, and it yields 
a finite special string-rewriting system Ro with the stated properties. [] 
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Given a finite special string-rewriting system R as input such that the monoid 
~ s  is a group, Procedure 4.2 computes a (finite or infinite) sequence of finite special 
string-rewriting systems Ro, R1,R 2 . . . . .  Here Ri-1 denotes the system that is 
determined by the subroutines NORMALIZATION and SYMMETRIZATION 
(i.e., in the goto-loop (,)) during the i-th execution of the body of the outer goto-loop 
(**). Based on Lemma 4.3 the following properties of these systems can be derived. 

Lemma 4.4. For all i >= O, the followin9 statements hold: 
(a) Ri is normalized, 
(b) R i is equivalent to R, 
(c) V*(e) is closed under cyclic permutation, and 
(d) --}~ = ~ *  ~ ~ *  

R ,  ~ R i  + I " 

Proof. Analogously to the proof of Lemma 3.3. [] 

It now easily follows from Theorem 4.1 and Lemma 4.4 that Procedure 4.2 is 
correct. 

Corollary 4.5. Let R be a finite special string-rewriting system on Z such that the 
monoid 9Jl R is a group. I f  Procedure 4.2 terminates on input R, then it yields a finite 
special system Ri on Z that is normalized, e-confluent, and equivalent to R. 

As a first step towards proving that Procedure 4.2 is also complete, we now 
investigate the situation when this procedure does not terminate. 

Lemma 4.6. Let R be a finite special string-rewriting system on E such that the 
monoid ~R is a group. I f  Procedure 4.2 does not terminate on input R, then it 
enumerates an infinite special system R~ that is normalized, e-confluent, and equivalent 
to R. 

Proof. Assume that Procedure 4.2 does not terminate on input R, i.e., it enumerates 
an infinite sequence R o, R1, R2,.. .  of finite special string-rewriting systems on Z. By 
Lemma 4.4(d) ~* c ~* for all i>0 .  In fact, since Procedure 4.2 does not 

R ,  ~ R ,  + I 

terminate with the system Ri, we have R' i ~ ~3, and so -~* c -~* ug" ~= -~*R,* , and 
IRR(Ri+OcIRR(Ri) .  In particular, a rule that is deleted in' t~e process of 
normalizing the system R~ is not reintroduced at a later stage. 

As in the proof of Lemma 3.5 we observe that Procedure 4.2 enumerates an 
infinite special system R~o := {(l, e)] 3j > 0 Vi >j:(l, e)~Ri} of persistent rules. Again 
this system, the rules of which Procedure 4.2 does not identify effectively, satisfies 
IRR(Ro~)~ 0 IRR(Ri). In addition, the following properties of R~ can be 

i__>0 

established in much the same way as in the proof of Lemma 3.5: 
1. ~g, c ~* for all i > 0, and therewith R~ is equivalent to R, Roo 
2. R~ is normalized, and 
3. R~ satisfies condition (2.) of Theorem 4.1. 

Finally V*(e)  is closed under cyclic permutation, since if u, v~E* are such that 
(uv, e)~R~, then (uv, e)~Rj for some j > 0. By Lemma 4.4(c) V*(e) is closed under 
cyclic permutation, and so vu~*e .  Hence, by (1.) above v u ~ * e .  Thus, V~ (e) is 
closed under cyclic permutation ~y Lemma 2.1. | 

Now Theorem 4.1 implies that R~ is e-confluent. This completes the proof of 
Lemma 4.6. [] 
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According to Lemma 3.7 S(R) = { (1, e) lle [el R, but no proper factor of/belongs 
to [e]R} is the only special system that is normalized, e-confluent, and equivalent 
to R. Thus, Corollary 4.5 and Lemma 4.6 yield the following result. 

Theorem 4.7. Let R be a finite special string-rewritin 9 system on 27, such that the 
monoid 9J~ R is a group. Then on input R, Procedure 4.2 computes a normalized 
special string-rewriting system S(R) on 22 such that S(R) is e-confluent and equivalent 
to R. Procedure 4.2 terminates if and only if the system S(R) is finite, which in turn 
happens if and only if there exists at all a finite special string-rewritin9 system 
S on 22 that is e-confluent and equivalent to R. 

Again termination of Procedure 4.2 is undecidable, since the following problem 
is undecidable by [9, Theorem 5.1.33: 
INSTANCE: A finite special string-rewriting system R on 27 such that the monoid 

93t R is a group. 
QUESTION: Is the corresponding system S(R) finite? 

We close this section by presenting two examples to illustrate the way Procedure 
4.2 works. Each time we start with a finite special string-rewriting system R 
presenting a group. By stepping through Procedure 4.2 applied to input R we 
construct a special string-rewriting system S that is e-confluent and equivalent to R. 

Example 4.8. (Example 3.9 revisited). Let Z = {a, b, c, d} and R = {ad ~ e, da ~ e, 
b2-*e, c2-*e, bcbc~e}.  Then 9J~ R is the group 7~*(~, 2 X 7~,2). 

On input (22; R) Procedure 4.2 first computes the string-rewriting system R o := 
R w {cbcb ~ e} using the subroutines NORMALIZATION and SYMMETRIZA- 
TION. This system is equivalent to R, it is normalized, and V R*o(e) is closed under 
cyclic permutation. Then the subroutine CONTEXT_RESOLVING is entered, and 
the following computations take place: 

UCP(Ro) -= {(cbc, b), (bcb, c)}, 
RFRo(b ) = {b, cbc}, RFRo(C ) = {c, bcb}, 
RFRo(Cbc) = {b, cbc, bc 2, c2b, bcbcb, c2bc 2, bcb2c, cb2cb, c2bcbcb, bcbcbc 2, 

bcbcbcbcb, bcb3cb}, and 
RFRo(bcb ) = {c, bcb, cb 2, b2c, cbcbc, b2cb 2, cbc2b, bc2bc, b2cbcbc, cbcbcb 2, 

cbcbcbcbc, cbc3bc}. 
Further, A*o(b.RfRo(Cbc)) c~ IRR (Ro) = {e}, 
A *o(Cbc. RF eo(b) ) c~ I RR (Ro) = {e} = A *o(c. RF Ro(bcb) )c~ IRR (Ro), and 
A*o(bCb'RFRo(C))c~IRR(Ro) = {e}, and hence, R 0 = ~ .  Thus, Ro is a finite special 
string-rewriting system on 27 that is equivalent to R, and that is e-confluent. [] 

Example 4.9. Let Z =  {a,b,c, f ,g} and R = {ab-*e, ba~e ,  c3~e ,  fg -~e ,  gf-~e,  
b f b f ~ e ,  f c29~e} .  Then R is normalized, and the monoid 9Jr R is obviously a 
group. Actually, 9Jr R ~ 7Z,Z2, and so this monoid can be presented by a finite special 
and confluent string-rewriting system on some alphabet F [23. However, no finite 
special and confluent string-rewriting system is equivalent to R, since a ~--~* f b f ,  but 
no factor of f b f  is congruent to e mod R. On input R, Procedure 4.2 performs the 
following computations. 

First the subroutine SYMMETRIZATION is applied to R. It yields the system 
S 1 :.-~-R w { f b f b  ~ e, c2gf-+ e, cgfc--* e, 9fc2-+ e}. Since $1 is not normalized, the 
subroutine NORMALIZATION is called. It disposes of the rules cZgf-+e, 
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cg f c ---, e, and gf  c 2 ~ e while introducing the rule c z ~ e. Because of this new rule, 
the rules c 3 --* e and fcZg --> e are then also deleted, and the rule c --* e is introduced. 
Finally, the rule c 2 --* e is deleted, i.e., the system Ro = {ab ~ e, ba --* e, c --, e, f9  ~ e, 
g f  ~ e, bfbf--* e, fbfb--* e} is obtained. This system is normalized, and V~o is 
closed under cyclic permutation. Now UCP(Ro) = {(a, fbf ) ,  (g, bfb)}, i.e., the sets 
RFRo(a), RFRo(fbf), RFRo(g), and RFRo(bfb) must be determined. As can be 
checked easily, RFRo(a)= {b}, RFRo(9)= {f}, 

RFRo(fbT) = {b, bfg, bfbfb,  gfb, 9ag, gabfb, gfbfg, g fb fb fb ,  bfbag, bfbabfb, 
b fb fb fy ,  b fb fb fb fb} ,  and 

RFRo(b fb) = { f, fba, f b  fb  f, ab f, aga, agfb f, ab fba, ab fb  fb  f, f b  f ga, fb  fb  fba, 
f b f g f b f ,  f b f b f b f b f } .  

While A*o(fb f'RFRo(a)) c~ IRR(Ro) = {e} = A*o(bfb'RFRo(g)) c~ 1RR(Ro), we have 
A~o(a.RFRo(fbf))~IRR(Ro)= {e, agag} and A*o(g'RFRo(bfb))~IRR(Ro)= 
{e, gaga}. This gives the string-rewriting system R~:= R o u {agag ~ e, gaga---' e}, 
which is normalized. Further, V~(e) is closed under cyclic permutation, and 
UCP(R1)= { (a, f bf), (g, bfb), (b, 9ag), (f, aga)}. Now RF,~ (a)= {b, 9ag}, RFR, (b)= 
{a, f b f } ,  RFRI(g)= {f, aga}, and RFR~(f)= {g, bfb}. Further, RFR~(fbf)= 
RFRo(fbf) and RFR~(bfb) = RFRo(bfb), while RVR~(gag) = {a, agf, agaga, fga, 
f b f , f baga, fgag f , f gagaga, agab f , agabaga, agagag f , agagagaga } and RF 1 ( aga) = 
{g, gab, gagag, bag, bfb, bfgag, bagab, bagagag, 9agfb, gagagab, gagfgag, 
9agagagag}. Finally, 

A* (a.RFR~(fbT))c~IRR(Rt)= {e} = A ~ ( T b f  "RFR~(a))c~IRR(RO, 

and the same is true for the other three critical pairs. Thus, R~ is a finite special 
string-rewriting system on ~ that is equivalent to R, and that is e-confluent. [] 

5. Concluding Remarks 

The examples presented at the end of the previous sections are fairly simple ones. 
The reason for this is the fact that they have been done by hand calculations. 
Naturally it would be interesting to investigate the behavior of our completion 
procedures for some more complex examples. For example, one of the questions 
one would like to answer by constructing appropriate examples is the following: for 
each k > 1, does there exist a finite special string-rewriting system R such that, on 
input R, Procedure 3.1 (respectively, Procedure 4.2) halts after executing the body 
of the (outermost) goto-loop exactly k + 1 times, i.e. the system Rk is e-confluent, 
but the system R k_ 1 is not? Due to the number and size of the sets LFR,(u) and 
RFR,(v) involved, this will be possible only by using an actual implementation of 
these completion procedures. Such an implementation is currently under way. 

A part of Procedure 4.2 is the subroutine SYMMETRIZATION. Given a finite 
special string-rewriting system R presenting a group, this subroutine adds rules of 
the form lzll --*e, if(1jz,e)eR and 121~ -/**e. In this way a finite special system S is 
obtained that is equivalent to R such that V s (e) is closed under cyclic permutation. 
This subroutine was motivated by the notion of a symmetrized group presentation 
[-5]. Let 22 = {a~ . . . . .  a,} be a finite alphabet, let 2 = {ci 1 . . . . .  ci,} be an alphabet in 
one-to-one correspondence to Z such that 22 ~ X = ~ ,  and let-:22--* 2 denote the 
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obvious bijection. For a subset L ~ ( Z w Z ) * ,  R(L) denotes the Thue system 
R(L):= { (u, e) lu~_L} u { (afi~, e), (~a~, e)[i = 1 . . . .  , n}. Then the monoid 9Y~R~L ) pre- 
sented by (ZwZ;R(L) )  is a group, and the ordered pair ( S ; L )  is called a 
group-presentation for this group. Define a mapping - 1:(27 w ~)* ~ (27 w ~)* 
through: e- 1: = e, (wai)- 1:= ~ti(w- 1), and (wfti)- 1: = ai(w- 1) for all w~(Z" w ~,)*, and 

1 * , - 1  1 i = l  . . . . .  n. Then, fora l lw~(Zu~, )* ,ww-  *--~[~(L)e,,-*~(L)W w,i.e.,w- i sa formal  
inverse ofw. Observe that ~ii is a formal inverse ofa~, i.e., each generator has a formal 
inverse of length 1 in the setting of group presentations. This is not true in general 
for finite special string-rewriting systems presenting groups. 

A word w6(2; u Z)* is called freely reduced if it does not contain a factor of the 
form agai or ci~a~; it is called cyclically reduced if it is freely reduced, and if it is not 
of the form w = a~ud~ or w = ?tgua~. Obviously, if a word w is cyclically reduced, then 
so is each cyclic permutation ofw. Now a subset L ~ (27 w ~)* is called symmetrized, 
if the following holds for each word w6L: w is cyclically reduced, and each cyclic 
permutation of w as well as of w- 1 belongs to L. If L is symmetrized, then the set 
V~tL)(e ) is closed under cyclic permutation by Lemma 2.1. Thus, when applied to 
a finite group-presentation the subroutine SYMMETRIZATION essentially 
constructs a symmetrized group-presentation equivalent to the given one. 

If a finite symmetrized set L ~ (2' w e f t  satisfies certain combinatorial condi- 
tions (called small cancellation conditions [4, 5]), then the word problem for (27; L)  
can be solved by Dehn's algorithm. This algorithm essentially consists in computing 
normal forms modulo a finite length-reducing string-rewriting system S on (27 w 2') 
that is equivalent to R(L) and that is e-confluent. LeChenadic [4] presents a process 
he calls the group symmetrization algorithm that on input a finite symmetrized 
group presentation (27; L)  satisfying certain small cancellation conditions generates 
the finite length-reducing system S mentioned above. 

Procedures 3.1 and 4.2 only deal with finite special string-rewriting systems. For 
which classes of less restricted string-rewriting systems can corresponding comple- 
tion procedures be developed? A specialized completion procedure for finite 
monadic string-rewriting systems presenting groups has been proposed in [7]. 
Recall that a string-rewriting system R on X is monadic, if each rule (1, r)~R satisfies 
Ill > l r l  and I r] < 1. It is shown in [73 that is decidable in polynomial time whether 
a finite monadic string-rewriting system R presenting a group is e-confluent. On the 
other hand, for finite monadic string-rewriting systems in general the problem of 
deciding confluence on a given congruence class seems to be very hard. It has been 
shown to be decidable, but the algorithm given in [103 uses doubly exponential 
time. Thus, as a first step towards generalizing Procedure 3.1 to the class of all finite 
monadic string-rewriting systems, a much more efficient algorithm for testing 
cor/fluence on a given congruence class must be developed for finite monadic 
systems. 

6. References 

1. Book, R. V.: Decidable sentences of Church Rosser congruences. Theor. Comput. Sci. 23, 
301 312 (1983) 

2. Cochet, Y.: Church Rosser congruences on free semigroups. In: Algebraic Theory of 
Semigroups. Colloquia Mathematica Societatis Janos Bolyai 20, pp. 51-60. Amsterdam: 
North-Holland 1976 



274 F. Otto 

3. Kapur, D., Narendran, P.: The Knuth-Bendix completion procedure and Thue systems. SIAM 
J. Comput. 14, 1052-1072 (1985) 

4. LeChenadec, Ph.: Canonical Forms in Finitely Presented Algebras. London: Pitman, New 
York, Toronto: Wiley 1986 

5. Lyndon, R. C., Schupp, P. E.: Combinatorial group theory. Berlin, Heidelberg, New York: 
Springer 1977 

6. Madlener, K., Otto, F.: About the descriptive power of certain classes of finite string-rewriting 
systems. Theor. Comput. Sci. 67, 143-172 (1989) 

7. Madlener, K., Narendran, P., Otto, F.: A specialized completion procedure for monadic 
string-rewriting systems presenting groups. In: Albert, J. L., Monien, B., Artalejo, M. R. (eds.) 
Automata, Languages, and Programming. Proceedings of the 18th Int. Coll., Lecture Notes 
Computer Science, Vol. 510, pp. 279-290. Berlin, Heidelberg, New York: Springer 1991 

8. Narendran, P., O'Dunlaing, C., Otto, F.: It is Undecidable Whether a Finite Special 
String-Rewriting System Presents a Group. Discrete Math. (to appear) 

9. O'Dunlaing, C.: Finite and Infinite Regular Thue Systems; Ph.D. Dissertation, Department 
of Mathematics, University of California at Santa Barbara (1981) 

10. Otto, F.: On deciding the confluence of a finite string-rewriting system on a given congruence 
class. J. Comp. Sys. Sci. 35, 285-310 (1987) 

11. Otto, F.: The problem of deciding confluence on a given congruence class is tractable for finite 
special string-rewriting systems. Preprint No. 4/90, FB Math., GhK Kassel, West Germany 
(1990); also: Math. Systems Theory (to appear) 

12. Otto, F., Zhang, L.: Decision problems for finite special string-rewriting systems that are 
confluent on a given congruence class. Acta Informatica 28, 477-510 (1991) 

13. Zhang, L.: Conjugacy in special monoids. J. Algebra 143, 487-497 (1991) 
14. Zhang, L.: The word problem and Markov properties for finitely presented special monoids. 

Submitted for publication 


