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Abstract. The 2-point functions of Euclidean conformal invariant quantum field 
theory are looked at as intertwining kernels of the conformal group. In this analysis a 
fundamental role is played by a two-element group W, whose non-identity element ~ = R. I 
consists of the eonformal inversion R multiplied by a space-time reflection L The propaga- 
tors of conformal invariant quantum field theory are determined by the requirement of 
.,~-covariance. The importance of the ¢~-inversion in the theory of Zeta-functions is men- 
tioned. 

I. Introduction 

In his article [1] on automorphic  functions and the theory of re- 
presentations Gel 'fand has drawn attention to the fact that ))the Zeta- 
functions of a homogeneous space are quite analogous to the Heisenberg 
S-Matrix< Some properties relating to this Zeta-function aspect can 
be studied in conformal invariant quantum field theory (QFT) where the 
physical space-time is realized as a homogeneous space of the conformal 
group. The reason that Gel 'fand's statement is more transparent in the 
case of a conformal invariant QFT, lies in the close interrelationship 
in this theory of group theoretic and quantum field theoretic properties: 
for example, the 2-point functions are intertwining-kernels, the 3-point 
functions are Clebsch-Gordan-kernels of the conformal group and the 
higher n-point functions can be harmonically analysed in such a way 
that the set of nonlinear integral equations in Lagrangian field theory 
can be simultaneously diagonalised, with the Wilson expansions in the 
n-point functions corresponding to the Regge-poles in the S0(2. 1) 
partial wave analysis. These group theoretic aspects have been treated 
in some detail by Mack [2]. Further discussion of conformal covariant 
2-point functions for Minkowski space-time has been given by Rtihl [3] 
and earlier work by a number  of other authors on related questions can 
be found in Refs. I-4, 5]. 

In this paper  a more refined treatment of the conformal invariant 
propagators  will be given. These are the kernels of the intertwining 
operators  for the conformal group. The central issue discussed in this 
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paper is the significance of the conformal inversion in defining the 
quantum field propagators. It will be found necessary to change the 
usual conformal inversion 

Rx~,= x,  x--T, # =  1,2 . . . .  ,D (t.t) 

slightly in that one must multiply it by a reflection from the orthogonal 
group in D space-time dimensions I ~ O(D) with de t I  = - 1, This modified 
conformal inversion 

= R .  I (1.2) 

will be seen to generate the propagators in the conformal quantum field 
theory. 

In this paper conformal invariance will be considered for Euclidean 
space-time R ° only, but there will be analogous results for the Minkowski 
case. Besides the physical dimension D = 4, other space-time dimensions 
(D = l, 2, 3 or 6) may also be of interest. For this reason the discussion 
of the intertwining operators and the necessary representation theory of 
the conformal group will be given for all D = 1, 2, . . . .  There are, however, 
certain exceptions in the case D = 1, which will not be mentioned sepa- 
rately. Mathematically the modified conformal inversion N will be an 
element of the so-called Weyl-group [6] W associated to the conformal 
group 

W = OW)/SOW) (t.3) 

which will be introduced in the next section. The Weyl-group (of the root 
space of a semi-simple Lie group) on the other hand plays also the 
central role in the theory of Zeta-functions on a homogeneous space. 
Hence, as will be seen, covariance with respect to the Weyl group W 
determines the propagators gives rise to the symmetry t 

d,,--rD-d (1.4) 

and is also responsible for the Zeta-relation of Zeta-functions. Just as 
in a Regge-pole theory, the symmetry d*-*D- d plays an important role 
in the partial wave analysis of n-point functions. Thus the conformal 
invariant QFT (interpreted as the Gell-Mann-Low limit of a massive 
theory) provides a good illustration of Gel'fand's statement on Zeta- 
functions. In (1.4) d is the dimension of a physical field. The symmetry 
(1.4) has been called "shadow-symmetry" by the authors of Ref. [7 l, 
who also show its relationship to the conformal inversion R. Further- 
more, the conformal inversion R has been used by Schreier [8] to 
determine the 3-point function. The analysis of the conformal inversion 
given here explains why this is justified. We have used the mathematical 

i This symmetry is, of course, the Regge pole Symmetry for D = 1 and the Lorentz 
pole symmetry for D = 2. 
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literature on intertwining operators for semi-simple groups. More details, 
especially on analytic questions and for other groups, may be found in 
the work of Kunze and Stein [9], Knapp and Stein [10], and Kostant 
Ell]. 

lI. Weyl Group 

Now we will give a global parametrization of the identity component 
of the special orthogonal group G = SOe(D + 1, 1), which represents the 
conformal transformations of the Euclidean space R D and discuss the 
Weyl group associated to G. The transformations of SO~(D + l, 1) leave 
invariant the quadratic form 

~ + {2 +. . .  + {2_  (~+1- (2.1) 

There exist two basic decompositions of semi-simple Lie groups, the 
Iwasawa decomposition and the Bruhat decomposition. These two 
decompositions lead to a compact and a non-compact realization of 
space-time, respectively. The Iwasawa decomposition of G = SOe(D + 1,1) 
is given by 

G = K A N  (2.2) 

where the maximal compact subgroup K is the special orthogonal 
group SO(D + 1), the 1-dimensional abetian group A is the dilatation 
subgroup and the nilpotent group N consists of special conformal 
transformations. If G is parametrized by (D + 2) x (D + 2)-dimensional 
matrices, the abelian group A and the special conformal transformations 
N are parametrized explicitly by 

chs 0. . .0  shs 

0 E 0 

A :  o o 

and 
_.½(2-[cl z) c t ½1cl 2 

N = - E c (2.4) 

[ -½lcl 2 c' ½(2+lcl 2) 

while the compact subgroup is given by matrices of the following form 

K =  0 
SO(D+ t) 0 (2.5) 

0. . .0  1 
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The translation subgroup X of SOe(D + I, 1), on the other hand, has the 
parametrization 

1(2--  IX[2) -E xt ~ x{2 (2.6) 

Hereby is E the D x D dimensional identity matrix, x c R °, e ~ R D are 
D-dimensional Euclidean and x t, c t their transposed vectors. 

As mentioned in the introduction a two-element group associated to 
the conformal group will play a fundamental role. This group is called 
in the mathematical literature the Weyl group W [6] and is constructed 
in general for semisimple Lie groups as the quotient group W = M ' / M  
where M is the centralizer of A in K and M' is the normalizer of A in K. 
Hence in the case of the conformal groups 

M = { k e K I k a k - t = a ,  for all 

m ' =  {k~ K [ k A k  -~ CA} =O(D) 

a ~ A I  = SO(D) 
(2.7) 

and it follows that the Weyl group of SOe(D + 1, 1) consists only of two 
cosets 

W = O(D)/SO(D)= {g, ~} (2.8) 

where the identity coset g consists of matrices of the following form 

1 

0 

...0 

m 

0.. .0 

m ~ SO(D) (2.9) 

and the N-coset is given by 

- 1  . . .0 

I 

0. . .0 

! (2.10) 
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where I ~ O(D) ,  det I  = - 1. It can be seen that N is the product of the 
usual conformal inversion R with a space-time reflection I, where 

R(¢o, ~1 . . . . .  ¢~+ 1) = ( -  ¢07 ¢1 . . . . .  CD+ 1) (2.11) 

1 
which is equivalent to (1.1) and as usual x u = ~ ( , p = l ,  D, 

t C = ( o + ( o +  l, x 2 = x Z + . . . + x  2. Hence one obtains with l e O ( D ) ,  

detI  = - 1 
I x ,  (2.12) 

X u = X2 • 

Later we will take as representative elements of 

~ = R I  t i fD is even, (2.13a) 

= R I~t if D is odd ,  (2. t 3b) 

and the time reflection It and space-time reflection I~t are simply given by 

I t ( x1 ,  x 2 . . . . .  xD) = ( -  x l ,  x2 ,  . . . ,  xD) , (2.14a) 

I~ t (x  1 , x 2 . . . . .  xn )  = ( - x 1, - x 2 . . . . .  - xo) .  (2.14b) 

Note that the usual conformal inversion R is not an element of 
S O e ( D  + 1, 1) and therefore should frequently be substituted by the 
N-inversion, which is an element of S O e ( D  + 1, 1). It is the ~-inversion, 
as the non-identity coset of the Weyl group, which fundamentally enters 
in the construction of the 2-point functions as well as in the analysis of 
the higher n-point functions in conformal invariant QFT. The symmetry 
(1.4) of the n-point functions and in Wilson expansions are a consequence 
of the ~-operat ion.  

The conformally compactified Euclidean space-time is the D-dimen- 
sional sphere S D, and is obtained as a homogeneous space of the con- 
formal group with the use of the Iwasawa decomposition. It is the 
quotient space of G = S O ~ ( D  + 1, 1) with respect to the stability subgroup 
P at the zero vector of R D 

P = M A N  (2.t5) 

which is called the minimal parabolic subgroup of G [6-]. Hence 

G / P ~ - K A N / M A N " ~ S O ( D +  1 ) / S O ( D ) ~ - S  D . (2.16) 

The representations and intertwining operators will be given later on 
the non-compact realization of space-time, the D-dimensional Euclidean 
space R D. In order to get R D as a homogeneous space of the conformal 
group, one can use the Bruhat decomposition of G [6] 

G = P W P  = P g P  + P ~ P  (2.17) 
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which involves the Weyl group W. The decomposition (2.17) means that 
the space of double cosets P g P ,  9 ~ G, is in 1 - 1 correspondence with the 
elements of the Weyl group. Using the relations 

~ t - I  N ~ =  X , (2.18a) 

~ - 1 A ~  = A ,  (2.18b) 

~ -  I M ~ I =  M , (2.18c) 

and the definition (2.15), then the decomposition (2.17) can be rewritten 
in an equivalent form 

G = P X  + P ~  (2.19) 

which shows that the Euclidean space RD-- ~ X is obtained as a homo- 
geneous space of G except that it has to be supplemented by points at 
infinity. Note that (2.t8a) reflects the fact that the special conformal 
transformations N may be generated by the translations X and the 

operation. 
In order to do explicit computations it is more convenient to trans- 

form the metric (2.1) by 

• E " (2.20) 
r o o 

- i / / ~  o . . .o  1/I/3 

to the equivalent form 
~2 + ... + ~2 - 2~o~D+ t • (2.21) 

This changes the parametrization of the subgroups to  00 les 
A =  E 

0. . .0  1!'0'''0 ! 
M =  0. U " 

0 . . .0  

~ l / ~ c  ~ 

N =  0 E 

0 . . .0  

1 0 . . . 0  

X =  V2x E 

I,~l ~ 1/~x ~ 

[cl 2 

1 
(2.22) 

0 

-0- 

o 
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This parametrization yields for the products 

e S 

M A N  = u: 

4 1  

] / ~ e S c  t 

U 

0 . . . 0  

e~jxl 2 ] 

]/~ U c , 

e -  s - -  

M A N  X = 

eS(1 + 2c.  x + lcl 2 Ix] 2) 

VS(U x + Ixl 2 U c) 
e-Slxl 2 

]/~eS(c'+ lcl2x ') 
U + 2(U c). x ~ 

l / / 2  e - S  x t 

and the two elements of the Weyl group are now given by 

If e =  ° 

O.~.0 

m 

0. . .0  

0 

0 

0 

1 

.0  0..~0 

I 

0. . .0 

t 

0 

0 

0 

21 

(2.23) 

e~lcl 2 

l/~_Lf c ,  (2.24) 

(2.25) 

with m eSO(D),  I eO(D),  d e t I = - 1 .  The matrix representations 
(2.22)-(2.25) will be needed later for the computation of the conformal 
invariant 2-point functions. 

HI. Representation Theory of the Conformal Group 

In this section the irreducible representations of G = SOe(D + 1, 1) 
will be constructed. They will be realized on certain function spaces over 
space-time R °. 

The intertwining operators for the conformat group G will also be 
given in the R ° formulation, which allows a direct comparison with the 
expression for the 2-point function used in QFT. On the whole, it has 
to be said, that the non-compact formulation of conformal invariance 
is a completely legitimate procedure. One should bear in mind, however, 
that the action of G on R D will be undefined at certain points, and if this 
happens, the compactified version of conformal invariance allows for a 
more systematic analysis in this case. According to the general theory of 
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induced representations, the representations of G can be induced from 
those of the stability subgroup M A N  at the origin of R D. Hence, let 

m ~ ~l(rn) -- ~(m), m e M = SO(D) 
(3.1) 

a ~ ~a(a)  = ~L¢(a), a ~ A 

be irreducible representations of SO(D) and A respectively. 
The tensor representations of SO(D) are then labeled by the weight 

vector I 
l = (/~v, ..., I2, 10 in the case D even 

(3.2) 
l = (l~( D_ 1) . . . . .  l 2, ll) in the case D odd 

where the li are integers restricted by 

0 < I~D < ... < 1 z < I a for D even 
(3.3) 

lt~(o- 1)1 < " "  < lz < 11 for D odd 

and the 1-dimensional representations of the dilatation group A are 
given by 

Lea(a) = e(a - D / 2 ) ~ x l n a  ~ e(a- o/z).~ (3.4) 

where ~ maps the generator of a onto the real number 1 and d is a complex 
number. The representations of G = SO,(D + t, 1) may be induced from 
representations of M A N  in a standard way where N is represented by 
the identity representation. The unitary characters of A lie on the line 
Re d = D/2 parallel to the imaginary axis and induce the unitary principal 
series of G. Denoting the Hilbert space for the finite dimensional re- 
presentations of M by W, the principal series of representations of G 
may be represented in the Hilbert space L2(X, W )  of square-integrable 
functions over X with values in H z, and this Hilbert space may be 
identified with LZ(R °, Hi). The matrix elements for other representations 
can be obtained by analytic continuation in the Casimir variable d. 

Let the modular function 6 e - 6  of P =  M A N  be defined by 

dp f (pq-1)  = 6(q) ~ dp f (p) (3.5) 
P P 

where it can be shown [12] that 6(man) does not depend on m e M and 
n e N and that 

6(man) = 6(a) = e -D~lna =- e -Ds . (3.6) 

According to the construction procedure of induced representations the 
functions f e LZ(x, H l) obey the covariance property 

f (man  x) = 6-~:(a) ~a(a)  Ni(rn) f (x) (3.7) 

x e X ,  m a n  e M A N ;  in particular they are homogeneous of degree d 

f (0 x) = 0 a f (x) 0 > 0 



Conformal Inversion in Quantum Field Theory 23 

and the representations U 1'e of G induced from the representations ~d(a). 
~l(m) of M A N  are then given by right multiplication 

Ut"~(g) f (x) = 5-  (nAxg)) S(IG(xg)) f (nx(Xg)) (3.8) 

where g ~ G, x ~ X ,  x g  ~ M A N  X ,  f e L2(X, H z) and the projections 

H A : M A N  X ~ A  
(3.9) 

17 x : M A N  X ~ X  etc. 

of x g  ~ M A N  X will be computed below. In (3.8) the Bruhat decomposi- 
tion (2.19) of g e G will be used, i.e. almost all g e G (except a set of Haar 
measure zero) may be uniquely decomposed into the product M A N  X 
and for such a g e G fixed I Ix (xg)  again belongs to X for all but one 
x e X. Hence using for g e G the parametrization (2.24) it follows that 
x . g  has the following general form 

e~a(c, b) ]/~e~(c' + IclZ U) eSlc[ 2 

l /2e~a(c,  b) x 2 e ' x ( d  + tct z b') ]/-2eSlc[Zx 

+ V 2 ( U b + l b l Z U c )  + U + 2 ( U c ) b '  + ] / 2 U c  
X ' g =  

e s Ix[ 2 a(c, b) 
+ 2x~(Ub + lb} 2 Uc) 

+e-Slbl z 

l /~eSlxj2(d + Icl 2 b') 

2(u )v) 
+ l /~e-S  b t 

e-~a(e~x t U, c) 

(3.10) 

where x e R ° parametries x ~ X ,  b ~ R ° parametries b E X C M A N  X 
and as usual 

a(b', c) = 1 + 2b .  c + lbl 2 Icl 2 . (3.t 1) 

Comparing matrix elements of (3.10) with those of (2.24) yields 

HA(xo) = 

e~[~r(e~x ~U,c)] -1 0 . . . 0  0 

0 0 

" E " 

0 0 

0 0. . .  0 e-2 a(e ~ x t U, c) 

(3.12) 

and by the same method the transformed vector x ' e R  D of x' = Hx(X.  g)~ X 
is derived to be 

e 28 N 2 (c + tel 2 b) --~ e ~ U' x + 2eS(x t. Uc).  b + b 
x '  = a(e ~ x' U, c) (3.13) 
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f rom which follows the conformal  space-time t ransformat ion law 

e~ U~ x + eZ~ixl2 c 
x' = b + a(e ~ x t U, c) (3.14) 

The  rota t ion U ' = H M ( x . g ) ~ S O ( D  ), finally, is again computed  by 
equating matr ix elements (2.24) and (3.10) 

U' + 2(Uc)' • (x') t = 2e~x(c ~ + Icl z b9 + U + 2(Uc) • b t 
(3.15) 

(Uc)' = e ~ Icl 2 x + Uc 

which determine the ro ta t ion 

UIj = U~j + 2e~xicj + 2[(Uc)i + Icl 2 e~x~] (b~ - x~) (3.16) 

where x~ is given in (3.t4) and U'ij ~ SO(D) i , j  = 1, 2 . . . . .  D is a generalized 
Wigner  rotat ion.  Hence, identifying L2(X ,H  ~) with L2(R° ,H ~) the 
representat ions Ul'd(9 ) of SQ(D + i, 1) are given by 

U"a(g)f(x)  = e ~d [a(e~x ~ U, C) ] -d~I (U ' ) f (x ' )  (3.17) 

where N~(U') is a representat ion of SO(D) and the t ransformed elements 
U'e  SO(D), x ' e  R ° may be taken from (3.14) and (3.16). 

IV. Intertwining Operators 

Let us define representat ions ~ X = (N 1, N d) by 

~ l ( m ) - @ ~ ( ~ g - l m ~ )  m ~ M = S O ( D )  
(4.1) 

£~ed(a ) _ ~ d ( 2 - 1  a 2 )  a e A . 

Choosing for ~ the representative elements (2.13) one obtains if D is an 
odd  integer for all m e M, 

- 1 m ~ = m (4.2) 

and this means that  the representat ion N l is always equivalent to l for D 
odd. If D is an even integer, on  the o ther  hand, it follows that  

~ l  = ( -  I~_D, +/~(D-2)  . . . . .  t2, t~) (4.3) 

and this implies that  ~ 1 is equivalent to I if and only of l ,o  = 0. Secondly, 
observe that  

~ - l  aN~ = a  -x (4.4) 

which yields tbr the representat ion ~ .ea  of A 

~.~aa(a) = e-(a - o/z)~ = y o -  a(a ) (4.5) 

and hence 
d = O - d (4.6) 
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is the shadow dimension of d in the language of Ref. [7]. Next, we will 
write down the intertwining operators A x, which are maps [10] 

A x : C~  (R D, H ~) ~ C ~ (R", H z ) (4.7) 

and which intertwine the two representations UZ'd(g) and Ul'ed(g), e.g. 
they satisfy 

A ~ UU(g) = UZ'ea(g) A ~ . (4.8) 

Writing down the integral representation for 

AZ f ( z )=  .[ dDxAZ(x) f (x . z )  (4.9) 
R D 

it will be demonstrated below that the kernel AZ(x) is the conformal 
invariant two-point function. In (4.9) x .  z means multiplication in X, 
which is equivalent to x + z in R D. In the construction of the intertwining 
kernel AX(x), x e R  D or x s X essential use is made of the N-operation. 
The final expression for A~(x), however, will not depend on any particular 
choice of the inversion I, where N = R.  I, but only on the entire coset N 
of the Weyl group {g, N}. Hence the N-dependence of AZ(x) has been 
dropped. The resulting expression for the intertwining kernel looks as 
follows 

AX(..~) = a(z) 6-½(/-/p(NN)) o~- I(//A(X N)) ~(N) ~ -  1 (//M(XN)) (4.10) 

and will be computed explicitly with the parametrization introduced in 
(2.22)-(2.25). The normalization factor a(x) is very important, it is 
related to the Plancherel measure of SOe(D + l, 1). This will be discussed 
in Section V. Apart from the representations 5 ~ - 1 =  [ ~ d ] - i  of the 
dilatation group A and the representation N -  1 _- [NI]-  1 of SO(D) the 
factor ~(N) also occurs in (4.10). 

For arbitrary representations X N(N) is not well defined, because 
_ ~l is a representation of SO(D) and N e O(D) only. It is possible, 

however, to extend the representation N~ of SO(D) to a representation 
~t  of O(D) on the same Hilbert space H ~ if and only if [t3-] 

~I-I. (4.11) 

If D is an even integer this condition restricts the representations X which 
can be used for the intertwining kernel (4.10). In accordance with the 
remarks following Eq. (4.3), this implies that A~(x) is defined only for 
representations 

)~ = (1; d) = (l~ . . . .  , lao; d) with l+D = 0, D even (4.12) 
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and resembles the fact that unitary representations of the complementary 
series exist only for l~D = 0. For example the complementary series of 
SOe(3, 1) in our parametrization of the Casimir labels is given by 

Z=(0;d)  with 0 < d < 2  (4.13a) 

and the complementary series of SOe(5, l) lies in the intervals 

Z=(0,0;d)  with 0 < d < 4  
(4.13b) 

;~=(ll,0;d) with l < d < 3 , / 1 4 : 0  

etc., here d is a real number and there are two equivalent sets of unitary 
representations divided by the point d = D/2. For these representations 
of the complementary series the intertwining kernel (4.10) gives rise to a 
scalar product 

(f, g)x = ~[~, d°xd°y f (x) AZ( x - Y) g(Y)" (4.14) 

On the other hand there is no restriction on the representation Z in (4.10) 
for the groups SQ(D + 1, 1) with D an odd integer. In addition, there is a 
__+ sign ambiguity (a signature factor) when extending a representation 
of SO(D) to a representation N of O(D) [t 3], we will take here the + sign 
by requiring positivity for the 2-point function. 

It will now be demonstrated that the intertwining kernel (4.t0) 
reduces to the usual 2-point function in conformal invariant QFT. In 
order to do this we will now compute IIA(x~ ) and Hu(x~).  Using the 
matrix representations for x e X and ~ (2.22) and (2.25) one obtains for 
their product 

X ~ =  

0 0...0 

0 
• I 

0 

1 ]//2XtI t 

t 

IxL ~ 

I ~ O(D). (4.t5) 

x N e P X = M A N  X 
Recalling that 

and the definition of the projections HA, / /~  

I IA:MAN X-~A 

Fl~t :MAN X ~ M  

one obtains the relation 

(4.16) 

e-~=lxJ 2 (4.17) 
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by comparing matrix elements between xN and M A N  X in the param- 
etrization (2.24). Hence 

/ / ~ ( x ~ )  = 

1 0 . . . 0  
lxt 2 

0 
: E 

0 

0 0 . . .0  

0 

T 

o 

txl 2 

(4.t8) 

and using the expression of the modular function (3.6) it follows that 

0 -  + ( r / A x e ) )  = 6 - + ( r / A ( x ~ ) ) - -  IxI-D (4.19) 

and similarly for the representation 2~0 of A Eq. (3.4) 

5¢- 1 (//a(x ~)) = Ix] 2w/2- a). (4.20) 

This shows that the propagator for scalar particles 

AZ(x) = a(z)(Ix]2) a-D Z = (0; d) (4.21) 

is obtained as the 6-~5¢ - 1 matrix element of IIA(xYf ), e.g. it arises by 
right multiplication with the conformal inversion ~ on x e X. In the 
more general case when the representation l of SO(D) is not the scalar 
representation l = 0  one has to evaluate in addition the factor 
D(Yt) D-  1 (rCM(X ~)). Hence, comparing three matrix elements of (4.15) 
with those of M A N  X in (2.24) 

U + 2(Ue) z' = I 

(Ue) = x (4.22) 

1 x'I' 

where x ~ X and z ~ R ° parametrizes X in M A N  X, U = ~M(x~) can be 
computed by solving the Eqs. (4.22) 

Hence 

D-~(rcM(x~I ) )=D(I - I (E_  2 x x t ~  
-Tx~]]  " (4.24) 

Note that 

det (E - 2 -~F)=x x t - 1 
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and therefore the expression E - 2xxTlxt z is only in SO(D) when multi- 
plied by the reflection I-1.  combining (4.21) with (4.24) then allows one 
to write the intertwining kernel (4.t0) as 

AZ(x) = a()O ixtZ~o--a) 
(4.25) 

~l / 2x x t \ IE- ) 
= a ( z ) - -  ixUO_~) 

where g = (/; d) is a representation of SO(D + 1, 1) with the requirement 
that I is equivalent to ~ l  and ~ is a representation of O(D) extended from 
the representation N~ of SO(D). This shows that the intertwining kernel 
(4.10) between the representations Ul'd(g) and Ut'ea(9 ) of SO(5.1) is 
the analytically regularized propagator of Euclidean QFT and is pos- 
tulated to be the 2-point function for interacting fields in conformally 
invariant QFT. In this case Z = (11, 0; d) is a representation of SOe(5, 1) 
and the spin label 11 takes on the values 1 ! = 0, 1, 2 . . . . .  for example in 
the spin 1 case one has 

6u~ - 2 xux~ 

Ixl 2 
AX(x) = a(z ) txt2(o_a) (4.26) 

where #, v = l, 2, 3, 4, t~ = t, and the higher spin two-point functions 
may be obtained by taking tensor products of 6 u , -  2x,  x~/]x} z, 

More generally, it is possible to construct ihtertwining operators 
between the representations UU(g) and U~l'~d(g). Define 

A x = ~(R)  ~'x, (4.27) 

then it can be seen from (4.8) and (4.1) that 

~-x U ~,a (g) = ~ - 1 (~) U I, ad (g) ~ ( ~ )  ~z 
(4.28) 

= U~l,~d(o ) ff~ 

hence ~z intertwines Ut'a(g) with Ua~'~e(g ), however in this case the 
j z  operators are left with the I -  ~ dependence from (4.24). 

It has been shown by Kunze and Stein [ i0]  that an equivalent 
definition of the intertwining operators can be given by 

A~ f (x)  = a(z) ~ f ( z ~  --1 x) dz (4.29) 
X 

where f obeys the covariance condition (3.7) and 

g(x) = ~ f ( z Y t -  1 x) dz (4.30) 
X 
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has the property 

g(man x) = 3-~(a) ~ ( a )  ~ l ( m )  g(x) (4.31) 

m a n , M A N ,  and using (4.31) it can be immediately proved that ~'z 
obeys the intertwining relation (4.28). We sketch a proof that the integral 
representation (4.29) is equivalent to the representation (4.9) and (4.10) 
in the appendix. The significance of the modified conformal inversion 
for the definition of the propagators in quantum field theory is demon- 
strated very clearly in (4.29). 

V. Normalization 

It has been shown by Knapp and Stein [10] that there is a close 
relationship between the pole structure in d of the intertwining operators 
and the zeros of the Plancherel measure. Dropping for a moment the 
normalization factor a(z) of A x then it can be seen from the definition 
of the (unnormalized) intertwining operators A x = a(x)~x that 

1 
AX AX= ~(Z) I (5.1) 

in the domain of the unitary complementary series of representations. 
For example in the case of scalar particles c - i00  will have (according 
to the analytic structure of tx] 2~ as a distribution in x) a double pole at 

D D 
d = -  2- and simple poles at d = ~ - _ + k > 0  k=1 ,2 ,3  .... In(5.1)Iis  

the identity operator and A ex =AeZ(~- l ) ,  N)~= (~l, Rd). In order to 
have non-singular intertwining operators for all representations of the 
complementary series one can identify c(x) with the Plancherel measure 
of SOe(D + 1, 1) and then one obtains the normalizing condition 

a(~ x) a(x)= c(z) (5.2) 

for the intertwining operators A x, which in turn satisfy 

A~X A z = I .  (5.3) 

For even dimensional space-time D the Plancherel measure c(z) of 
SOe(D + 1, 1) is given by [14] 

c(z) = c 2 l-I (e~ - e~) (5.4) 
1Ns<r<~+I 

where 
D D 

Q, = - ~ - -  n + l , ,  n = l , 2  ....  -~- 

D (5.5) 
~+i=d---2, 
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)~ = (11 . . . . .  I~; d) is a representation of SOe(D + 1, 1) and c is a constant. 
It can be seen that the zeros of c00 are distributed symmetrically around 

the axis Re d = D ,  with a double zero at d = 2 i f a n d o n l y i f / ~ = 0 .  

The normalization factor a00 is then determined by the requirement that 
D 

a(z ) contains exactly all the zeros which lie left to the Red=-~-axis .  
This gives in the case tf = 0 

a00 = c/,=~ l (G + Q~-+ 1) 1< H <, (02 - or) (5.6) 
= , < r = ~ -  

and if in the case l~ # 0 a00 is required to be independent of the sign of If, 
then this condition changes the factor (Q~ + Of+ l) in (5.6) into 

{ f l f + ~ - 0 ~ } 2 = +  I f + d -  - l ~ + d -  (5.7) 

which again reduces with the above choice of the sign of the square root to 
D 

( ~  + ~f+ 1)= d - ~ -  in the limit 1~_ = 0. Hence the normalization factor 

a(x) for SOe(5, t) and Z = (1, 0; d) reads 

. . . .  r(d + 0 r ( d -  ~) (5.8) 
aOO=c.(d - 1 + l ) (d -2 ) ( l+  1)= c . ( l+  i)--F(-d_ i ; ~ _  2) 

and the normalized inverse propagator for scalar fields is determined to be 

a~x(x) = c r (4  - d) t 
F(2 - d) lxi TM (5.9) 

which is regular in the strip of the complementary series 0 < d < D and 
has singularities at the integer points d = 4, 5 . . . . .  The use of the normaliz- 
ing factor a(x) and its relation to the Plancherel measure (5.2) prevent 
singularities occurring at d = 2 and d = 3 in A ex (x). Choosing the constant 

8 a 
c -  (8r0 2 , determines the value of AS~X(x) to be 

t 
A~Z(x) = 4rc2lxl2 d =  1 

A~(x)  = a~(x) d = 2 (5.10) 

A ez (x) = -- A a4 (x) d = 3 

where A is the Laplace operator. Hence in contrast to the normalization 
used by Gel'fand and Shilov [15] AaZ(x) is not singular at d = 2, 3 and 
reduces to 64(x) at d = 2 as is required by group theory. It can be shown 
that A z is positive definite in the "critical strip" of the complementary 
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series (4.13b), i.e. it maps positive functions f s C~ (R D, H z) into positive 
functions. At the limit points d =  4 for l t = / = 0  and d = 3 for 11 #:0A x 
is a positive semi-definite operator, i.e. it maps non-vanishing functions 
into the zero function. The positivity condition of Euclidean quantum 
field theory for the 2-point function in the masstess case is here identical 
to the requirement that the corresponding quantum fields transform as 
representations of the complementary series of S0(5, 1), limit points are 
meant to be included. Furthermore, the length of the strip d -- 0 to d = 4 
seems to relate the renormalizability of Euclidean quantum fields ~b~(x), 
d = 2, 3, 4 to the existence of unitary representations of the conformal 
group SOe(5, t) at these points, tt has been suggeste~ in [16] that one 
can use non integer powers of fields in order to obtain summation 
formulas for Feynman graphs in perturbation theory. It can be shown 
that at the integer points d = 4, 5 . . . .  there exist in the language of Gel'fand, 
Graev, and Vilenkin [17] operator irreducible representations which 
have however two invariant subspaces, one finite-dimensional the other 
infinite-dimensional. Moreover at these integer points the usual equiv- 
alence of the representations 

z=(l,O;d) with ~ x = ( l , O ; D - d )  (5.10) 

breaks down. For all integers d, except those in the critical strip d = t, 2, 3, 
the representations Z are only partially equivalent to N)~ and one has to 
form quotient spaces in order to recover equivalent representations. The 
representations on the boundary of the complementary series have to 
be treated as limiting cases, see (4.13b). The proof of these statements for 
the Lorentz group S0~(3, 1) can be found in Ref. [17]. From this group 
theoretical point of view the ultraviolet divergences for d outside the 
complementary series are a manifestation of the appearance of inequiv- 
alent representations at the integer points. 

VI. Zeta Relations 

In this last section some remarks concerning the Zeta-function aspect 
will be given. As has been stated in the introduction, the conformal 
invariant n-point functions in Euclidean invariant QFT will possess the 
symmetry 

d*--~D - d (6.1) 

that is the partial wave amplitudes are symmetric with respect to the 
symmetry axis, which lies at 

D 
Red = -~- (6.2) 
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e.g. half of the dimension of space-time. This symmetry is a Zeta-function 
symmetry in the sense that the Riemann Zeta-function for the real line R 

1 
((s)= ~ ~ (6.3) 

n = l  

obeys the functional equation 

~(s) = O(s) ~(t - s) (6.4) 
with 

Q(s)= n s-1/2 F\__/(~)  (6.5) 

Hence the value of ~(s) is "symmetric" with respect to the line Res =½, 
e.g. again given by (6.2) with D = 1. In order to see the analogy in the 
D = 1 dimensional case more clearly one has to go over to the correspond- 
ing "local" Zeta-functions, as will be done now. Consider the local 
Zeta-function on the real line 

1 dx 
Z( f ,  s)= ~ f (x )  (6.6) 

Rx Ixr - I  Ixt 

Here R x is the multiplicative group of the real line R x = GL(1, R) = R \{0}  
and dx/Ix] is the Haar measure on R ~. It can be seen that Z(f ,  s) essentially 
coincides with the intertwining integral (4.9) and kernel (4.25) for D = 1 
and i f f  is evaluated with z at the origin [e.g. f ( z .  x )=f (x )]  and further- 
more a(z) = 1 and s = 2 - 2d is taken. Z( f ,  1 - s) is the Mellin transform 
o f f  and we may suppose that f has compact support f e  C~(R~). 

Introducing the Fourier transform of f 

~ ( f ( y ) )  =f(y) = ~ f (x)  e2~iX'Ydx (6.7) 
R x 

one may consider 
d x  

Z ( f ,  1 - s) = S f (x) I x P - -  (6.8) 
Rx Ixl 

and establish that the ratio Z(f ,  s)/Z(f, t -  s) does not depend on 
f ~  C~(R x) but only on s. Because of this independence the local Zeta- 
function may be computed for the special function 

f (x) = e -~x2 (6.9a) 

which is an eigenfunction of the Fourier transform and gives therefore 

f (x) = f(x) .  (6.9b) 
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Introducing the Gaussian (6.9) into the Zeta integral (6.6) and (6.8) allows 
one to establish the local Zeta relation for f s  C~(R x) 

Z(f ,  s )=  ~(s) Z(;?, 1 - s) (6.t0) 
where 

z(f, s) ] 
Q(s)= Z(.f, l - s )  for f ( x ) = e  -'~'2 (6.11) 

is again given by the expression (6.5). 
The relationship of the global Zeta-function ((s) to the local Zeta- 

function Z( f ,  s) is explained by introducing the more general global 
Zeta-function ((f ,  s) and writing it as an infinite product of integrals 

~(f, s )=  l-[ S fp(2p)[Xpl;dX2p (6.12) 
p Q~ 

where the product runs over all prime numbers p = 2, 3, 5... including 
p = ~ and Q~ is the multiplicative group of the p-adic numbers with the 
measure dX2p and the p-adic norm [2pip. Formula (6.12) is a generalized 
Mellin transform and for more details the reader may consult the 
Ref. [ t 8]. 

Taking for fp p = 2, 3 . . . .  generalized Gaussian's which are eigen- 
functions of the Fourier operator, then expression (6.12) reduces to the 
Riemann Zeta-function ((s) in the product representation 

~(s) = l-[ (t - p-S)-1 (6.13) 
P 

where the product is taken over all prime numbers p -- 2, 3 . . . . .  On the 
other hand the Zeta-function Z( f ,  s'), s' = 1 - s, is contained as a local 
factor of ~(f, s); namely, in the limit p ~ m  the p-adic numbers will go 
over into the real numbers 

lira Q~ = R ~ (6.14) 
p ~ o v  

hence Z( f ,  1 - s )  is just the local factor of (6.12) at p = oo. This explains 
the relationship of the local Zeta-function Z( f ,  s) to the global function 
~(s). The above discussion concerns the real line RX= GL(1, R) and its 
resulting Zeta relation (6.4) with symmetry axis Res=½. This Zeta- 
function analysis can be generalized to higher dimensional groups [18]. 

In the partial wave analysis of n-point functions of Euclidean con- 
formal invariant QFT the symmetry axis Red = 2 again occurs when the 
dimension of space-time is 4. This symmetry plays a very important role 
in the analysis of the short distance behaviour of amplitudes and in 
Wilson's operator product expansions. It is always needed in the transi- 
tion from functions of the first kind to functions of the second kind (as 
used in Regge-pole theory). As explained here, this symmetry is generated 
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by the conformal inversion ~ ,  it manifests itself in the functional equations 
of Zeta-functions, and plays a fundamental role in defining the 2-point 
function of QFT. 

Acknowledgements, The author wishes to thank G. Grensing, H, Joos, G. Mack, 
J. E. Roberts, and M. Schaaf for useful discussions. 

Appendix 

We sketch here a proof that the two expressions (4.10) and (4.29) for 
the intertwining operators of S Q ( D +  l, 1) are equivalent. A more 
detailed proof can be found in Ref. [9]. Extending the representations 
~(a)  ~(m) - V(p) of P = M A N  p ~ P to functions on P . X  in such a way 
that 

V(p.x) = V(p) (A.t) 

for all x e X, choosing a positive function h ~ C~(G) such that 

h(pg) dp = t (A.2) 
P 

for all g ~ G, and the using the covariance property (3.7) and the integral 

dg f(g) = ~ dx ~ dp f (pz)  6(p) (A.3) 
P 

identity 

G X 

yields the desired result 

AZ f (z) = 

G 

X 

=,[ 
X 

X 

X 

j" dx f (x~l-  a z) 
X 

dx ~ dph(p x) f ( x ~ -  l z) 
X P 

dx S dph(px) 6-~(p) V - l(p) f ( p x ~ - I  z) 
X P 

dx .I dph(px) 6(p) 6-~(px) V - l(px) f ( p x ~  -1 z) 
X P 

dg h(g) b - ~ (g) V -1 (g) f (g ~ - 1 z) 
O 

dgh(g~) b-~(gN) V - l(g~') f(gz) 
(A.4) 

dx S dp h(pxN) 6(p) 6 -~ (px~)  V -  l (px~)  f (pxz) 
P 

dx ~ dph(px~) 6(p) 6-+(px~ ') V - ~(px~) 6-~(p) V(p) f (xz) 
P 

dx S dph(px~)  6 -6(x~)  V - l(xJl) f (xz) 
P 

dx 6-~ (xN) V - 1 (x~)  f (x z) . 
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