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Abstract. We find all those unitary irreducible representations of the ~-sheeted 
covering group G of the conformal group SU(2,2)/Z4 which have 
positive energy p 0 >  0. They are all finite component field representations and 
are labelled by dimension d and a finite dimensional irreducible representation 
(Jl,Jz) of the Lorentz group SL(2C). They all decompose into a finite number of 
unitary irreducible representations of the Poincar6 subgroup with dilations. 

1. Summary and Introduction 

The conformal group of 4-dimensional space time is locally isomorphic to 
G=SU(2, 2); its universal covering group G is an infinite sheeted covering of G. 
Both G and G contain the quantum mechanical Poincar6 group ISL(2~E). It is of 
physical interest to have a complete list of all unitary irreducible representations 
(UIR's) of G with positive energy P°=0 .  They are at the same time unitary ray 
representations of G. In the present paper we shall give such a complete list. We 
show that all the UIR of G with positive energy are finite component field re- 
presentations in the terminology of [1]. They are labelled by a real number d, 
called the dimension, and a finite dimensional irreducible representation (Jl, J2) 
of the quantum mechanical (q.m.) Lorentz group SL(2C). Thus, 2jl, 2j2 are non- 
negative integers. There are 5 classes of representations. They differ in their 
Poincar6 content Ira, s], m = mass, s = spin resp. helicity as follows: 

(1) trivial 1-dimensional representation d=jt =J2 =0. 
(2) Jl 4= 0, j :  4= 0, d >Jl +J:  + 2 contains m > 0, s = ~1 -Jz[...Jl +J2 (integer steps) 
(3) JlJ2 = 0, d >Jl +J2 + 1 contains m > O, s =Jl +J2. 
(4)j 1 =~0,j2 +0  , d=jl + j z + 2  contains m>0,  s=jl +Jz. 
(5) JlJ2 = 0, d =Jl +Ja + 1 contains m = 0, helicity J1 -J2. 

The proof of these results proceeds in several steps. 

We start from the observation [2, 3] that positive energy pO >= 0 implies that also 
H >=0, where H =~(pO+ Ko) is the "conformal Hamiltonian", K ° a generator of 
special conformal transformations. Next we point out that any UIR of G with 
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positive energy is very much like a finite dimensional representation in that it 
possesses a lowest weight vector and is determined up to unitary equivalence by its 
lowest weight 2 = (d, - J l ,  -J2). In particular there is an algorithm for computing 
the scalar product of any two "K-finite" vectors. 

We then derive (necessary) inequalities for the dimension d from the condition 
that the unique candidate for the scalar product is indeed positive semidefinite. 
They come out as d >Ji +J2 -}- 2 i f j t j 2  =t = 0, and d >Ji +J2 + 1 ifjijz = 0, except for the 
trivial 1-dimensional representation which has d=jl =Jz =0. 

In the last step we construct a unitary irreducible representation of G for every 
weight 2 satisfying these constraints. Practically all of them have been investigated 
in more or less detail before, [4---6]. In particular, a careful study of the 
representations with d>jl +J2 + 3 has been carried out in Riihls work [5]. The 
(massless) representations with d =Jl +Jz + 1 have been investigated by Todorov 
and the author [6]. For the remaining representations there remained some open 
questions concerning either positivity or global realization. In particular, for 
practical applications one needs a clean construction as an induced representation 
on Minkowski space. This requires particular attention to the center F of G. 

Our representation spaces consist of vector valued functions (p(x) on Minkowski 
space M 4 with values in a finite dimensional irreducible representation space of the 
q.m. Lorentzgroup SL(2~2). They transform under g in G like an induced 
representation 

(T(g)cp)(x)=S(g,x)cp(g-lx) for ged, xsM'*. (1.1) 

The multiplier S is a matrix with the property that S(n, 0) = 1 (unit matrix) for special 
conformal transformations n. Thus the representations are of Type Ia in the 
terminology of [1]. The scalar product is constructed with the help of an 
intertwining operator ("2-point function"). 2-point functions have also been studied 
in [18, 23]. 

The result o f this paper will be used elsewhere in the nonperturbative analysis o f 
the axioms of quantum field theory with conformal invariance [7, 8] 1. In particular 
it is crucial in the demonstration that in such theories operator product expansions 
applied to the vacuum are convergent. 

2.A. The Lie Algebra 

The group G -  SU(2, 2) consists of all complex 4 x 4 matrices g which satisfy the two 
conditions 

d e t g = l ,  g - l f l = f l g ,  for f l = ( ~  _~) .  (2.t) 

is the unit 2 x 2 matrix. Let g the real Lie algebra of G. 

l Notations: In the present paper, the elements of Minkowski space are denoted by x, while x stands 
for a translation by x. The translation group is called X. In Ref, [83 a different notation is used, viz. x, n~,, 
N ~ in place of x, x, X 
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For a neighborhood of the identity in G we may write 9=e x, Xeg. The Lie 
algebra g consists therefore of all complex 4 x 4 matrices X satisfying the two 
conditions 

trX = 0 ,  -Xfi  =fiX*. (2.2) 

The maximal compact subgroup of G is K"=-S(U(2)x U(2)). It consists of 
matrices of the form 

k =  ( ~  k2 '0) k~e U(2), de tk lkz= 1. (2.3) 

U(2) is the group of all unitary 2 x 2 matrices. The Lie algebra { of K consists of  
matrices such that X = - X * ,  whence Xfl =fiX*. (2.4) 

Following Caftan, the Lie algebra may be split into a compact and a 
noncompact part as 

g = f + p ,  (2.5) 

whereX ~ ta ifX/~ = - / 3 X ,  and X e ~ ifXfl = + fiX. Explicifly, p consists o f matrices o f 
the form 

z* with a complex 2 x 2 matrix z. (2.6) 

We denote the complexification of g, f, p by go, fc, Pc respectively, gc consists of 
complex linear combinations of elements of g etc. 

We choose a Cartan subalgebra D ofg which consists o fall diagonal matrices in 
g. It is simultaneously a Cartan subalgebra of g and of f. We may then decompose 

9c=IL+n+ + n -  = f c + n +  c~pc+n- c~pc, (2.7) 

where n + (n-) consists of upper (lower) triangular 4 x 4 matrices in gc- In particular 

X+~n+c~p~ iff X+=(00 ; )  

with a complex 2 x 2 matrix z. (2.7') 

For such X + the adjoint action of k e K  of the form (2.3) is given by 

ad(k).X+ __- kX+ k-  I = ( :  klzk~t) 0 " (2.8) 

We see that t%c~n + transforms under an irreducible representation of K which 
restricts to the UIR (½, ½) of SU(2) x SU(2). 

We may select a basis of gc which is diagonal under the adjoint action of b, this 
gives us the commutation relations of gc in Cartan normal form. 

Let us choose a basis of Ils-i13 consisting of 

Ho__-_½(l[ 0 _~) ,  H i = ½ ( ;  3 ~), H2=½( ~ o_O). (2.9) 

o 3 is the third Pauli-matrix, o 3 = diag(+ 1, - 1). 
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The possible eigenvalues of H,. 2 are + ½ for eigenvectors in rt + mpc. We will use 
them to label the basis X j k ;  j ,  k = _+ ½ of rt + c~ta~. 

Thus 

[Ho,X ~ ] =  +__Xfk " [ H t , X ~ ]  " + + + , =jX~,  [H>X~] = kX)~ (2.10) 

for the upper sign +.  A basis for n -  c~p~ can be chosen asX~ = ( X + j _ k )  * ; this gives 
CR. (2.10) for the lower signs - .  

The compact subalgebra f transforms of course according to the adjoint 
representation (0, 1) + (1, 0) of SU(2) x SU(2). 

Therefore we may choose XOk~(n  + + n - ) n f  c with (j,k)=(0, _ 1), (+  1,0) such 
that 

[ H o , X j O ] = O ,  o _ .  o o _ o [Ha ,X~k]  - - j X j k ,  [H2 ,X jk ]  - ~ j k ,  

(j, k) = (0, + l) or (+1,0) .  (2.11) 

Explicitly the matrices X}k may be chosen as follows : Let us label the rows and 
columns ofa  2 x 2 matrix by ½, - ½- from top to bottom and from left to right. Let ejk 

the 2 x 2 matrix with 1 in the jk-position, and 0 otherwise. Thus 

e ~ =  (~ ~), e_~_~=(0  0 ~), 

e}_~= (0 0 ~), e_~}= (01 00). (2.12) 

We also introduce Pauli matrices o -k, in particular 0-3= e ~ -  e__~_ ~. 
The multiplication law of these auxiliary 2 x 2 matrices is : 

e,jek~=6jke~z, 0 - 3 e i j = t S ~ e ~ j - - ~ - ½ i e - ½ j  ; 

eij rya = ~j½ei-} --  ~ j -  ~ei - ag , (2.13) 

with 8ij the Kronecker-& Define 

ja = , X~k = (X  _ ~_ k) = ek_ J 

2k, O - -  ~ 0,2k~--- - -  ek_k 
(2.14) 

and H o, H1, H 2 as in (2.9). The m a t r i c e s  Hm,X}k given thereby form a complete basis 
for go- Their CR. may be worked out by explicit computation using multiplication 
law (2.13). One verifies in this way the CR. (2.10), (2.1t); in addition one finds 

[X-k_ t ,Xk+l]  = H  u =-H o + 2 k H  1 + 21H z 

[ x ~ , x ~ ]  = -a j .  _;g°+,,o-a,,  o _ego,;+z for ( i , j ) 4 = ( - k , - t )  

0 + + .  0 + -+ 
[XO,2k,X~'] = -'}-(~k,-j X ~ ,  [X2k, o ,Xi )]  = ~--(~k,-'~kj 

0 0 0 0 [ X o -  X ° " I X - l ,  X ° 0~ 1 , 0 ]  1, o. 1] =2H2,  =2H1 ,  . (2.15) " [X2k, o,Xo, 2 j ]  = 0 
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Equations (2.10), (2.1 1), (2.1 5) are the CR. of 9c in Cartan normal form relative to the 
compact Cartan subalgebra D of g. The generators - iHo ,  - i H  1, and - i H  2 of D 
commute of course. 

The real Lie algebra g is spanned by the generators 
+ - -  . • + - -  

p: Xik+X_j_k,  t(Xjk--X_j_k) (j=--t-½, k=  +½) 
~:-iH,,(m=O, 1,2); yo _ X  o • o o ~ , o  -1,o, z(X~,o + X -  1,o); (2.16) 

X° - X °  i(X°,l +X°o,-x). 
0 , 2  0 , - - 1 ~  

Besides the compact Cartan subgroup expiDR generated by H o, H 1, H 2, the 
group G also possesses two noncompact ones. The most noncompact Cartan 
subgroup can be exhibited as follows. We make a basis transformation, 

0 = U g U - 1  with U =  ~ . 

The group G may be identified with the set of all complex 4 x 4 matrices satisfying 
the constraints 

d e t 0 = l ,  0-@=/?O * with fl=UfiU-'=(0I[ ~). (2.18) 

The set of all diagonal matrices satisfying these constraints forms a noncompact 
Cartan subgroup of G. Furthermore we may now exhibit in a convenient form 
several important subgroups of G. To every 4-vector (x") we associate hermitean 
2 x 2 matrices x and 2 as follows (a k are Pauli matrices) 

X = xO~[ "4- s x k •  k , X = x O ~  - -  ~ x k o  "k . (2.19) 

To every A~SL(2tL-) there is associated a Lorentz transformation such that 

AxA*=x' ,  A * - 1 2 A - l = 2  ' with x'"=A(A)~x ~. (2.20) 

With this notation, we introduce subgroups of G as follows (They are all at the same 
time subgroups of G, s. below.) We omit the * henceforth. 

M: Lorentztrans formations 

A : dilations 

o , a , ° 4  ,o, 0 

N: special conf. transformations 

n = ( i ~  011 ), n~' real 

X : translations 

x=  , x" real. (2.21) 
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The generators of M, A, N,X are denoted by M "', D, K u, and PU respectively (after 
dividing by ]//-Z_ i as is costumary in physics). The reader may work out for himself 
the connection with the generators introduced before. One has in particular 

Ho =½(Po +Ko)" 

2.B. The Lie Groups 

Let us now turn to the universal covering group G of G. It is an infinite sheeted 
covering and is given by a standard construction (cp. text books, e.g. [9]) : G consists 
of equivalence classes of directed paths on G starting at the identity. Two paths are 
equivalent if they have the same end point and can be continuously deformed one 
into the other. By the group action in G a path may be transported such that it starts 
at any given point. Using this, group multiplication in G may be defined by 
juxtaposition of paths. 

The structure o f G is best understood in terms o fits Iwasawa decomposition (cp. 
text books, e.g. [10]). Let M~ UA~N,, the Iwasawa decomposition of the q.m. 
Lorentz group M. U -~ SU(2) is the maximal compact subgroup of M, A.~ consists of 
Lorentz boosts in the z-direction and Arm is the two-dimensional abelian group 
which is contained in Wigners little group [11] of a lightlike vector p pointing in z- 
direction. The Iwasawa decomposition of G is then [12] 

G"~ KApN~ with Ap= A,~A, Np = N,,N , 

A, N as in (2.21). The subgroup A~N~ is simply connected, therefore any two paths 
on A~N~ with the same end points can be continuously deformed into each other. 
Thus 

G=KA~N~, / (=universal  covering of K. 

Explicitly/(-~IR x (SU(2) x SU(2)). Here 1R is the additive group o f real numbers, x 
denotes the direct product. The center F of G is contained in K. It suffices then to 
consider K and its coverings. This gives the chain of isomorphisms 

conf. group of ) --SO(4,2)/772 ~-SU(2,2)/774---G/772 x 77. 
Minkowski space 

The conformal group of Minkowski space has trivial center. The center F of G is 
thus isomorphic to 772 x 7Z and has two generating elements 71 and ;~2, with 7~ = e. 

n l  1 1 2  - -  ~ • F = { y l  72 ;nl  =0 ,1 ,  n2=0, +1 .... }-=FIF z 

71 is the rotation by 2~z contained in SL(2•). An explicit formula for 72 will be given 
in the next section. 

Finally, d is also a covering of G, viz G~-G/F '. F'CF is given by F ' =  {(7172z) ", 
n=0 ,  +1 .... }. The image F/F' of F in G is the center of G, it consists of the 
elements/"I,  m =0. . .  3, I = 4 x 4 unit matrix, i = ]~--1. 
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3. Representations with Positive Energy 

Let T a unitary irreducible representation of G by operators 7(g) on a Hilbert space 
0;C. Suppose that it has positive energy, T(P °) >=0. There exists an element ~ of 
such that ~P°:~- I=K° .  Explicitly ~=exp27riH 2. [~  acts on compactified 
Minkowski space like a reciprocal radius transformation followed by a space 
reflection. It has been pointed out by Kastrup long ago that this is an element of the 
identity component of the conformal group.] 

P ositivity of energy T(P °) >= 0 means that (~, T(Po)71)>= 0 for arbitrary states 
in the G-invariant domain of T(P°). Consider 

(~, T(Ho)7 s) =~(~,  T(P°)T)+½(7 j, T(K°)~) 

=12-(7 j, T(n°)70 + ~ 7  t', T(P°)~P')>=O 

with 7t '= T(~-x)tp. Therefore we have the 

Lemma 1. T(P °) > 0 implies T(Ho) > 0 for the conformal Hamiltonian 
Ho = ½(PO + KO). 

This result was known before [2, 3], the proof given here is a modification, due 
to Liischer, of Segal's argument. 

Consider next the action of the center F of G. It consists of elements of the form 

, _ _  n l  n 2  F . 7 - 7 1  72 , 72 =,~expiTcHo, 72=1 

Since the UIR T is irreducible 

T(~)~'=~(y)~ 

with 

co(7) = exp 2rcind 

for all kg in ~ (3.t) 

for 7=Y22"=exp2ninHo . 

d is some real number which is determined up to an integer. 

It follows then from the spectral theorem for the selfadjoint generator T(Ho) 
that all its spectral values are of the form d + m, m some integer. Since T(Ho)> 0 by 
Lemma 1, the spectral values d+m>O. We may therefore fix the integer part of d 
such that the lowest spectral value is d. This gives 

Lemma 2. In a UIR T of G with positive energy, the generator T(Ho) has a discrete 
spectrum. It contains a lowest eigenvalue d, and all the other eigenvalues are of the 
form d + m, m positive integer. 

4. Lowest Weights 

By a vector space V we shall mean a linear space with a finite or countable basis such 
that the elements of V can all be written as finite linear sums of basis vectors. 

Consider an irreducible representation of the Lie algebra gc (resp. fc) by linear 
operators T(X) on a complex, possibly oe-dimensional vector space V.,Irreducibility 
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means that there exists no invariant subspace of V. We say that the representation T 
possesses a lowest weight vector f~s V with weight 2 if 

T(X)f2=0 for a l l X e n -  (resp.Xen-c~fc), 

and 

T(H)f2=2(H)~ for all HeDc. (4.1) 

The weight 2 is a linear form on [L, viz 2~t)*. 2 is specified by the three numbers 

2i=2(Hi). We write 2=(20; 21; 22). 

A classic result says that every finite dimensional representation of gc resp. fc has a 
lowest weight. In particular, finite dimensional representations of ~c have a lowest 
weight of the form 

2=(2o; - J l ;  --J2) with 2jl  , 2J2 nonnegative integers. (4.2) 

Infinite dimensional representations of gc need not possess a lowest weight. We 
will however prove below that representations T of gc which are obtained from a 
UIR of G with positive energy possess a lowest weight. 

Consider a unitary irreducible representation T of G on a Hilbertspace ~f. It 
restricts to a (reducible) representation o f / £ . / £  is a direct product of an abelian 
factor isomorphic to IR which is generated by Ho, and a compact Lie group K 1. 

/£ =IR x K1, K 1 ~- SU(2) x SU(2), IR= {expic~Ho, ~ real}. (4.3) 

Since T(Ho) has a discrete spectrum, 9 f  decomposes into a Hilbert sum 

= ® V u (Hilbert sum), (4.4) 

where V u is a Hilbert space that decomposes into copies of one and the same UIR of 
/£ with lowest weight p. By Lemma 2, all the weights # appearing in (4.4) are of the 
form 

/~- (d + N, - J1, - J2), N,  2J1, 2J 2 nonnegative integers. (4.5) 

Let us introduce the algebraic sum V of the subspaces V" 

V= ~ V" (algebraic sum) 
~t 

it consists of finite linear combinations of elements of the V u. 

It is a standard result in the general representation theory of semi-simple Lie 
groups with a finite center that all the V u are finite dimensional when we decompose 
with respect to the maximal compact subgroup [13]. Consequently, V is a vector 
space. Furthermore V is a common dense domain (of essential selfadjointness) for 
all the generators X of g. Thus there is associated with the UIR T of the group an 
irreducible representation of its Lie algebra by linear operators T(X) on the vector 
space V. Conversely, any representation of g by skew-hermitean operators on V can 
be integrated to a UIR of the group, and so infinitesimal equivalence implies unitary 
equivalence ([13], Theorems 4.5 and 5.3). 
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We will take it for granted that all this remains true for the representations of 
our group G which we wish to study here, even though G does not have finite center 
F, and the cover ing/(  of the maximal compact subgroup ~ / F  of CJ/F is no longer 
compact 2. The vector space V will be called the "space of K-finite vectors". We say 
that the U IR T of G possesses a lowest weight if the associated representation of its 
complexified Lie algebra gc on V possesses a lowest weight. 

Let d the lowest eigenvalue of T(Ho). Then there must occur among the weights 
# in (4.5) at least one weight 2 of the form 

2 = (d; - j  1, -J2)  (4.6) 

with some integers 2jl, 2j2. There exists then in V ~ a common eigenvector f2 of  T(H,), 
i=0,  1, 2, to eigenvalues d, - J l ,  --J2, viz. 

T(Ho)~2 = d~2, T(Hk)f2 = - jkf2 (k = 1, 2). (4.7) 

We claim that this is a lowest weight vector. 
We have to verify that T(X)F2=0 for all X e n - .  Now n -  is spanned by 

t =  +½), x ° 1,o, Xo °, - , .  
Consider then the vector T(X~)f2. We have 

r(Ho) r(x~)f2 = T([HoX h ])f2 + T(X ~) T(Ho)f2 

-- ( d -  1) T(X~)(2 

by C.R. (2.10) Since d is the lowest eigenvalue of T(Ho) by hypothesis, it follows that 
T(X ;~ )~ =0. 

Consider next T(X ° _ ,, o)f2. We find from the C.R. (2.10) as above that this is an 
eigenvector of T(H1) to eigenvalue Jl 1. Since X ° 1,o • fc, the vector T(X ° 1, o) (2 
will lie in V ~'. But since V ;" consists of  copies of one and the same UIR of K with 
lowest weight ~, the only possible eigenvalues of T(H1) are - J l ,  - J l  + 1 .. . .  , J r  
Therefore - J l  - 1 is not a possible eigenvalue, hence T(X ° _ 1, o) (2 = 0. One shows in 
the same way that T(X °, _ 1)(2 =0. 

We have proven part of the following 

Proposition, Let T a unitary irreducible representation of G with positive energy. 
Then T possesses a unique lowest weight. Any two such representations with the same 
lowest weight are unitarily equivalent. 

Proof Let T l, T 2 two representations of  the Lie algebra g¢ on vector spaces V t, V 2. 
We call them (linearly) equivalent if there exists a bijective map between V 1 and V z 
which commutes with the action of go. 

We know already that any UIR T of  G with positive energy possesses a lowest 
weight. Consider the associated representation of the complex Lie algebra g~ on the 
vector space V. A standard theorem ([14J, Theorem 4.4.5) asserts the following: 

The lowest weight of  an irreducible representation ofg~ on Vis unique i fi t  exists. 
Let f2 the lowest weight vector and {Xi}~= 1_6 a basis for rt +. Then V is spanned by 
vectors of the form T(Xi)"~... T(X6)"~f2, n i nonnegative integers. Finally, any two 
irreducible representations of 9~ with the same lowest weight are linearly equivalent. 

2 A proof is given by M. Liischer in 1-22] 
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[It follows from this also that the eigenspace V ~" of T(Ho) to the lowest 
eigenvalue d carries an irreducible representation of f.] 

Uniqueness of the lowest weight is thereby proven. As for unitary equivalence it 
suffices to show that a 9-invariant scalar product on V is unique if it exists, cp. the 
discussion after (4.5). By a g-invariant scalar product we mean a scalar product such 
that T(X) is skew-hermitean for X in the real Lie algebra g of G. 

Skew hermiticity of operators T(X) for XE g implies that 

T(Z)*=T(fiZ*f1-1) for Z e g  C (4..8) 

since every element Z of gc is of the form Z=X+iY;  X, Y in g. 
Let {Xi} the basis of u + C gc introduced before, and consider vectors in V of the 

form 

~,~ = T(X a)"'... T(X6)n~O. (4.9) 

They span V. It may happen that T¢,~ =0. The scalar product of two such vectors 
must then be of the form 

(kP{n, }, ~g{,})=(g?, T(fiX'~fi-1)"'~...T(~X*I3-1)"IT(X1)nl...T(X6)"6(2). (4.10) 

I fX i E n + then/~X*/~- 1 ~ u -  ; hence T(t3X* fi- 1)(2 = 0. We may therefore use the C.R. 
of the Lie algebra (Section 2) and hermiticity condition (3.8) to rewrite the left hand 
side of (3.10) as a sum of terms of the form 

(f2, T(Ho) m° T(H 1)m~ T(H: )"~fJ) = d'°( -j~ )"~ ( - j :  )"~(~2, ~). 

To this end one needs only switch all the operators T(~X*fi -1) to the right and 
operators T(X~) to the left until they anihilate f2. 

In conclusion, there exists an algorithm for computing the scalar product of 
arbitrary vectors in V E = finite linear span of vectors of the form (4.9)] if it exists. 
Therefore the scalar product is unique up to normalization and Proposition 3 is 
proven. Moreover, a scalar product can only exist if the bilinear form computed by 
the above algorithm gives a positive semidefinite norm squared TI TT[ 2 = (7t, 7/) to all 
the vectors ~u of the form (4.10). 

5. Necessary Conditions for Unitarity 

Having established uniqueness, we now turn to the question of existence: What are 
the conditions on )~ = (d; - J l ,  --J2) that 2 is lowest weight of some UIR of G. We 
know already that 

2 = ( d ; - j l , - J 2  ) with 2jl,2j2 nonnegativeintegers, 

d>O. (5.1) 

The last condition comes from the requirement (Lemma 1) that T(Ho)>O , which 
implies that the lowest eigenvalue d of T(Ho) is nonnegative. 

We shall derive sharper inequalities on d. They come from the requirement 
stated at the end of the last section : The bilinear form computed by the algorithm of 
Section 4 must assign positive semidefinite norm to vectors T of the form (4.9). 
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Let us introduce the vectors (in V z) defined by 

/2 . . . .  = {2jl ( j l - m l ) I ( j 2 - m 2 ) !  ~ T ~ y o  V,+m~'r~vo i)~+~f2 (5.2) 
!(ji+ml)!2je!(j2+mz)!j ~v- i,0, ~'.~ o, • 

One knows from the theory of angular momentum that they are normalized if 
(/2,/2) = 1 as we assume. Moreover the generators of R act on them as follows: 

T(Ho)/2m~,~ = d/2mlm2 ; T(Hk)/2m,.,~ = mgf2m~m~(k = 17 2) 

T( X °  1, O ) / 2 m l m 2  = [ - ( J l  T / ' g l l )  ( J l  ~--- m l  -[- 1)] }f2.,~ ± 1,m2 

T(Xo °, ± i)/2,,~m~ = [(J~ T m2) (J2 -- mE + 1)-[~2,~, ,~ ± l" (5.3) 

We shall distinguish 3 types of lowest weights 2=(d;  -J l ,  -J2). 

1st Case: j~ =~0, Jz 4:0. Consider the vectors 

ti[/Jl --½, J2 - -½  2 • 1 • 1 , • 1 • 1 . = m i ) C ( J 2 ,  g, J2 - ~ ,  M 2  - ra2, COi, 2 , j1 -  7, Mi  - m  i, m 2) ~M1Mz 
mi~t~ 2 

" T(X+,.,m~)/2M, -,.,, M~ -,~" 

Herein C are vector coupling coefficients in the notation of Rose [15]. We remark 
that this vector transforms according to the representation o f / (  with the lowest 
weight (d+ 1 ; - J l  +1, --J2 +21-) • 

Since T(X~,~,.~)/2 =0, the norm of this vector is 

(wJ,-~,J~-~ q ~ J , - } , J ~ - ~ - -  ~ ~ (CG-coefficients) 
- - M 1 M 2  ~ - - M I M 2  ] -  

mira2 m'l m'2 

"(/2M,-,<,M~-m~,[T(X21m), T(Xm,m~)] U,-,.,.M~-ma)' 

We insert commutation relations (2.15) and evaluate the resulting matrix elements 
with (5.3). With the vector coupling coefficients (B. 1) of Appendix B we obtain the 
final result 

I//J1 Y,J2 ~- '~--A-- t  - -7  - - 9  ( l i i J l - ~ , j z -  ½ " -- ~ . - ~ . . 
\ M 1 M 2  ~ - - M I M  2 ] - - ~  J 1  ,12 ~ "  

This must not be negative; we obtain therefore the condition 

d>=jl +j2+2 if j l#O,  j2~-O. (5.4a) 

2nd Case:j1 +0, J2 = 0. We consider the vectors 

~yJl--~,}= ~ C " 1 . ! .  M _ m)T(X+M2)/2MI_m,o MIM 2 (JD 2 , J l  2 ,  1 IT/, 
m 

The norm squared of these vectors is computed in the same way as above to be 

- - M 1 M i  ~ ~ M i M i  ! 

This must not be negative; we obtain therefore the condition 

d>__ji q- 1 if Jl 4=0,J2 =0" (5.4b) 
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3rd Case: Jl =0,  •#0 .  This case is just like the 2nd case, one finds the condition 

d>j2 + l if j l  =O,j2 4=O. (5.4c) 

4th Case:j l  =J2 =0. We consider the vector 

T + T + Z 
m l m 2  

We remark that it transforms according to the representation o f / (  with lowest 
weight (d + 2; 0, 0). The norm squared is computed in the same way as before. One 
finds 

(g-', ~)= 8d(d- 1) 

This must not be negative, we obtain therefore the condition 

d = 0  or d > l  if j l= j2=O (5.4d) 

By uniqueness, the special case d = j l = j z = O  corresponds to the trivial 1- 
dimensional representation which is indeed unitary. 

Conditions (4.4) are necessary for the existence of a UIR of G with lowest weight 
2= (d ;  - J l ,  -J2). We shall see below that they are also sufficient. 

6. Induced Representations on Minkowski Space 

Let G the universal covering group of  G ~- SU(2, 2). As we know, the center F of G is 
F = F 1 F  2 with F 1 - ~ 2 ,  Fz~2g. 

It is well known that Minkowski space M 4 -- {yU} can be compactified in such a 
way that it becomes a homogeneous space for G, and therefore also for G. The 

to 

M/F 1 Lorentz transformations 

yU ~ AU, y~, A e SOe(3 , 1) 

A dilatations 

YU ~IaIY ~, lal > 0  

N special conformal transformations 
yU__+ ¢y(y)- l(yU _ nUy2), 

with 
n u real, ~r(y) = 1 - 2ny + n2y 2 

X translations 

y"~yU + xU, x" real (6.1) 

The need for considering a compactified Minkowski space M~ arises from the fact 
that special conformal transformations can take points to infinity. 

conformal group of (compactified) Minkowski space is isomorphic 
SOe(4, 2)/2~ 2 -~ G/2g 4 ~-G/F. It is compounded fi'om the following subgroups 
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The little group in CJ/F of the point x =0  consists of Lorentz transformations, 
dilations and special conformal transformations. Thus M 4 ~-(Cj/F2F1)/(MAN/F1), 
or  

4 ~ d/V2 M A N .  (6.2) M e - 

This is meaningful since M A N  is simply connected and therefore contained both in 
G and in G. Here and in the following we denote by M the quantum mechanical 
Lorentzgroup, it contains the factor F 1 of the center of G. On the other hand F 2 ~_2~ 
has a generating element 72 as we know (Secs. 2B, 3) 

/ ' 2  = {•2 N, N = 0, _+ 1,... }, 72 = N exp i~H0 ; N = exp2rciH2. (6.3) 

We leave it to the reader to verify that the parametrization (2.21) of G ~- CJ/F' induces 
the transformation law (6.1) on cosets. 

Let us now turn to induced representations on M~. To every 2 = (d; - - J l ,  --J2) we 
associate a finitedimensional representation of F 2 M A N  by 

Da(Tman)=la[Cei~NcDJ2J~(m) with c = d - 2 ,  for 7=7~. (6.4) 

Here D j2a is the familiar spinor representation (Jz,J0 of M~-SL(2¢), viz. 
Dml(rn) = OJ~J~(A) for m of the form (2.21). It acts on a (2j1 + 1) (2j2 + 1)-dimensional 
vector space E z. We equip E ~ with the natural scalar product < ,  > which is such 
that 

Dm~(m*)=DJ~l(m)* for m ~ m  as in (2.21) (6.4') 

Consider the space gz of all infinitely differentiable functions q~ on G with values 
in E x which have the covariance property 

q~(gTma n) = lat2D)(Tma n) - l(p(g) (6.5) 

We make gx into a representation space for (~ by imposing the transformation law 

(r(g)q)) (g')= ~o(g- 'g') (6.6) 

Since translations act transitively on the dense subspace M'~C M 4 ~-G/F2MAN, 
almost every element 9 of G may be decomposed uniquely in the form 

9 = x T m a n ,  xeX,  7 m a n s F z M A N  (6.7) 

Therefore functions q~ in ga are completely determined by their values on X. 
Let x' and 7man determined by x, 9 through the unique decomposition 

g - i x =  x'Tman, 9 e G ;  x , x ' e X ;  7maneF2MAN. (6.8) 

The transformation law (6.6) becomes then by virtue of the covariance property 
(6.5) 

(T(9)cp) (x) = laiZD~(Tman)- lq~(x') (6.9) 

Note: translations x~X are in one to one correspondence with cosets x = xFzMAN.  
Both may be parametrized by Minkowskian coordinates x", # = 0... 3. Functions q) 
may thus be considered as functions on Minkowski space {x u} with values in the 
finite dimensional irreducible representation space E z of the q.m. Lorentz group M. 
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We call them "finite component wave functions (or fields)". Equation (6.9) is the 
typical transformation law for an induced representation on Minkowski space, 
induced by a finite dimensional nonunitary representation of the (nonminimal 
parabolic) subgroup o f stability F 2 MAN. Equation (6.8) says that x '~ is determined 
by x ~ by the usual action on cosets, x ' - - g - t x ,  which is explicitly given by (6.1). 

A. Intertwining Operator 

As a prerequisite for writing down an invariant scalar product on g~ we shall first 
define a map (or operator) 

: 

where ] x  is a space of generalized functions {b on d with values in E x having 
covariance property 

¢ ( g v m a n ) = J a l 2 D ~ ( y m a n ) * ¢ ( g )  for geG, vmaneFzMAN (6.10) 

It is made into a representation space for G by imposing the transformation taw 

(T (g )~ )  (g') = ~ ( g -  ~ g') (6.11) 

The map A~+ will be required to commute with the action of the group, viz. 

A~+T(g)q~=T(g)A~cp for (p in ~ (6.12) 

Because o f this property, A z+ is called an intertwining operator. The construction o f 
Aa~ parallels to a large extent the construction of the intertwining operator for the 
Euclidean conformal group as described by Koller E17, see also 18]. 

Consider the special element N of G introduced in Section 2. It has the following 
properties : 

~ 2 = e ;  ~ N ~ - I = X ,  N m N - a - r ~ e M  for m e M ,  

. ~ a ~ - l = a  -1 for a~A (6.13) 

Working with the parametrization (2.21) of M one has r~ =(m*)-1, therefore 

D~2J~(r~), = Dj2jl(m )- 1 (6.14) 

We define the map A~+ by a generalized Kunze Stein formula 1-19] 

• (g) = A ~_ co(g) = n 4 (2) ~ dxqo(g,.~x) (6.15) 
X 

n+ is a normalization constant. Integration is over the subgroup of translations, 
with Haar measure dx = dx°.., dx 3. One may ask under what conditions the integral 
makes sense (it may need regularization). This is a difficult question which we 
postpone. For the moment we proceed formally. 

Let us verify that ~b has covariance property (6.10). 

~b(gTman)=n+ .[ dx'(p(gTman~x') = n+ ~dx'cp(g ~},ff~a- lxx ') 
X 
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with x = ~ n ~ - l e X .  We introduce new variables of integration 

x " = r S a -  l x x ' a ~  -1 ; d x " = t a l - 4 d x  ' 

This gives 

¢ ' (gTma n) = n+ lal 4 .[ d x " q o ( g ~ x " 7 ~  a -  1) 

= n+ lal 4 la l -  2D'~(Tr'71a- 1)- 1 ~ dx"rp(g~x") 

= n+ [al2D~(7m a n)*g~(g) q.e.d. 

In the second line we used covariance property (6.5) and in the third line we used 
(6.14) and the definition (6.4) of D ~. 

Let us next express the map AX+ in terms of the restriction of functions go toX. We 
have 

~(x) = . +  (,~) j' ax'e(x.~x') 
X 

Using the decomposition (6.7) we may define x", 7man as functions of  x' by 

~ x ' = x " s  -1 , s = y m a n ~ F a M A N  (6.16) 

The jacobian of  the transformation x'--*x" will be found below with the result (cp. 
(6.20b)) 

dx' = lal4dx " 

Thus 

,#(x) = n+ (,t) ~ dx"q~(xx"(?'man)- 1) 
X 

=n+(,t)~dx'lal2DX(Tman)g0(xx") (6.17) 

Let us reinterpret (6.16) as an equation which determines x', s = 7ma n in terms o f x", 
viz 

tx" =x 'Tman (6.18a) 

Define the intertwining kernel A~(x) by 

A x+ (x,, - t )=  lal2D~(yman) (6.18b) 

7man depending on x" through the unique decomposition (6.18a). Writing 
multiplication in X additively, viz. x - y  in place of  xy-1,  Equation (6.17) becomes 

¢~(x) = n + (,,t,) j" dyA a+ (x  - y),;o(y) (6.19) 
X 

Since X may be parametrized by Minkowskian coordinates {x~}, the intertwining 
kernel zl~+(x) may be considered as a matrix-valued function on Minkowski space 
M 4 ' 

Our next object will be to derive an explicit expression for the kernel (6.18b). 
Write ?, = 72, ~2 the generating element o f F 2 To this end we must evaluate ;~m a n. N 

introduced before, viz. 72 = N exp itcH o. 
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Let us first consider Equation (6.18a) modulo 1", i.e. as an equation between 
elements in G ~-G/F'. We write x in place of  x'. Using parametrization (2.12) we 
have 

i N ( ~ A - Q I x ' A ~  i~ - l x 'A )  _ x'Tman = ~ie_l~lh e_1~ /whe re  ~ t - ( A * ) -  l,~.=lal ~ 

and 

The solution of the equation ~ -  ix = x'?man (mod U) is found by comparing both 
expressions. From comparison of the second column we have 

iuQ-1A=ix  ; ll=iN~lO-lx'.71 

We take the determinand of the first equation and use detA = 1. This gives ~o- 2 
= (_)N-1 detx >0 .  But 2 x = d e t x = x U x , - x  2. Inserting in the second equation 
gives the final result 

o 2 = l a l = l x Z l - ~ .  A - I _ . N - ~  2 - ~  . , -~  Ix l x,  ( _ ) N = _ s g n x  2 (6.20a) 

x ' = - x  -1 viz. x ' * ' = - x . / x  2, dx'=lx21-4dx=lal4dx (6.20b) 

Similarly one finds from the first column 

fi = _ 2[x 2] - 1 (6.20c) 

It remains to determine 7 =Y~. This is done by applying both sides of  Equation 
(6.18a) to the identity coset in M ~ - G / M A N .  The necessary computations will be 
done in Appendix C. The result is 

N = N(x)  = O(x 2) signx ° - signx (6.21a) 

Inserting this into formula (6.18b) for the kernel we obtain 

A~+( - x) = n + (2)lx2l- 2 -cei,tclV(X)DJ2Jl(il -Nlx21½ x -  1) 

We extend the definition of  the representation D j~j~ of SL(2C) to GL(2C) by 

Djd~(QA) = ~2j2 + 2J~oJ2d~(A ) 

Using 2 - -xex  -1 we obtain the final result (d - -2+c)  

A ~+ (x) = n + (2) ( - x 2 + iex o) - d-j~ - hDj~j~ (iYc) (6.22) 

The matrix elements of  lY~J~(i2) are monomials in the coordinates x". 

B. Scalar Product 

For functions ~0 in g;~ we introduce a sesquilinear form by 

(,;o. ~ )=  j'dx~dx~(,;o~(xO. ~+(x~- x~)~dx~)) (6.23) 
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Herein ( , )  is the scalar product on the vector spa~  E x introduced with (6.4'). We 
note that the sesquilinear form (6.23) is formally G-invariant: 

Let ~2 =A~ (P2. Because of the intertwining property (6.12) of A z + 

(T(g)q,~, :r(g)~o ~)= .f ~x~ ((T(9)~o d (xd, (T(9)~2)(x0) 
Let g - i x  I =xyman,  whence dx 1 =]a]-4dx. Then this is 

= S dx(D)'(Tma n) - 1~°1(x), D~(Tman)*~z(x)) 

= S dx@~l(x), ~b2(x)) = ((91, (02) q.e.d 

It remains to investigate the question under what conditions on 2 the candidate 
(6.23) for a scalar product is well-defined and positive semi-definite (for suitable 
choice of n+()d). 

Ideally, the scalar product (6.23) should be well defined and positive on all of the 
representation space ~ .  We shall be less ambitious for the start. Functions (p in gz 
are infinitely differentiable functions on G. It is therefore clear that their restriction 
q~(x) toX defines functions on Minkowski space {x ~} that are oo differentiable in the 
coordinates x ~. We shall therefore also write q~(x), A(x), dx-=d4x in place of q~(x), 
A(x), dx etc. That is not all, however. In addition (p(x) must admit certain asymptotic 
expansions when some or all xU~ oo. We will not write them down explicitly, but we 
note their existence. They come from the requirement that q~(g) are oo differentiable 
also at those points 9 which map x ~ = 0 into points of M 4 at infinity of Minkowski 
space M 4. 

Consider now the subspace 5~x of vector-valued Schwartz test-functions on X 
(or M 4) with values in E x. They can be extended by covariance equation (6.5) to oc 
differentiable functions on G which vanish with all their derivatives at points 9 in 
that map x u = 0 into points at infinity. Thus ~ .  £ g~ is a proper su~pace of eg~ which 
is not G-invariant. Indeed it is clear that gx is the smallest G-invariant space 
containing J~. cja is however invariant under the Poincar6 subgroup with dilations, 
and it is also invariant under the Lie algebra g of G which acts by differentiation 
with respect to 9 on functions qo(g) on G. 

Elements of ~ .  possess a Fourier transform (F.T.) 

(o(p)= [ dxeip~cp(x) with px=-p~x u (6.24) 

We see from (6.22) that the intertwining kernel is a distrfbution in 5~ and possesses 
therefore also a Fourier transform. We are now going to determine it. 

Let/~ = (E, 0) and U ~ S U(2) the q.m. rotation group U C M, it leaves/3 invariant. 
The generators of U in the (J2,Jl) representation of M will be denoted by 
.] = ( j 1 j 2 j 3 ) .  We may decompose the vector space E z into irreducible subspaces 
with respect to U 

J~ + Jz 
E ~ = ~ flSE ;~ so that JZflSEZ = s(s + 1)/7~E z (6.25) 

s=lj~ -J21 

1"I ~ are projection operators that project on the irreducible subspace of E ~ which 
transforms according to the 2s + 1-dimensional representation of U. 

/~  = / ~ , ,  ( I~ I t=6~ f I  ~ (6.26) 
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For p in V÷, the open forward light cone, define IIS(p) by 

//S(A(m)/3) = Dj2~l(m- 1),/pD~2Jl(m- 1) for m ~ M, i0 = (E, 0). (6.27) 

For reasons of  dilational and Lorentz-invariance, the Fourier transform of the 
intertwining kernel (6.22) will be of  the form [2 = (d, - J l  -J2)  as usual] : 

Jt + J2 
2~+(p) . x  ~. = Sdxe A+(x)=F(d-j  1 - j 2 - 1 )  -~ Z cq(2)//~(P)(P2)+ 2+a 

s= lj l  + j2[ 

where 

(f)+2+a=o(p2)O(Po)(p2) -z+d for d>j l+ j2+l  (6.28) 

(p2)h + j2HS(p ) are polynomials in Pu; z] ~+ (p) is therefore an integrable function for the 
indicated range of d. We will fix the normalization factor n+ (2) in the intertwining 
kernel by imposing the 

normalization convention ~j~ +~2 = 1 (6.29a) 

The c-number coefficients cq(2) will be determined in Appendix D, the result is 

a,(2) = (d - j~  - j 2  - -  2)... (d - s - 1) 
(d+Jl  + j 2 - 2 ) - . - ( d + s -  1) for s=jl +J2,Ja + J 2 - 1  . . . . .  ~1 --J2[ 

2 = (d ; - J l ,  -J2)  (6.29b) 

The sesquilinear form (6.23) becomes now 

Jl ÷ J2 

(q)l, q)2) = F(d-j~ -J2 - 1) -1 Z C~s(2) ~ d4p(p2)-2 +a 
s = t j ~ - J 2 I  V+ 

"(~1 (P), 11~(P)(°e(P)) (6.30) 

The boosted projection operators HS(p) are positive and the integral exists for 
d>Jl +Je + 1. Equation (6.30) will therefore define a positive semi-definite scalar 
product for d in this range if all e~(2)>0. From the explicit expression (6.29) we 
see that this will be so in the following cases 

(~o,q~)>0 for all q~e6e z if 

either 

j l  =~=0, j 2 + 0 ,  d>j l+j2+2 

o r  

j l = 0  and/or j 2 = 0 ,  d>j l+ j2+l  

(6.31) 

In the second case there is only one term in the sum over s in (6.30). 
It remains to investigate the limiting cases j2 =0, d=jl + 1 and j l  =0, d=j2 + 1. 
Suppose J2 =0. Then/~1  = 1 and 

(p2)~l//ji(p)= oil ~ Jl p 2 ~ 0  (6.32) D (p)~Hhel(p) as 

through V÷. 
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Here H~o~ is the covariantly normalized projection operator on the unique 
eigenstate (1-dim. subspace) in E )' of the helicity JP/Po to eigenvalue Jl. It is 
normalized according to 

J J - -  J Hh~,(P)Uh~,(p) -- 2p0/-/h¢,(p) 

To verify the first of  Equations (6.32) take m of the form (2.21) with A = (i~/]/~)~ 
and use the fundamental formula (2.20) of spinor calculus, viz. A*-I~)A -1 
= (A(A)p)'. The second assertion o f (6.32) is well known from the theory of  massless 
particles [11]. 

The second case j l  = 0  is analogous. To take the limit in (6.25) we use a standard 
formula for the b-function [16] and insert (6.32). The result is 

Z __ Jl --J2 2 A+(p)-O(po)Hh~ , (p)(~(p ) for 2 = ( d , - j l , - j 2  ) 

d = j l + j 2 + l  ; j l = 0  or j2=0 .  (6.33a) 

The scalar product becomes then 

((Pa, cP2)= ~ d4pb(P 2) ((Pl(P) ' / - /J~elJ2(P)(P2 ( p ) )  ~ 0  
po>O 

for d=Jl +J2 q- 1, Jl = 0  or J 2 = 0 .  (6.33b) 

It is positive semidefinite since also H~(p)  is a positive operator. 

C, Poincard--Content and Irreducibility 

Using the positive semidefinite scalar product (q~l,qo2) introduced in the last 
subsection we can complete 5~z to a Hilbertspace Jf~ after dividing out zero norm 
vectors. The elements of ~/gx will be equivalence classes of functions, the equivalence 
relation will be denoted by - and wilt be explicitly given below. 

To exhibit the Poincar6 content of ~ let us define to every p in the forward 

tightcone V+ a boost L(p)e SL(2(E) which takes p = (1//~, 0) to p. Explicitly we may 
take 

L(p)=(p/V-~)~ since then L(p)~_L(p)*=.p (6.34) 

by the fundamental formula of spinor calculus (2.20). 
To every cpeS~>, we associate a Wigner wave function T(p) with values in E ~ 

defined for pe V+ by 

T(p) = DJ2JI(L(p))- 1 (o(p) (6.35) 

Let us introduce a basis e~m in E a which consists of orthonormal simultaneous 
eigenvectors of j z  and j3 ( j  =generators of  the rotation group) to eigenvalues 
s(s + 1) and m respectively. We may then expand 

Jl ÷J2 
T~ )  = ~ T~(p)esm (6.35') 

s =  l j l  - -  J2[  
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with complex functions tffJsm, They transform under homogeneous 
transformations in the Wigner way, 

(r(m) ~P)~'(p) = ~, D~,,,,,, (L- X(p)AL(A- ~p))gtsm" (A - ~p) 
m" 

A",-A(m)~=~tra'Aa~A * ; pEV+. 

Lorentz- 

(6.36) 

D ~ is the (2s + 1)-dimensional representation of the q.m. rotation group SU(2). We 
leave it to the reader as an exercise to rederive (6.36) from the transformation law 
(6.9) with g -  ~ = m e M. The label s has the physical significance of Lorentz-invariant 
spin. 

We can reexpress the scalar product (6.30) in terms of the Wigner wave functions 
7~(p). Since/Ite~m = 6~e~,, we obtain for the norm 

Jl + J2 

(~0, q~)=I'(d-j~ -J2 - 1) -1 ~ ~s()~) ~ d4p(P 2)-2+a 
s=lJ~ -J~t v+ 

• Z 
m 

(6.37) 

Consider first the case when d >Jl +J2 + 2 or JlJ2 = 0, d >Jl +J2 + 1. Then all e~(2) 
> 0. Thus (cp, ~o)= 0 if and only if all 7Js"(p)= 0 for pc V+. Translated back to wave 
functions q~, this means that the Hilbert space ~fz consists of equivalence classes of 
functions with equivalence relation ~, as follows: 

~/f~:cpl~0 iff ~31(p)=0 for all p~V+ 

provided )~=(d; - J l ,  -J2) with d>jl +J2 +2 or jlj2 =0, d>jl +J2 + 1. 

IfjlJ2 4=0 and d=jl +J2 + 2  then eil +J~ = 1 but ~s=0 for s <Jl +J2- 
Thus (~o, q))=0 iff/1~ + ~ ( p ) = 0 .  Translated back this means that ;¢(~ consists of 
equivalence classes of functions as follows 

Yf~:9~0 iff llJ'+J~(p)(o(p)=O for all p~V+ 

in the case jl +0 ,  j 2 ~ 0 ,  d=j l+j2+l .  

Lastly consider the case d =Jl +J2 + 1,j~J2 = 0. We see from (6.33) that .~(~ consists of 
equivalence classes of functions 

~vf~:cp~0 iff Fl~-~J~(p)(o(p)=O for p2=0 ,p0>0  

in the case j lJ2=0,  d=jl + j z + l  

From Equation (6.37) resp. (6.33) we can also read off the Poincar6 content of the 
representation space ~x. The result is as indicated in Section 1. 

Let us next turn to the question of irreducibility. Ifeitherj~j2 = 0 or d =Jl +Jz + 2 
irreducibility of J/gx is obvious since the representation restricts to an irreducible 
representation of the Poincar6 group with dilations. It remains to investigate the 
case d >.it +J2 + 2, JlJ2 4: O. 
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We start from the infinitesimal form of  the transformation law (6.9). We denote 
the conformal generators obtained from T(g) by K", P", M "v, D as usual ; while the 
generators in the finite dimensional representation D j2jl of the Lorentzgroup will be 
denoted by Z"~--they act in the vector space E ~. 

The infinitesimal form of the transformation law (6.9) reads then as follows 

( ~  = at~x~) 
P~'qo(x) = iO~'~o(x) ; M"~q)(x) = i(x~'(? v - x~'O ~ - iZ ' )~o(x)  

DO(x) = / ( 4 -  d + x~9~)q~(x) (6.37') 

KF'rp(x) = i([8 -- 2d]x" + 2xUx~Ov - x2O 'v" - -  2ix~ZU')(o(x). 

In view of the general result of [1] it suffices to check validity at x" = 0 (identity in 
X), everything else follows then from covariance. We have from (6.9) and (6.4) 

(r(m)q~)(O)=D~lJ2(m)~o(O) for m e M  

(T(a)q~)(O)=tala-aqg(O) for a~A;  

(r(n)q~)(0)=e(0) for hEN.  (6.38) 

for Lorentztransformations m, dilatations a and special conformal transformations 
n, respectively. The infinitesimal form of this is (6.37') with xU=0. 

Let us introduce matrices (da, d2, j 3 ) = d ,  (N  1, N 2, N a ) = N  

j i  = ½~ukz~k, N k = Z °k (sum over repeated indices, e 123 = 1) 

We wish to derive from (6.37') the action of infinitesimal special conformal 
transformations/~u on Wigner wave functions ~(p). It is defined in terms of  the 
action (6.37) of K ~ by 

K~'DJ2JI(L(p)) T(p)  = D j2~(L(p))~2 ~ ~(p)  

We have 

L(p) = exp - iO ~Pl N = 1 - ira- ~pN - (2m2) - ~(pN) 2 + . . .  

where 

P =(Po, P), m = V~ -5, s i n h 0  = lPl2/m, 
A straightforward computation leads from the Fouriertransform of (6.37') to 

/~o ~ ( p  = 0) = { - 2dO ° - 2 p ~  ° + pO [ ]  + m- 1N2} ~(p = 0) 

f ,  ~ , (p  = o )  = { - 2dO  - 2 p ~ V O  - 2~(I  x O) 
+ 2m -~ [ i ( d -  1)N - J x N]} ~(p = 0). (6.39) 

It suffices to have the tranformation law at p = 0 since K" transforms as a 4-vector, 
viz. 

T ( m ) K . T ( m ) -  1 = A(rn)~K , 

for Lorentz transformations me M. (6.40) 
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And we know from Equation (6.36) that Lorentz transformations do not make 
transitions between spin states. Neither do dilatations nor translations. 

We insert the expansion in basis vectors (6.35') and make use of the explicitly 
known action of the generators J, N on basis vectors esm o fE  ;~ (cp. Appendix A). As 
a result we obtain 

/£3~(p=0)=/ (3  ~ e~,,,~P~m(P=0) 

- 2 i  { ( 2  - d - s )  (s  - m)  ½ ( s  + m)  ½ 

.Cses_ l , , , - ( 3 - d  + s)(s +m+ l)+ ( s - m +  l)~ 

-C~+ le~+ ~,~+ ... } T~'n(p =0) (6.41) 

where the dots stand for terms proportional to e .. . .  and C~ = C~ ~j~ are the constants 
given by Equation (A.1) of Appendix A. 

We see that K 3 makes transitions between states with different s. The 
coefficients of e~_ ~,,~ and e~+ ~,,, do not vanish (identically in m) for d>jl +Jz + 2 
unless 

S=Smin=~l--J2[ resp. S=Smax=Jl +J2' 

Therefore there exists no invariant subspace and the representation is irreducible. 

D. Integrability 

So far we have demonstrated existence and positivity of the scalar product (~01, q~z) 
only for Schwartz test functions (p in 5~. But unfortunately ~a is invariant onty 
under the action of the Lie algebra g of G but not under the group G itself (cp. Sec. 
6B). Therefore we are faced with the question whether our representation of the Lie 
algebra is integrable to a unitary representation of the group G. [It follows then a 
posteriori that the scalar product is defined and positive for functions ~o in Cx, since 
Cx is the smallest G-invariant space containing ~ ] .  This problem is solved by the 

Lemma 3. Suppose the scalar product 

((Pl, ~°2)= (2re) -4 S d4p(~°~(P), fl~+(P)(P2(P)) 

exists and is positive for functions q~ such that 

~5(p)= j" dsSd3xe-P°s+~pXZ(S,X ) for p2>_0,po>0. (6.42) 
s > 0  

Z an infinitely differentiable function with values in E ~ and compact support contained 
in the half plane s>0.  Then the representation of 9 is integrable to a unitary 
representation of G. 

This lemma is a corrolary of the theorem of Liischer and the author on analytic 
continuation of contractive Lie semigroup representations (generalized Hilte 
Yosida theorem) [3]. A proof of the lemma is implicit in Section 4 of Ref. [7]. 
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Remark. In purely group theoretical language what is involved here is this: 
Functions of the form (6.42) with suppz in a given compact subset of the upper half- 
plane s > 0 form a dense set of equi-analytic vectors for the hermitean generators of 
G. Integrability follows then from a classic result of Nelson's [13, 21]. 

It is evident from the explicit form (6.28), (6.33a) of the intertwining kernel z]a+ 
that the hypothesis of the lemma is fullfilled. We have thus constructed unitary 
representations of the universal covering group G of SU(2, 2). 

E. Another Realization 

Let Y~ the space of (generalized) functions of the form 

• ( x )=  ~dyA~+(x-y)q~(y), (peB z 

gx is the function space introduced at the beginning of this section. ~z is a 
representation space for G. Since the F.T. z] ~ (p) has support concentrated in V+, the 
closed forward tightcone, ~(x) are boundary values 0 f holomorphic functions in the 
field theoretic tube domain. In the limiting cases jlj2 4= 0, d =Jl +J2 + 2 and JiJ2 = 0, 
d =Jl +J2 + 1 they satisfy in addition certain differential equations. For instance 

[J.O+(jl--j2)c3°]¢(x)=O if j l j 2 = 0 ,  d=jl+j2+t (6.43) 

Since • fixes uniquely the equivalence class of (p in ~a, the scalar product (6.2 3 
makes Wa into a Hilbertspace which carries the same unitary representation of G 
constructed before. In practical applications it can be useful to deal with the space 
Wx of generalized functions instead of the spaces of equivalence classes of functions 
in ~;: Rtihl's work deals with functions in ~7): 

As our last task we should show that the UIR's of G in the Hilbertspaces W~ 
constructed so far have lowest weights 2. If so, it follows by the uniqueness theorem 
of Section 4, that we have constructed all the inequivalent UIR's of G with positive 
energy. We shall instead refer to Riihl's work [5]. It follows from his results (and the 
remarks above) that all our representations constructed so far are (linearly) 
equivalent to analytic representations that have explicitly known lowest weight 
vectors (viz. constant functions) with the right weight 2. 

We mention one last result without detailed proof. A UIR of a semi-simple Lie 
group G is said to belong to the discrete series if (and only if) its matrix elements are 
square integrable on the group. It is known that the discrete series is nonempty iff G 
has finite center F and possesses a compact Cartan subgroup [13]. Quotient groups 
G/F" with F" C F of our group G possess these properties if their center F/£" is finite. 
This motivates the 

Definition. A unitary irreducible representation T of the semi-simple Lie group 
with denumerable center F is said to belong to the interpolated discrete series iff 

j dg[W, T(g){#)l = < oo 
e / r  

for some nonzero vectors tp, ~ in the representation space. (dg is Haar measure on 
the group d/r). 
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We note that the definition is meaningful since the integrand is invariant under 
9--'97 for 9 E G, ),e F (cp. Sec. 3). It can therefore be considered as a function on G/F. 

The representations of G constructed in this paper belong to the interpolated 
discrete series if and only if 

d >Jl +J2 + 3 (6.44) 

Sketch of Proof There is a canonical way of reconstructing uni t~yi r reducib le  
representations as (irreducible parts of) induced representations on G/K. [Here we 
may consider the space of  functions f~(9) = (0,~, T(g- 1)TJ), m = (mira2); cp. Sec. 5]. 
Representations with lowest weight give rise to analytic representations in this way. 
Square integrability furnishes a scalar product on this function space, Riihl has 
constructed the analytic representations on G//£ and has found the condition (6.44) 
for the scalar product in question to converge [5]. 

Acknowledgement. The author is indebted to M. Ltischer for discussions. 

Appendix A: Finitedimensional Representations of SL(2~E) 

Let J and N the generators of rotations and Lorentz boosts respectively. They 
satisfy the usual commutation relations 

[J1,J2J: iJ3,  [N1,N2] = - i J  3, [J1,NZ]=iN3 and cyclic. 

Write 

J + _ = J l ± i j 2 ;  N + = N I + _ i N  z . 

Finite dimensional representations of SL(2C) are labelled by (Jl,J2); 2jl, 2j2 
nonnegative integers. A basis in the representation space may be labelled by s, rn, 
with s(s+ 1) the eigenvalue of jz ,  and m the eigenvalue of  j 3 : s =  l J1 --Jzl'"Jl 4-J2, 
m = - s . . , s  in integer steps. 

According to Naimark [20] the action o f the generators on the basis vectors es, m 
is 

J+_es, m=[(s~-m)(s+_m+ l)]~es, m+l ; J3e~,,~=mes, m 

and for the boosts 

N+ %,, = _ [(s 4,- m) (s ~ m -  1)]~Cses_ 1,m_+ 1 

-- [(S T- m) (s +_ m + 1)]S A~es,~+ 1 

4- [(s+ m + 1)(s +_rn + 2)]~C~+ ie~+ 1,m+_ 1. 

N3 es, ~ = [(s - m) (s + m)]~C,es_ 1, 

-mA~e~,, , -  [(s + m + 1) ( s -  m+ 1)]¢C,+ les+ a,m. 

with 

A~ = ikc/s(s + 1), C~ = (i/s) {(s 2 - k 2) (s 2 - c2)/(4s 2 - 1)} ~ (A. 1) 

c =Jl +J2 + 1, k=j l  -Jz ,  s= lk l . . . c -  1 in integer steps. 
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The sign of  the square root in C~ is a matter of  phase conventions. It is costumary to 
have the generators N k, and therefore also C~, change sign when one interchanges 

(j l ,J2)-->(j2,Jl) .  
Examples: 

i 
• • 1 0 J=½a ,  N =  -~a ( j  1 , J 2 )  = ( ~ , ) :  

• • 0 1 . 1 i (J.Jg=( ,9. J=~,N=~, 

Appendix B: Clebsch Gordan Coefficients for SU (2) 

C " 1 . _ 1 ; r e _ m 2  ,rn2) in the notation (and The vector coupling coefficients (Jl,~,Ji 
phase convention) of  Rose are given by [15] 

C " 1 • 1 .  - - 1  1 ± +~-)= Yb [(Jl T-m+½)/(2j~ + 1)] ~ . (B.1) {J,~,A -- 5,  m-l-~, _ 

Appendix C: The Homogeneous Space M = G ] M A N  

Let M A N  the (nonminimat) parabolic subgroup of G consisting of 
Lorentztransformations rneM~-SL(2¢;), dilations aeA and special eonformal 
transformations n ~ N. M A N  is simply connected and therefore also contained in G. 
Consider the Iwasawa decompositions G ~ K A , N ~  and M ~ - U A , , N , ,  with Ap 
= A,~A; N~ = N,~N (see Sec. 2). It follows that the homogeneous space 

M = G / M A N  ~- K~ U ~- IR x S3 

S 3 the unit sphere in IR 4. Thus M may be parametrized as 

M = {(% 5), - oo <-c < oo, ~ = (~%%3, ~5) a unit 4-vector}. 

Elements o f / (_~ lRx  K1, act on M as translations of  z and rotations of 5. In 
particular 

e iaHo  : T---+T + Cr , ~-.-e,~ 

~ : '~"--~'r g---'> - -  g . 

The center F = F1F 2 of G acts therefore on M as follows : F 1 acts trivially, while F 2 
consists of elements of  the form 7N2 

]:2 : ~e ircH° takes z ~  + n, ~-~ - 

A domain F contained in M is called a fundamental domain (with respect to the 
discrete subgroup F2) if 

M =  U ?F,  Fc~TF=O for ?=~e in F2. 
eF2 
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A fundamental domain F may be chosen as follows: 

F = { ( z , e ) ~ M , - n < z < n ,  e 5 > _  cosz} 

It may be identified with Minkowski space M 4 through the reparametrization 

sinr ei 
x ° - • x i= (i = 123) 

COS.C+85 ' COS Z.+ g5 

translations x~X map F into itself. They translate coordinates x ~. For  further 
details see e.g. Section 7 of  Ref. I-3]. 

Consider now the equation encountered in Section 6A. 

N - l x = x ' y m a n  ; x,x'  in X ,  m a n e M A N ,  ];=7~ffF2 

We wish to determine N as a function ofx.  Apply both sides of  the equation to 
the identity cosete =(0, ~) ~ =(000, 1). Evidently, by what has been said above 

x 'yman6~7~F 

Since we know that the integer N is a Lorentz-invariant, it suffices to consider 3 
cases for the right hand side 

x"x ,  < 0: take x ° = 0 then xd = (0, ~) with e 5 < 1 

therefore N -  ~x6=(0, -~ )  with _~5 > _ 1 = - cos0. 
Thus N - l x 6 E F  whence N = 0 .  

x"x ,>O,  x ° > 0 :  take x = 0 ,  x °>0 .  Then x6=(z,~) with 0 < z < = .  

therefore N -  1 xd = (z, - ~) with 0 < z < n, ~5 = _ ( _  ~s) = 1. 

Thus .~-1xd~72F whence N =  1. 

x"x ,>O,  x ° < 0 :  In the same way one finds N = - 1 .  

Appendix D: Fouriertransform of the Intertwining Kernel 

Our task is to determine the intertwining kernel A~+(p) in momentum space. We 
know already that it will be of the form (6.28). Consider 

j~+(p) = DJ2Jl(L(p))*~i~+(p)OJ2Jl(L(p)) 

= r(d  - J r  - J2  - 1)- 1 ~ G(2)/~(p2); 2 +a (D.1) 
s 

Instead of  working out the Fourier transform of  (6.22) it is easier to work out the 
coefficients ~s from the requirements of infinitesimal conformal invariance. In 
particular, we must have 

/~3'~x+ (p)~p(p) = dx+ (p)/~3 ~(p) (D.2) 

for arbitrary Wigner wave functions ~(p)= ~ G, mTJ~'L 
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/ (3  is g iven  b y  E q u a t i o n  (6.39) o r  (6.41), a n d  /~3, is o b t a i n e d  f r o m  it  by  
s u b s t i t u t i n g  d--*4-d a n d  r eve r s ing  the  s ign o f  b o o s t - g e n e r a t o r s  N. This  is in 
a c c o r d a n c e  wi th  the  t r a n s f o r m a t i o n  taw (6.10) o f 4~ = A~+ (p e ~ wh ich  d i f fers  f r o m  
(6.9) for  (p e ~ .  

T h e  p r o j e c t i o n  o p e r a t o r s  

fI t es" m = ( } s t e s ,  m 

F r o m  E q u a t i o n  (6.41) we f ind 

J~+(p)I?3 ~(p =0) 

= _ 2i(pZ)d+- 5/2 ~ {%_ 1( 2 _ d - s) [(s - m) (s + rn)]~C~e~_ t,,, 
S,?tl 

- e s +  1( 3 - d + s )  [(s + m +  1)(s - m +  1)]~C~ + ~e~+ 1.m+ --. }T~m, 

whi le  

/;?'~P+ (p)~U(p = 0) 

= _ 2i(p2)~+- s/2 ~ e~{ _ ( d -  2 - s) [ ( s -  m)(s + m)]~C~e~_ 1, m 
$ , m  

+ ( d -  l + s)[(s +m+ l ) ( s - m +  l)]~C~ aes+ ~,m +...}tP ~". 

The  d o t s  s t a n d  in each  case  for  t e rms  p r o p o r t i o n a l  e~,,~. C,  a re  the  c o n s t a n t s  [ fo r  the  
(J2Jl) r e p r e s e n t a t i o n ]  g iven  in A p p e n d i x  A. By c o m p a r i s o n  we f ind two  iden t i ca l  
c o n d i t i o n s  on  ~ ,  viz. 

d - 2 - s  
CZs_ t - d _ 2 + s ~  for  s=]j l -JEl+l . . . j ,  +j2 

This  is a r ecu r s ion  r e l a t i o n  w h o s e  s o l u t i o n  is 

( d -  2 - j i  - J 2 ) - - - ( d -  s -  1) 
o~=(d_2+jl  +j2).. .(d+s_l) O~j~+j~; s=[jl- jz[. . . j ,  +j2. (D.3) 
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