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Abstract. We use Ginibre's general formulation of Griffiths' inequalities to 
derive new correlation inequalities for two-component classical and quantum 
mechanical systems of distinguishable particles interacting via two body 
potentials of positive type. As a consequence we obtain existence of the thermo- 
dynamic limit of the thermodynamic and correlation functions in the grand 
canonical ensemble at arbitrary temperatures and chemical potentials. For a 
large class of systems we show that the limiting correlation functions are 
clustering. (In a subsequent article these results are extended to the correlation 
functions of two-component quantum mechanical gases with Bose-Einstein 
statistics). Finally, a general construction of the thermodynamic limit of the 
pressure for gases which are not H-stable, above collapse temperature, is 
presented. 

1. Systems of Particles Interacting via Two Body Potentials of Positive Type 

In this paper we study classical and quantum continuous systems in thermal 
equilibrium. These systems consist of particles the interactions among which are 
described by two body potentials of positive type. We are interested in proving 
the existence of the thermodynamic limit of the pressure and the Gibbs equilibrium 
states in the grand canonical ensemble. We also want to discuss certain properties 
of the equilibrium states in the thermodynamic limit, such as clustering. Two 
classes of systems are considered: 
(C) Classical particles, and 
(QM) Quantum mechanical, distinguishable particles, ("Boltzmann statistics"). 

The particles have internal degrees of freedom which we call (generalized) 
charges. They are labelled by the vectors q of some measurable vector space Q. 
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When the dimension of space is 3 we may think of a particle as being some ion 
with a net charge e E E (or e ~ Z), a dipole moment e_~ ~3 (or _e ~ S 2, the unit sphere 
in ~3) and possibly higher multipole moments, so that typically 

Q = R @ ~ 3 @ ~ 5 @ . . .  (1.1) 

In this situation q = (e,_~,__e . . . .  ). The potential between a particle with genera- 
lized charge q at position x ~ W  and one with generalized charge q' at x ' ~ W  is 
given by a function V(q, x;q', x') on (Q × w)  × 2 which we require to be of positive 

N type, i.e., given an arbitrary sequence of complex numbers {cj}j = ~ and a sequence 

j = l '  of points in Q x W, {(q j, x j) N 

N 
6icjV(qi,x i ;qj, xj) >- O. (1.2) 

i , j  = 1 

W e  set 

(q)N = (ql , '" ,q~),(X)N = (Xl . . . . .  XN) } 

N N . 

d).(q)N = I-[ d2(qj), d(X)N = I-I d~xj 
j = i  j = l  

(1.3) 

Here 2 is some finite, positive measure on Q with the property that 

d2(q) = d 2 ( -  q), ") 

and V is required to satisfy ~ (1.4) 
~ ,  V ( q , x ; q , x ) =  - V(-q,x;q',x)=' - V ( q , x ; - q ' , x ' )  . 

Condition (1.4) is a neutrali ty--or charge symmetry condition. 
The potential for N particles at positions (x)N and with charges (q)N is given by 

U((q)N,(X)N ) = ~ V(qi,x ~ ;qj,xi). (1.5) 
l <_i<j<_N 

Examples. (A) Q N,q charge, ~ 1 = = d,t(q) = -~ {6(q - 1) + b(q + 1) } dq 

V(q, x ;q', x') = q • q'(2rc) - ,,/2 ~ eik(x- ~') t/(k)d"k, 

with 0 -< f /(k)~Lt(W). 

(S) Q = R ~, q = e = dipole moment, d2(g_) = 6( [e__] - 1)d~e, 

V(e, x ;e', x') = (21r) - ~/z~ eik(x- x')(e . k) (e'" k) ITV(k)d ~k, 

with 0 -< [kl2~Z(k)~Ll(R"). 

This is a dipole potential. 
Clearly there may also be dipole-monopole potentials, (when V = 17V), and 

we can accommodate potentials with infrared singularities such as the two dimen- 
sional Coulomb potential [6], so that e.g. V(k) > 0, for k ~ 0 only. 

The grand canonical partition function for the classical system in a compact 
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region A c W is defined by 

o~ z N 

~,A(fl, Z) = S ~ - -  f d)~t,~ f dtx~ e-~V((q)~',(~)~ ) (1.6) 
N = O  z v  . QIv A,~ 

with 0 < z < ~ ,  0 < fl < oo, and the term corresponding to N = 0 is defined to 
be = 1. The pressure of the system in the region A is given by 

pa(fi, Z) = ~ log ~a(fl, Z), (1.7) 

and the correlation functions are defined by 

,~ - 1 N ~ ~ zM 
pA(fl, z;(q)N,(X)N)=~A(fl, Z) Z LM---- M! 

0 7 

S d2(q')M ~ d(X')Me-flU((q)x(qg~'(x)N(x'h4)l" (1.8) 
QM A M d 

We shall prove 

Theorem C. Assume that sup J d2(q)e ~v(q'~;q,~) < oo ,for all ~ > O. 
x ~  ~ (2 

Then, for arbitrary fl >. O, z > 0 and an arbitrary sequence of  compact regions 
{A} increasing to W,  
(1) if  V is translation invariant l~fl, z) = lim pA(fl, z) exists and is independent of  the 

A~R v 

sequence chosen, and p(fl, z) has the standard thermodynamic properties of  the 
p r e s s u r e .  

(2) p(fl, z ;(q)N(X)N) = lim PA(fl' Z ;(q)N'(X)N) 

exists, for all N = O, 1, 2 . . . . .  I t  is monotone increasing in z and 2 and is bounded 
by 

N 

z~ e (fl/2) Z V ( q j , x j ; q j ,  x j )  j=l 

for all z >- O. 
Results of the type of Theorem C have earlier been proven for a large variety 

of systems under various conditions, [25]. The existence and shape independence 
of the thermodynamic limit for the pressure has already been demonstrated for a 
large class of potentials of not too long range; see [25] and Refs. given there; for 
results concerning the two dimensional Yukawa and Coulomb gas, see [6]. Corre- 
lation functions for systems with potentials of not too long range at small z and 
fl have also been constructed; see [25] and Refs. given there. For the two dimen- 
sional Yukawa gas above collapse temperature these results were proven in [6, 8], 
for the Coulomb gas in [24]. 

The novel aspect of Theorem C is that it does not require any restrictions on 
the range of V or on the values of z > 0 and fi > 0. The thermodynamic limits of 
pressure and correlation functions claimed to exist in Theorem C are shape 
independent and have all the symmetries of the potential V. Theorem C is an 
existence theorem for systems as little explored as the classical dipole gas. 
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To prove Theorem C we make use of functional integrals as in [6] and apply 
some generalization of the correlation inequalities of [24]. Correlation inequalities 
were first applied in [6] to prove the existence of the thermodynamic limit of the 
correlation functions of the two dimensional Yukawa gas. Some extensions were 
presented in [8]. But the most useful inequalities were discovered in [24]. 

In order to extend Theorem C to the quantum mechanical systems with distin- 
guishable particles we use the conditional Wiener measure as in [12], in addition 
to functional integrals of the sort applied in the classical case. This enables us to 
prove the necessary correlation inequalities. We consider N distinguishable 
particles with charges ql . . . . .  qN and masses m(qO . . . . .  m(qN). The Hilbert space 
for these particles confined to a compact region A c W is defined by 

N 

~ u  a = @ L2(A,d~xj). (1.9) 
.i=1 

Let A~ be the Laplacean in the variables x i with O-Dirichlet data at the bound- 
ary 3A of A. The Hamiltonian for these particles is given by 

A¢ 
HUA((q)N) = -- L 2-m(qi ) + U((q)N,(X)N), (1.10) 

i = 1  

with 0 < m  = inf m(q) _< sup m(q) = rfi < oo, and re(q) = m( - q). (1.4') 
q~Q q~Q 

We also assume that 

sup sup V(q,x;q,x) < ~ .  (1.11) 
q~Q x ~ ¢  v 

In this case H~((q)N) is essentially selfadjoint on a natural dense domain in 
.Yf~, for all (q)N~Q N. Moreover e x p [ -  flHNa((q)N)] is trace class, for bounded, 
open A and fl > 0. 

Let PPa((q)N ;(X)N,(X')N) denote the kernel of exp[--flH~((q)N)]. For f l > 0 ,  
it is well defined, positive and continuous in (x)N and (x')N. Thus we may define 

~((q)N, (x)N) = P~((q)N ; (x)N, (x)N)" (1.12) 

As usual, the grand canonical partition function is defined by 

zN ~ ~ , -~I~(tq)~), (1.13) ZA(fl, Z) = ~ d2(q) N lr~e~te ,, 
N=0 

with the term corresponding to N = 0 set = 1. The continuity of P~a((q)N ;(x)N, 
(x')N) in a neighborhood of (x)N = (X')N and (1.12) permit us to rewrite ~A(fl, Z) 
as follows: 

~A(fl, z) = d2(q)N ~ d(X)NOPA(q)N, (X)N). (1.14) 
N = 0  ~ ,  • QN A N 

The pressure is still given by (1.7), i.e. 

PA(fl, z) = [ ~  log Ea(fl, z), (1.15) 
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and the (particle-) density correlation functions for the system in the region A by 

PA(fl'z;(q)N'(X)N) = 2'A(fl'Z)- [ZNI~__ 
01 t 1 • S d2(q )M ~ d(x )M~paa((q)u(q )M,(X)u(X')M) . (1.16) QM A M 

In Appendix 1 we introduce the correlation--and imaginary time ("tempera- 
ture ordered") Green's functions (ITGF's) for these quantum mechanical systems 
and indicate how to construct their thermodynamic limit, using methods developed 
in Sections 3 and 4. 

Next, we briefly recall definition and properties of conditional Wiener measures 
[22, 12]. Let 

~lO ,ill 

where ~ is a copy of the one point compactification of ~". Clearly f2 is a compact 
Hausdorff space with a-algebra the Borel sets. It serves as a measure space on 
which the conditional Wiener measure Pr~(q, x, y;&o) can be defined as a a-addi- 
tive, finite measure. This is the path space measure for the Wiener process with 
transition function exp[tAa/2m(q)] conditioned on the set of paths in f2 with 
o~(z = O) = x ~ A, co(~ = fl) = y~ A. We set 

N 
fl Pra( (q)N, (X)N, (X )U ; d(O))N) = H PrCa(qj, x j, x'j ;de)j). (1.17) 

j = l  

Applying the Feynman-Kac formula one sees that 

P~((q)u ;(X)u, (X')N) = ~ Pr~a((q)u, (x)u, (X')N ;d(c°)N) 
f/N 

# 

• e - ! a~v~q)~,~o~m~s). (1.18) 

Combining (1.15), (1.16) and (1.18) with functional integrals expressing 
t~ 

exp [ -  ~dzU((q)s,(m(~))N) ] and an extension of the correlation inequalities of 
0 

[24] we shall be able to prove 

Theorem QM. Theorem C is true for the pressure (see (i.15)) and the density 
correlation functions (see (1.16)) of  the quantum mechanical system with Boltzmann 
statistics and two body potential V(q,x; q',x'), except that the upper bound is now 
given by 

z - -  exp - 2., sup V(qj ,x;qj ,x)] .  tt ) ) L2,:,x 
Remarks. (1) In Appendix 1, Theorem QM is extended to the correlation functions 
and the ITGF's of the quantum mechanical systems defined above. The results of 
[26] then tell us that from the ITGF's a unique KMS state for the infinite quantum 
mechanical system can be reconstructed by analytic continuation in the time 
variables to the real axis. 
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(2) Extensions of Theorem QM to systems with kinetic energies that depend 
in a non-trivial way on the generalized charges are possible, provided the kinetic 
energy of one particle is still the generator of a transition function for a Markov 
process, so that a generalized form of the Feynman-Kac formula (1.18) applies. 
(3) For previous constructions of the thermodynamic limit of the pressure see 
[25] and Refs. given there, and [21] for the case of the Coulomb (matter) system 
in three dimensions. 

Existence theorems for the correlation functions and ITGF's of quantum 
mechanical systems with correct (Fermi and (or) Bose) statistics have previously 
been obtained for various classes of short range potentials and small z and fl in 
[12, 3]. In particular, the matter system in the plasma phase (small z and fl) with 
Coulomb--replaced by Yukawa-potentials has been treated in [3]. In a subse- 
quent article we prove such a result for two component systems with Bose-Einstein 
statistics and two body potentials of positive type at all values of z and fl at which 
the systems are stable. 
(4) More detailed properties of the pressure (all standard thermodynamic pro- 
perties) and the correlation functions (monotonicity properties in z and fl) in the 
thermodynamic limit constructed in Theorems C and QM are studied in Sections 
4 and 5. In particular, we obtain cluster properties of the Gibbs equilibrium state 
in the thermodynamic limit for a certain class of potentials. We sketch extensions 
of our results to potentials with logarithmic singularities at [x - x'[ = 0 [6] and 
prove the existence of the thermodynamic limit of the pressure for potentials that 
include positive hard cores. 

2. Statistical Mechanics and Gaussian Integrals 

2.1. (Formal) Gaussian Integrals 

In this section we briefly recall a by now well known connection between classical 
statistical mechanics and Gaussian integrals. 1 Our purpose is to express 
exp [ - flU((q)u,(x)N)] in terms of a Gaussian integral in case U((q) u,(x)u ) is given 
by (1.5). This then leads to expressions for all the correlation functions in terms 
of functional integrals. In the classical case this framework has been discussed 
in detail in [1, 6, 29]. 

Let the potential V be some function on (Q x ~") × 2 of positive type satisfying 
conditions (1.2) and (1.4). 

We define a Hilbert space J f  = Lz(Q x W,d2(q)dVx) and choose a selfadjoint 
operator H on ~/f with H > 1 and such that, for some n < ~ , H - "  is Hilbert- 
Schmidt. We let ~;/gk be (the completion of) D(H k/2) in the n o r m  IIHk/Zf ] l , f ~ ,  
k = . . . - 2 ,  - 1, 0, 1, 2 . . . . .  Then Y denotes all real functions in o~¢f ~ and 5 e' all 
real elements of ~/g-~ ; 5 p is a nuclear space. Vectors in 5 ~ are denoted byf ,  g, ... 
and vectors in 5 a' by 4~, if, X . . . . .  Let 

( f, vg ) = ~d,~(q)d,t(q')d"xd"x'f(q, x) V(q, x ;q', x')g(q', x'). (2.1) 

1 See "Note Added" and Ref. [29] 
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We choose H such that  50 is in the quadrat ic  form domain  of V, and V is conti- 
nuous  on 5P x 5 p, hence on 5P@5 ¢, (by nuclearity). 

Consider  now the functional  

Z v ( f )  = e -~l/2)<I'v¢> on 5 g. (2.2) 

This is the characteristic functional  of a Gaussian measure d # v  with mean 0 and 
covar iance V and with support  conta ined in 5P'; (Minlos'  theorem). 

For  4)ezT ' , f  eS~, let ~b(f) denote  the value of  ~b a t f  We define W i c k  order ing  by 

:ei0(s) : = Z v ( f  ) -  %io(s). (2.3) 

The  expectat ion with respect to d #  v is defined by 

( F >v = ~d#v((a)F(4)) ,  (2.4) 

for arbi t rary  F E L1(5  ~', d # v  ). 
Using (2.2)-(2.4) we get 

<j~=l i -- ~.. <fi,Vfj> :e it'(f j)" = e . . . .  J~. (2.5) 
V 

Assuming temporar i ly  that  V ( q , x ; q ' , x ' )  is cont inuous  in (q ,x )  and (q ' ,x ' )  we 
may le t f j  tend to t~ /26  i = 1 , . . . ,  n, and obta in  t-" ( q j , x j )  ~ J 

e tfll/2~(q-7 x3). e : " " " " = . . . .  ~o = e-~V((q)N,(~)~ '). (2.6) 

If we impose condi t ion (1.4), i.e. 

. t t . ~ t . ! t V ( q , x , q  , x  ) = - V(  - q , x , q  , x  ) = - V ( q , x ,  - q , x  ) 

we conclude that  

> E 1 f lV (e iq i , x  i ;e f l j , x j )  , :e i f t l / zeJ4a(q j ' x~) :  v ---= exp -1.<i<j< n (2.7) 

with ~j = + 1, for all j = 1 , . . . ,  n. 
We define 

C~A = ~ d2(q)~ d~'x : eiB*/~tq,~') : (2.8) 
Q a 

Using (2.7) and the symmetry  dJ~(q) = d2( - q ) - - s e e  (1 .4)- -we see that  

C~a = S d2(q)  ~ d"x  :cos f l l / 24 (q , x )  :, (2.9) 
(2 A 

# v - - a l m o s t  every where. 
No te  that  

½(:eiP'/2o(a'x) : + : e~t~l/2°(-q'x):) (2.10) 

= ep/2 v(q,x; q,x) cos [ f i l /24)(q ,x)]  = : cos f i l /2~(q,  x)  : 
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From definition (1.6) Of~A(fl, Z), (2.6) and (2.8)-(2.10) we conclude that 

~a(fl, z )= ~=o ~ . ( [ C ~ ] N ) v  ~, ~c~, = . . e  ) v ,  (2.11) 

and from (1.8), (2.6) and (2.8)-(2.10) 

pA(fl, z;(q)N,(X)N ) = ~a(fl, Z )- 1 Z :e i~'~(qJ'~j) :e ~c~ 
v (2.12) 

~- U Z : e  ifll/zc~(qj'xj) : 

" j  = 1 A ( ~ '  

Z).  

In order to extend these formulas to the quantum case we combine Gaussian 
integrals with the Wiener measure. Let 

V(q,x,z;q' ,x ' ,z ')  = V(q,x;q',x')fi(z - z') (2.13) 

where z and z' are in the interval [0, fl] (conveniently viewed as a circle of circum- 
ference fl). 

Let ~ f  = LZ(Q x W x [O, fi],d2(q)d"xdr). As above we introduce H,{:ggk}k~, 
5O and 5 °' and define a Gaussian measure d#v on 5O' with mean 0 and covariance 
V, the characteristic functional of which is given by 

Zv(f)  = e-(1/2)<f'vf>,f~so. 

Then 

: ei4~(f J) : = e l_<~<j<_. 

v 

where Wick ordering is given by (2.3) with Z v replaced by Z v. 
For f j@x,z) = fi(~ - q)fi(x - COs(Z)) we obtain 

( jO l  "e i!dz(a(qj'e°j(*,''r," ) ( 2 . 1 4 ,  

= e  co 

We set 

C~a = 5 d2(q)5 d~x ~ Pr~(q, x, x ;din) : cos 5 dr 0 (q, co(r), r): (2.15) 
Q A I2 0 

Using (1.14) and (1.18) and repeating the arguments (2.8) - (2.10) given in the 
classical case we find 

E a(fl, z) = (e~ee~) v (2.16) 

(which is seen by expanding the exponential in a power series and applying (2.15), 
(2.14), (1.18) and (1.14)). 

Moreover the density correlation functions are given by 

Pa(fl, z ;(q),V,(X)N) = ~--~A(fl" Z) - 1  

x z u PraA(qj,xj,xj ;doo)e i ! e =c~ . (2.17) 
= I V  
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Similar, somewhat more complicated expression for all the correlation functions 
and the ITGF's are derived in Appendix 1. 

2.2. Estimates 

In this section we propose to justify the somewhat formal expressions for the 
partition function and the correlation functions found in Section 2.1. This is done 
by means of some very simple estimates. Indeed, the following are the main 
analytical estimates of this paper: As functions on 5 p' 

I : ei"e(q" :') "l = e(a~/2)v(q'x;q'x), (2.18) 

and 
tt 

t : e  0 

(a2/2) S dz V(q, w('c); q, co(*)) 
_< e o (2.19) 

<" ? I dze(paE/2)v(q'~(~);q'~(~)), (2.20) 
0 

by Jensen's inequality. 
Since we have assumed that 

K,  --- sup S d)~(q) e(a/2)v(q'x;q'x) 
xeR" Q 

be finite, for all e > O, we conclude that in the classical case 

[GI - I dX(q)I d~x ]: c o s  fll/24(q, x ) :  I ~ I dvX I d2(q) e(pl2)v(q'~;q'~) 
Q A A Q 

<_ K,  tA I < ~ ,  and (2.21) 

in the quantum case 
// 

[ C~I <- ~ d2(q) S d"xS Pr~(q, x,x ;do))[ : cos .[ & 4~(q, o)(~), ~): I 
Q A ~2 o 

d~x f~ sup " ° ) .  (1/2) ~ V(q,,,m,q,~(~))d, <_ j Pr°a(q, x, x ;do)) ~ J d2(q)e ° 
A I qeQ 1"2 ) Q 

<_ ~ d"x sup ~ Pr~ ~(q,x, x ;do))K, (2.22) 
A q~Q 

= K,fe-'pz/2mdVp[AI 

112~ "~ vl2 
= K 6 { ~ i  IAI; (2.23) 

\ P /  

inequality (2.22) follows from inequality (2.20) and the simple fact that 

Pr~ (q, x, y; do)) ___ Pr~ ~(q, x, y; do)) ; (2.24) 
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moreover 

j" Pr~(q, x, y; d~o) = Se ip~- Y)e- I~P212m(~)d~p 
f2 

which, for x = y, gives (2.23). 

We set z - (, in the classical case, and z ---- ~ , in the quantum case. 

Then 

lea([3,z)l ~ < I e:C~ I >~ -< <e ~"~ :c~, >~ < eiR~ ~I~,iAt, (2.25) 

and this extends to the quantum case; see (2.6) and (2.23). 
We summarize our estimates in 

Theorem 2.1. Under the hypotheses of Theorems C and Q M the followin9 estimates 
hold: 
(1) For all complex z 

Iz.,([3,z)l -~ e IRe ;IK.IAI 

(2) In the classical case, 
N 

I p~([3, z ;(q)~, (x)~ I --- I~l ~e(~/~L~("''~`` "'' ~'~ 
for  all real z and [3 > O. 
(3) In the quantum mechanical case, and for all real z and [3 >_ 0 

N 

" I [ I  Pr~v(qj,x~,xj;dcoj) 
O N j = l  

N 

(1/2) }~ ~ Vlqj, mj(~),qj,~oj(~))d~ 
• e '  j = 1 0  

N 

<- t ;  I " etni2~'Z:: '7' " ( " " ' " " ">  

The proof of (2) follows directly from (1), (2.12) and (2.18), and the one of (3) from 
(1), (2.17), (2.20) and (2.24). 

Remarks. 1. This theorem justifies all formulas of Section 2.1 completely. 
2. Theorem 2.1, (1) immediately extends to the quantum mechanical system with 
two body potential V and Fermi statistics. In the case of Bose statistics it remains 
true for small enough N, depending on Kp. These results follow from the classical 
result by means of the Golden-Thompson inequality, as explained in [6, Section 4]. 
3. In Appendix 1 we extend the uniform bounds of Theorem 2.1, (3) to arbitary 
correlation functions and ITGF's. 
4. In a subsequent article the methods of Section 2 are extended to quantum 
mechanical systems with F e r m i - - o r  Bose-Einstein statistics, for all positive 
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values of z and fl for which stability holds; see Remark 2. Theorem 2.1, (3) and this 
result appear to be new. 
5. The bounds of Theorem 2.1 are very crude. In certain situations much finer 
estimates can be obtained; see [3, 6, 25]. 

3. Conditioning--and Correlation Inequalities 

Let ~f' be a real Hilbert space, and let C be a bounded positive quadrative form on 
~ .  Let ~b be the (unique) Gaussian process with mean 0 and covariance C indexed 
by ~f. The associated Gaussian measure with mean 0 and covariance C (defined 
on some measure space (5~', Z)) is denoted dPc;(see e.g. [23]). 

Let (X, S) be some measure space and dp a positive, finite measure on X. 
We choose a measurable mapping 

x ~ txe~  (3.1) 

from X to ~ f  such that ~ dp(x)e (t/2)c(z'ax) is finite. 
X 

A partition function is defined by 

S(C, p) - Y.(p) = I d#c(4)) exp { [ dp(x) cos 4~(l~) }. (3.2) 
.9 ~' X 

For feLl(Se',d#c), we set 

( F )c.o -- ( F)p = Y.(p)-i ~ d#c(4))F((a) exp { I dp(x) cos 4~(1~) }. (3.3) 
Y'  X 

In the following, m, n, l, g,... always denote vectors in ocg. 
The main result of Section 3 is 

Theorem 3.1. (1) Let Pl and P2 be positive,finite measures on (X,S). Then 

~(Pl + P2) >- ~(PO'~(P2) • 

(2) (Conditioning) Let 0 < C 1 < C a and define 

dP lz(x ) = e(1/z)(c2(tx, zx)-cl(tx, t~))dp(x). 

Then 

~(Ct,P) < ~(C2,p~2)- 

(3) (Inverse conditioning). Let 0 <- C 1 <- C 2. 
Then 

3(C2,p)  < Y.(C~,p) 

(4) (j__~ cos q~(mj))p >_ 0 

(5) cos ~b(mj) l-I cos qS(nj - cos q~(m~) cos qS(nj > O. 
j = l  p p p 

Remarks. Inequality (1) appears to be new; a slightly more general version of 
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the conditioning inequality (2) has been proven in [6] and is a consequence of a 
general observation in [14]. A proof of the inverse conditioning.inequality (3) has 
been given in [6], but it has probably been known by various people for a tong 
time. Inequality (4) is trivial. Inequality (5) is a somewhat more general version 
of Park's inequality, [24]. An extension of inequality (5) is presented in [9] and 
applied there to construct a Euclidean invariant infinite volume limit for the 
"bosonized" form [4, 10] of the Yukawa model and massive QED in two space- 
time dimensions. 

Proo f  The basic ideas (due to Ginibre [13]) of the proof of Theorem 3.1 are 
1. Duplicate variables, [13] 
2. trigonometric identities [13], namely 
(3.a) e i~ = cos a + i sin 
(3.b) cos(a +_ fl) = cos ~ cos fl T- sin a sin fl 

t cost- -)cost- ) 
(3.c) cos ~ __ cos fl = 2 

sin ( ~ - ~ )  sin (f i  ~ a ) 

(3.d) cos a cos fl = ½[cos(a + fl) + cos(c~ - fl)] 

(3.e) I-I c o s a j =  2 c o s  ejaj , 
j=  1 {ej} \ j =  1 / 

with e~ = _ 1 , j =  1,2, ... ,k. 

We note that (3.e) follows from cos ~ = cos ( - a) and (3.d), by induction. 

Proof  o f ( i ) .  Let 4)1 ,~b2 be two independent, equivalent Gaussian processes with 
mean 0 and covariance C. Then 

~(P l + P~) - ~(P l)E(p2) = ~Cl~c(4) l)d~,c(4)z)ef.dP'('~ °°'~,"=~ 

• [efap2(~) co, 4,,(ix) _ efa,~(~)co, 42a=}]. (3.4) 

(This is the duplicate variable method of [13], see also [24]). 
Let q~ = (4)1,4)2) be the Gaussian process with mean 0 and covariance C given 

by Ci; = b~;C, so that 

d#c(@ = d#c(4) 1)d#c(4) 2). 

Clearly, R T C R  = C, for all orthogonal transformations R of "field space" 
~2. Hence 

d#c(q~) = d#c(Rq~), for all n ~0(2). (3.5) 
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L e t  

Z = (Rq~)2 -- q~a + q~2 . 

(3.6) 

This is an orthogonal transformation of field space, and therefore 

d#c(~b a)d#c(~ 2 ) = d#c(O)d#cO0. (3.7) 

The inverse of (3.6) is given by 

~1 = ¢-~z,~b~ - O + z (3.8) 
4 2  

Let 

~P(lx) = z(l~) (3.9) 0 ~ = ~  - and Zx ,v/~ 

Using (3.4) and (3.7)-(3.9) we obtain 

"~(P 1 + P2) - -  ~ ( P l ) ~ ( P 2 )  = Sd#c(O)d#c(Z)e~'~m +do~)~x)co~ 0 . . . .  z ~  

• ela.,(~) ~i. ~ ~i. z~ 2 sinh(Sdpz(x) sin 0~ sin Z~)- 

Expanding the exponentials and the hyperbolic sine in power series we get 

~(Pl + Pc) -- ~(Pl)~(P2) = 2 ~ 1 ~(dp 1 + dP2)(xj) 
n n 2, 3= tn2 !(2n3 + 1)! 
n2 2 n 3 +  1 

• I1 Idol(x;.) H Iap~(~y) 
j = l  j = l  

?11 

"Ia#c(O)d#dz) lq (cos 4% cos z~) 
j = a  

n2 2n3 + 1 

"l-I(sinO~)sinzx)) I-I (sinO~ysinz~y). (3.10) 
j = l  j = l  

The d#c(¢)d#c(X)--integral on the r.h.s, of (3.10) is 

nl n2 2 n 3 + 1  ~/x) '  2 

~d#c(~b))-I.= cos O~j i=~l-I sin ~,~) J=~l~ sin _> 0, 

and this completes the proof of (1). 

Proof of(2). Let ~bl/2 be the Gaussian process with mean 0 and covariance C1/2 
and ~b'~ the one with mean 0 and covariance C 2 - C a > 0. Then 

~d#¢,(0 ~)d#c~_c~(~i)F(~ + q~',) = ~d#c~(4,gF(09 (3.11) 

for all d#c -- integrable functions F. To see this, it suffices to take F(q~) = exp iO(g), 
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g e W ,  for which (3.11) is obvious• Thus 

F"(C2, P l 2) = ~d#c2(CP2)elaP*2(x) cos,2(,x) = ~d#c ,(c~x)d#c 2- c,(qTx) exp [~dp~ z(x) 

• {cos  4,,(I~) cos  ~'~(/,,) - sin q~(lx) sin q~i(/x)} ] 

>_ ~d,uc~(dp, ) exp [~d#c 2_c~(~o'i)~dpl2(x) 

• {cos 4)1(Ix)cos qT~(tx) - sin ~bl(/:,)sin qTl(/~) } ] (3.12) 

= ~d~c,(q~l)ex p [fdple(X) e -(1/2)(c2a-,l~)-c'('~'t')) cos q~l(/x)] 

= E(C 1 ,p), which is (2). 

The equation before (3.12) follows from (3.11) and (3.b), and inequality (3.12) 
is a consequence of Jensen's inequality. 

For the proof  of (3) see Corollary 3.2, or [6]. 

Proof of(4). Obviously it suffices to show that 

1 ldp(xj)~d#c(4 9) 1-I cos c~(m i) cos 4,(ix) > 0. 
n=O -~" j = l  i=1 j = I  

Using (3.e) we see that this follows from 

5d#c(O ) cos ~(h) = e -(1/2)(h'ch) > O, 

for all heYg;(h, Ch) - C(h,h). 

Proof of(5). By (3.e) and the linearity of ( - - ) p  it suffices to show 

(cos  q~(m) cos q~(n) )o - ( c ° s  q~(m) )o ( cos q~(n) )p >_ 0. (3.13) 

Using duplicate variables the 1.h.s. of (3.13) can be written as 

~(p)- 2~d#c(dPl)d#c(~2 ) {cos ~bi(m ) } 

• [cos ~bl(n ) - cos q~2(n)] exp Idp(x)(cos ~l(l~) + cos ~b2(l~) ) 

= ~(p)-2 p(xj #c(O) 
n=O,~, j = l  

. d#cOO~ cos t~(m) cos )'~(m) + sin O(m__~)) sin X(m) ~ V 2 sin ~(n) sin x(n) ] (3.14) 
( 42  ,,/2 x/2 v~JL V~ v~j 

• I~I (2 cos ~ cos )Cx~). 
j = l  

This equation follows by inserting (3.7)-(3.8) and applying (3.1o) to { ... .  }, 
(3.c) to [ .. . .  ] and to ( .. . .  ) and expanding the exponential. As in the proof  of (1) 
one sees that each term in the series on the r.h.s, of (3.14) is positive. Q.E.D 

Remark. Using (3.a) and the equation d#c(d? ) = d#c( - 49), we get 

(ei4°(m))p :> O, (3.15) 

( ei~(") cos 4)(n) ) ~ - ( ei°(")) ~ ( cos ~(n) ) o > O; 
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this is essentially the form of the inequalities found in [24]. 
We emphasize that most of the ideas used in the proof of Theorem 3.1 are 

already in Ginibre's basic paper [13] ; our applications are however new. Finally 
we note that Theorem 3.1,(1) can also be obtained directly from Theorem 3.1,(5) 
by expanding the exponential ! 

Corollary 3.2. For Pl <- P2 and C~ 1 <_ C~ 1 (or, equivalently, C 2 ~-~ C1) , 

(1) lj~=lC°S~(mj) )c~,pl < lj~_lc°s~(mj))c2,p2" 

(2) (qS(m)2)c2,o2 < (~b(m)2)c,,o~ < (m, Clm). 

(3) Moreover, N(C 1,pl) <- N(C2,P2);(f°r Pl = P2 = P this is Theorem 3.1, (3)). 

Proof From Theorem 3.1, (5) we get 

~z{ ( (1 - cos e¢(m)) cos ~b(n))o 

- ( 1 - cos e~b(m))p (cos ~b(n))p} _< O. 

As e tends to 0 this yields 

(q~(m) 2 COS ~(n) )p -- ( q~(m)2)p ( cos  qS(n) )o -< 0 (3.16) 

and, by repeating the argument, 

(qS(m)2~b(n)2)p - ( (o(m)Z) p ( dp(n)2) p >_ O. (3.17) 

Similar inequalities with ~b(m) 2 replaced by (sin~b(m)) 2 follow by using 

(sin~b(m)) 2-3--1  ½cos~b(2m). 

We shall apply (3.16) and (3.17) at several places. 

Proof of(i). We first show that for Px < P2 

(j~= eCOS~(mj) )p < (i~= lcosO(mj) )p 2. (3.18) 

By (3.e) it suffices to show this for k = t, m 1 = m. 

Let p, = (1 - s)p t + sp 2 , st  [0,1]. Then 

d 
dss ( c°s  ~b(m))ps = Sd(P2 - P 1)(x) [ (cos  ~b (m) cos ~(Ix))ps 

- (cos q~(m) )o~ (cos ~b(Ix) )p,] > 0, by Theorem 3.1, (5). (3.19) 

Upon integrating (3.19) we get (3.18). 
Next, we prove that, for C-~ ~ < C2~O.e.C2 < C O, 

(cos ~(m) )c,,v < (c°s ~b(m) )c~,p. (3.20) 

We temporarily assume that C~ ~-C~-  * is a finite rank operator on aft. 
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Let h k be the eigen-vector of C 21 __ C i  1 corresponding to an eigen-value •k > 0,  
k = l  . . . . .  N < o o .  

Let C s = ((1 - s)C; l + sC; ~)-l, and 

Z = ~d#c~(~)exp[ - ~(d?,s (C z i _ C/1)~b)]" 

Then 

d" (a.., _ Z-le-lS/2)t¢~,(cf'-c;bc,)d#c,(q~) tZc, ~) -- s 
N 

- (s/2) ~. 2k:~(hkt 2 

= Z Z *e ~, d#cl(~b ). (3.21) 

Therefore 

~s <COS~)(m) >c~.p = _ _  ~ 2  {< ~b()~(h) > 2 
k COS m k Cs,p 

k = l  

- < cos O(m) >cs., <  (h0 >c.., } 

> 0, by (3.16). (3.22) 

Integration of (3.22) gives (3.20). The general case, i.e. C 2 i _ C;- 1 an arbitrary 
positive, closed quadratic form, follows by a limiting argument. This completes 
the proof  of (1). 

Proof of(2). This follows from (1) by using 

(~(m) 2 = lim (1/8 2) [1 - -  COS eth(m)]. Note that 
e~0 

Ci(m,m) -- (m, Cim) = < qS(m) 2 >c,,p=o- 

We remark that (2) remains true if we replace c~(m) z by (sin~b(m)) 2 and (m, 
Clm) by ½[1 - e x p ( -  4(m, Cim)) ]. 

Proof of (3). Clearly~(C, Pl)<N(C, P2) follows from Theorem 3.1, (1), since 
~(C, P2 - Pl) > 1. 

Let C~, Z~ and d#c, be defined as in (3.21). Then 

d t ~¢ 

d~ 

"q~(hk) 2 > cs,o -- < elaPtx) cos m(z~) > c,,o 

"< dp(hk) 2 >c.,o} >-- O. 

This is seen by expanding the exponential, applying (3.e) and using (3.16). Q.E.D. 

Remarks. Theorems C and QM announced in Section 1 are more or less immediate 
consequences of the bounds of Section 2.2 and Corollary 3.2. Moreover Corollary 
3.2 yields monotonicity in the activity z (and in the measure d2) and monotonicity 
properties in the temperature fl-~ for the correlation functions and certain 
susceptibilities; see Section 4.2. This is useful in the discussion of critical properties 
of these gases. 
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4. Thermodynamic Limit and Cluster Properties 

4.1. Proofs of Theorems C and QM 

Proof of Theorem C, (1). In order to apply the inequalities of Section 3 to the 
proof of Theorem C we must choose 

x = Q x R 

and to 1 x (defined in (3.1)) there corresponds 6q6~. 3 

Letg~A(q,x)=exp[~V(q,x;q,x)])G(x), (4.2) 

(with Xa the characteristic function of A) and 9 ~ = 9PA = a,.. We define 

dPl/2 = zgBA1/2(q,x)d2(q)d"x,z > 0. (4.3) 

I fA 1 c~A 2 = 0 

d(Pl + P2) = zg~,~A2(q,x)d2(q)d"x" 

We now recall that 

:cos fll/2 6(q,x) : = aP(q,x) cos [fll/z (J(q,x) ]. (4.4) 

See Equations (2.3), (2.10), Section 2.1. 
From Equation (2.11), Section 2.1, (4.4) and Theorem 3.1, (1) we obtain 

Ba~,~a2(fl, z) > Y"A~ (fl, z)Ea~(fl, z), (4.5) 

hence 

logSA~a~(fl, z) >_ logSa,(fl, z ) + logNa2(fl, z ). (4.6) 

This inequality asserts superadditivity of lOgEA(fi, z ) in A. Inequality (2.25) 
and the trivial inequality BA (fi, Z)> 1 show that 

1 
~A~l°g EA(fi, z) is bounded uniformly 

in A. 
Standard facts about superadditive functions (see e.g. [25]) show now that if V 

is translation invariant 

• 1 =, 
)i~mR~ ~-[  l°g"A (fl'z) = a~lim.~ pa(fl, z) 

exists if A tends to W' in the sense of van Hove, [25]. 
We also claim that the limit lim pA(fl, Z) exists and is independent of {A}, 

AtRv 
whenever A ? ~ ,  by inclusion. This is seen by considering 

pa(fl, z) = ,~ ,  ~ d2(q) ~ d"x pA(fl, z ;q,x) > 0. (4.7) IAIQ o z  
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We shall prove shortly that, for all x, z _> 0 and fl _> 0 

lim P A (fl, z ;q,x) = sup p A(fi, z ;q,x ) 
A T ~  v A 

exists and is independent of {A} if A $ ~ by inclusion. A standard argument [14] 
shows then that the same is true for (•/Oz)pa( fl, z), for all z < ~ ,  and hence, since 

z 

P A(fl, Z) = ~ d~P A(fl, ~), 
0 

also for pa(fl, Z). 
As in [6,25] one sees that pA(fl, Z) is convex in z and fl, and this remaios true 

in the limit A = W. Theorem 3.1,(1) (or, alternatively, (4.7) and convexity in z) 
also shows that 

pA(fl,21 + Z2) >_ pn(fl, Zl) + pA(fl, Z2). (4.8) 

It is easy to see that 

( F(flt/2 (O) ) v = ( F(c~) ) av, (4.9) 

where ( - - ) v  is the expectation with respect to the Gaussian measure dlt v 
introduced in Section 2.1. (It suffices to prove (4.9) for F(qS) = e ~*t°), g ~ 5~, for which 
it is obvious). 

Equations (4.9), (4.4) and Theorem 3.1,(2) show that 

P a(fl, z) is monotone increasing in fl; (4.10) 

(this and convexity show that pA(fl, Z) is also convex in fl- 1 = T). 
This completes the proof of Theorem C, (1). 

Proof  of  Theorem C, (2). The proof is given in four steps. 
(1) Express the correlation functions Pa(fl, z ;(q)N,(X)N)in terms of the functional 
integrals given in formula (2.12) of Section 2.1. 
(2) In order to apply the inequalities of Theorem 3.1,(5) and Corollary 3.2,(1) 
we must choose X = Q × W and 

dp = zgPA(q,x)d2(q)d"x. 

We set C 1 = C 2 = V, dPl/2 = zgaA1/~(q,x)d2(q)d"x. If Aa _ A 2 then Pl < P2. 
(3) Applying now Corollary 3.2,(1), resp. (3.15),we see that pa(fl, z;(q)N,(x)~.) is 
monotone increasing in A (and also in z). 
(4) Convergence, as A 1" W, now follows from the uniform bounds of Theorem 
2.1, (2), Section 2.2. 

By now standard arguments of [14] show that the limiting correlation functions 
have the same symmetry properties as the potential V. Q.E.D. 

Remark. The kind of reasoning employed in the proof of Theorem C, (2) has been 
introduced in the context of Euclidean field theory in [23, 14] and applied in a 
context similar to the above one in [6]. Presumably it goes back to Griffiths. 

Proof of  Theorem QM. To prove that the thermodynamic limit of the pressure 
exists and has the standard properties we repeat the arguments given in the proof 
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of Theorem C, (1), but we now define 

X =  f2 x Q x R", 

where f2 is the (Wiener) path space. We set 

9IlA(CO, q, X) =" e (1/2)! V(q,,o(O;q,~(~)),~Za(X ) 

dp = dp A =- zg~(CO, q, x) Pr~A(q, X, X ;dCO)d2(q)dl'x, z > O. 

Define 

~'2 A = {O,)E~ :CO(T,)~A, T,E[O, fl] }. 

Then 

Pr~(q, x, x ;do2) = Zaj,(co) PrP(q, x, x ;dco), (4.10) 

with Pr a = PrPa=u~ ; see [22, 12]. 
From (4.10) we see that Pr~a(q,x,x;dco) is monotone increasing in A, for all 

q and x. Moreover, for A, and A 2 open sets whose closures are disjoint 

Z ~  2 = ~(aA~ + ~(a~ 2, (4.11) 

on the support of  Pr~(q,x,x ;de)), a well known decoupling property of Dirichlet 
boundary conditions. 

From (4.10) and (4.11) we get 

Lemma 4.1. (1) For A 1 ,A  z as in (4.11), 

d p a ~ a  ~ = dPa ~ + dPA~. 

(2) For A 1 ~_ A z 

dpa~ <- dPA 2 . 

(Note that, in the present context, the distribution l x introduced in (3.1) is 
defined to be 

~Oo.)Zto, p3(~))- 
Given Lemma 4.1 and (4.11), the rest of the proof of Theorem Q M  is essentially 

identical to the one of Theorem C, (with the exception that the discussion of the 
properties of p(fl, z) as a function of fl is different;see [25, 21] ). Q.E.D. 

For more details concerning the quantum case see Appendix 1, and [21, 3, 9]. 

4.2. S y m m e t r y - - a n d  Cluster Properties of  Correlation Functions 

Let ( - - ) a ( f l ,  z) denote the equilibrium expectation of the classical, resp. the quan- 
tum mechanical systems considered in Theorems C and Q M  confined to a region A, 
at inverse temperature fl and activity z. In the classical case, 

/ OA(fl, z;(q)N,(X)N) = 1--[ z :ei~l/2e(qj'xJ) : (fl, z); (4.12) 
j = l  

see Equation (2.12), and a similar identity holds in the quantum case: Equation 
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(2.17). (The expectation (--)a(f i ,  z) is given by a probability measure on the dual 
5 ~' of a nuclear space 5P; see Section 2). 

Proposition 4.2. For all f eSP, 

lim ( e i*(f) ) a ( f l '  Z) -~ ( e i¢'tl) ) (t5, z) 
ATR ~ 

exists. The limit is the characteristic functional of  a probability measure on ~9 ~', so 
that (F)(tS,  z) is defined for any measurable function F on ~9 ~'. 

Proof  Ctearly l ( eiO~) )a(fl, z)l <- 1. 
Using Theorem 3.1, (5), resp. (3.15) one shows as in the proof of Theorem C (QM), 
(2) that 

( ei¢O') ) a(fl, z ) 

is monotone increasing in A. Hence the limit exists and is shape independent. 
Moreover it is obviously a functional of positive type on 5g, and (e  i4'(°) )(fl, z) = 
lim (e  i*(°) ) a(fl, Z) = 1. 
A ~R ~ 
Finally 

Vf) , incase  C 
(q$(f)2)a(fl, z )_  < ((ff,, Vf), in case QM, 

uniformly in A. This is the inequality of Corollary 3.2, (2). Hence, (ei¢(f))(fl, z) 
is continuous in fon  5 ~, (a standard argument). The proof is completed by applying 
Minlos' theorem. 

By (4.12) and Proposition 4.2 the classical correlation functions in the thermo- 
dynamic limit are given by 

P(fl, z;(q)N,(x)n) = I-[ z :eia~12o(qJ'xJ): (~.,z) (4.13) 
j = l  

and the quantum mechanical density correlation functions by 

p(fl, z;(q)u, (x)N) = z~ PrP(qj, x j, xj; ae)j) : e o : / tP, zL (4.14) 

See (2.17). Let ~ - x, in the classical case, and ~ - (x, 3), in the quantum mechani- 
cal case. The expectation 

( q$(q, ~) q$(q', ~') ) (fl, z) (4.15) 

is called "effective potential function". 
We define a susceptibility Z by 

z(q, fl, z ) -  lim IB1-1 N d~d~' ( 4)(q,~)$(q,~') )(fl, z). (4.16) 
B~oo  B x B  

Theorem 4.3. Under the hypotheses of  Theorems C, resp. QM the following is true: 
(1) The expectation ( - - ) ( f l ,  z) (in particular, all correlation functions in the thermo- 
dynamic limit) has all the symmetry properties of  the potential V: I f  Vis translation- 
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invariant, rotation-invariant, (resp.-covariant .. . .  ) then so is ( - - ) ( f l ,  z). The correla- 
tion functions are monotone increasin 9 in the activity z and in the measure d2. 
(2) The effective potential function ( dp(f)c~(f) )(fl, z) is monotone decreasin 9 in z 
and 2, and 

0 < (e~( f )~( f ) )  (fl, z) < ~ ( f  Vf) in case C 
-- ( (f, Vf) in case QM, 

for arbitrary eompIex-valued f In particular 

x(q, fl, z) <-- z(q, fi, 0). 

Proof The first part of (1) follows from monotonicity of (e  io(I))a(fl,z) in A, as 
already noted in the proof of Theorem C, (2): see [ 14]. The second part of (1) follows 
from Corollary 3.2, (1) and (3.15). Finally, (2) is Corollary 3.2, (2). Q.E.D. 

Remark. The effective potential function (resp. the susceptibility) is often a reliable 
measure for the rate of decay of arbitrary correlations (see e.g. Theorem 4.4 below). 
In such a case the upper bound of Theorem 4.3 can often be used to show that there 
is no 10ng range order ("absence of phase transitions"). 

Next we consider a classical, neutral two-component gas such as introduced 
in Section 1, Example (A): 

V(q, x ;q', x') = q " q'(2rc)- ,/2~ eik(x- x')~/(k)dVk, 

with 0 <_ V(k)eLI(R*). (4.17) 

We define F(x) = - (2n)-*/ZSeikXV(k)- td~k, (in the distribution sense). 

Theorem 4.4. Suppose that F(x) >_ O, for x :/: 0 (in the distribution sense). 
Then the expectation ( - )(fl, z) is clustering. In particular, 

lim p(fl, z;(q)u,X 1 .... ,XM,XM+ 1 + a .... ,x  N + a) 
l a l  - ,  o o  

= P(fl, z;(ql ,x l ) , . . . ,  (qM'XM))P(fl'z;(qM+ I'XM+ t)' "'"' (qU'Xu))' 

Proof There is a minor cheat in the statement of Theorem 4.4: What we really 
need is that ( - - ) ( f l ,  z) satisfies the FKG correlation inequalities [5, 14]. These 
inequalities are usually proven for classical lattice systems. In the case of a classical, 
neutral two-component lattice gas (with configuration space ~Z~,e > 0, rather 
than R *) the hypotheses of Theorem 4.4 guarantee that ( - - ) ( f l ,  z) satisfies the 
F K G  inequalities [14]. 

Next, one must show that the lattice expectations converge, as ~$0, [14]. For a 
large class of potentials V this "convergence of the lattice approximation" can be 
checked; see e.g. [6, 8]. The formal limiting condition on V guaranteeing that 
( - - ) ( f l ,  z) satisfies the F K G  inequalities is then just F(x) >_ O, for x :~ 0. Once the 
F K G  inequalities are proven for ( ~ ) ( f l ,  z), a theorem due to Lebowitz [17] and 
Simon [27] says that the expectation ( - - ) ( f l ,  z) clusters if and only if the effective 
potential function clusters. So we are left with showing 

( dp(O)~)(x) )(fl, z) ~ O, as [x[-~ oo. 
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By Theorem 4.3, (2) 

0 _ ( I ~(f) l 2 > (fl, z) <_ ~ dVk I ff(k) 12 
for allfwithf~L~°(~v). Hence 

0 <_ (6(k)6( - k))(fl, z) <_ re(k), 

in the sense of measurable functions. Together with (4.17) this implies that 

( 6(k)6( - k)) (fl, z)~Ll(W). 

By the Riemann-Lebesgue lemma, 

( ~b (0) q~(x) ) (fl, z) = (2re)- v/2 ~e- ,kx ( 4 (k)6 ( - k) ) (fi, z)d"k 

tends to 0, as Ix] ~ ~ .  Q.E.D. 

Remarks. 1. Theorem 4.4 proves that in the sense that the expectation ( - - ) ( f l ,  z) 
is clustering (and hence is ergodic under translations) there are no phase transitions 
in those gases that satisfy the hypotheses of Theorem 4.4. We conjecture that, for 
these gases, ( - - ) ( f l ,  z) is the only Gibbs equilibrium expectation in the thermo- 
dynamic limit. A partial result in this direction may follow by adapting the methods 
of [19, 20, 11], certainly for the lattice gases. Our conjecture ought to be true for all 
the classical gases with two body potentials of positive type converging to 0, 
as Ix-x'l-  ~ which satisfy the neutrality condition (1.4). 

2. Theorem 4.4 applies to the classical, neutral two-component Yukawa gas 
in two dimensions studied in [6], for all fl and z, besides a large class of lattice gases, 
including lattice Coulomb gases in v > 3 dimensions [7], already mentioned in the 
proof. These lattice gases are of considerable interest for the theory of higher order 
phase transitions and gauge quantum field theories; see [7, 9]. 

Next, suppose that the potential Vhas the property that 

V(q,x; q,x) = v(q) 

is independent of x. 
We then define 

d2p(q) = e-~a/2~v~q~d).(q). 

Theorem 4.5. In addition to the hypotheses of Theorem C, resp. QM assume that, 
in the definition of ( - - ~  (fi, z), the measure d~ is replaced by d2a. (This amounts to 
undoing Wick order). Then fl ( [ O(f)[e)(fl, z) is monotone increasing in ft. In parti- 
cular 

fi ( 6(q, k)6(q, - k) ) (fl, z) and fix(q, fl, z) 

are monotone increasing in ft. 

Proof. This follows immediately from identity (4.9) and Corollary 3.2, (2). 
Q.E.D. 

Remarks. The monotonicity properties of fl;((q, fl, z) in fl and z (see Theorem 4.3) 
are useful in the theory of higher order phase transitions, in particular in the 
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discussion of Debye screening [2] and its breakdown [7, 9] in Coulomb-type 
lattice gases. 

The following result, valid under the hypotheses of Theorem C, resp. QM, is 
an inequality for an Ursell (connected) function "inverse" to the well known 
Lebowitz inequality for Ising models [18]. 

Theorem 4.6. ("Inverse" Lebowitz Inequality). Let h( (q) 4 ;(x)4) be some measurable 
function on (Q x R~) ×4 with the property that (h, f  @ f @ f @ f )  > O, for all real, 
measurable functions f on Q x ~". Then 

.( 1-[ d2(qi)d'x~h((q)4 ;(x)4 (qj,xj (fl, z) > 0, 
i = 1  \ j = l  / 

where ( - -  ) c(fl, z) denotes the connected (truncated) expectation. 
The proof of this theorem is sketched in Appendix 2. Although this inequality 

can be used, in both case C and case QM, to derive upper bounds on (O/Off)[fix(q, 
fl, z)]-a and other quantities involving the effective potential function, it might 
not be much more than a curiosity. Some applications of it are made in [9]. (Note 
that first order perturbation theory in z predicts Theorem 4.6). 

Remarks. In the case of lattice gases (~v replaced by Z v) the limit z ~ + ~ is 
of considerable interest, as it yields important, classical lattice spin systems. As 
an example we mention that the z = + oo limit of the lattice Coulomb gas is the 
dual Villain ("integer bed spring") model which in two dimensions is closely related 
to the classical rotator model [16] and the abelian Higgs lattice gauge theory [7]. 
For these limiting systems all the correlation inequalities of Sections III and IV 
and their consequences hold and provide information about the thermodynamic 
limit and the critical behaviour of such lattice spin systems. In this connection it 
is of interest to note that exponential Debye screening in the lattice Coulomb gas 
breaks down, and Z(fl, z) is infinite, for all those fl for which the limiting dual Villain 
model has infinite susceptibility: A consequence of Theorem 4.3, (2). See also [9]. 

5. Generalizations and Comments 

In this section we sketch generalizations of the results of Sections 1-4. We content 
ourselves with giving the main ideas only, omitting full details. 

First, we consider a class of two body potentials of positive type satisfying a 
Dirichlet type decoupling property and we add a positive potential to them. We 
are interested in constructing the thermodynamic limit for the pressure. Let 
V(q,x;q', x') be a translation invariant two body potential of positive type. Let A be 
an open region in R ~. We assume that we can impose Dirichlet type boundary condi- 
tions on V : V  ~ V A, with the property that V a still has all the properties of V 
stated in Section 1 (positive type, neutrality condition (1.4), etc.) and, in addition, 

Va(q,x ;q',x') -- 0 (5.1) 

if x and x' are separated by 0A; and 

Va -1 > VZ 1 (i.e. V~ >_ VA) (5.2) 

if0A ~ 8A, (in the sense of quadratic forms). Let V+(x - x') be an additional, trans- 
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lation invariant, positive potential (e.g. a hard core type potential), and set 

V]°" = V a + V+. (5.3) 

Let F.A(fl, z ) denote the partition function of the (classical or quantum 
mechanical) system of distinguishable particles confined to the region A, interact- 
ing via two body potential V]°t'and with a self interaction½(V - VA)(qj,x J ;qj ,x) .  
Finally Pa(fl, z) is the pressure of this system. 

Theorem 5.1, I f  A - ,  N v, in the sense of  van Hove, 

lim pa(/?,z) - p(~,z) 
A ~ R v 

exists. 

Remarks. Again no assumption on the range of V and V÷ have to be made to prove 
the existence of the limit of PA(B,z), as A?R ~. However, in order to show that 
p(13,z)= l impa(/~,z)>0 (i.e. p(/?,z) is non-trival) an additional argument, not 

A~R ~ 
discussed here, is required. This yields restrictions on the range of V+, e.g. temper- 
ing, [25]. Theorem 5.1 applies e.g. to the classical, two component Coulomb 9as 
in any number of dimensions, provided the particles have a hard core which makes 
the system stable. (For the case of two dimensions see [6] ). Theorem 5.1 is of some 
interest, because it gives a construction of the thermodynamic limit of the pressure 
even for systems with long range interactions that include positive potentials. 
Such systems are expected to have phase transitions (formation of crystals, etc.) 
which do not seem to occur in the systems considered in Sections 1-4, (see Theorem 
4.4 l). Another (possibly more satisfactory) version of Theorem 5.1 appears in [9], 
where no use of Dirichlet boundary conditions is made. 

Proof  First we recall the estimate 

1 < 3a(fl, z ) < e ¢K'IAI, (5.4) 

where z and ~ are positive, and K¢ is independent of A. The lower bound is trivial, 
the upper bound is proven as follows: Clearly ~a(fl, Z) increases if we set V+ - 0. 
When V+ w. 0 (5.4) is Theorem 2.1, (1) which is still true in this case, because we 
have assumed V a to share all properties of V. Some standard arguments that we 
do not reproduce here (see [25, 21, 15] ) show that estimate (5.4) reduces the proof 
of Theorem 5.1 to the following problem: Let A be an open cube and A = {x : 

1 x ~ A } , n  = 2, 3, .... Show that 
n 

pa,(/?,z) converges, as n --, oo. (5.5) 

To prove this, we cover A with n ~ disjoint copies of A. The resulting open 
set is denoted A,. With A we associate the partition function ~.(/~,z) of the 
system in A,, which has the property that particles located in different copies of 
A do not interact with each other. This means that 

~.,~,(j~, Z) = ~-,~A(/~, Z) nv . ( 5 . 6 )  
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/Iv 

Let U~.(ml, . . .  ,re, v) denote the potential of ~ mj particles with two body 
j = l  

potential V+ ,mj of which are located in the jth copy Aj of the cube A, subject to 
the restriction that all interactions between particles in different copies of A are 
omitted; the total potential without this restriction is denoted U + (m 1 . . . . .  re, v). 

Since V+ is positive, we have 

e -v÷(m''''''m''~) <-- e -v].(mt'''''m"v), (5.7) 

pointwise. 
Furthermore, 

H e(P/2)v(q~J'°;q~J'°)cos c~(qlj,xzj ) 
l j  = 1 V A n  

m.i 

<- I-[ e(a/2)v(q'J'°;q'J'°) cos ¢(qt~,xb) (5.8) 
l i = 1 I V f l  n 

by Corollary 3.2, (1). 
Hence 

~a,(fi, z) < ~a,(fl, z), (5.9) 

by (5.7), (2.3) and (5.8). Combination of (5.6) and (5.9) implies that pa,([3, z) is mono- 
tone decreasing in n, i.e. we have proven (5.5). Q.E.D. 

Our last generalization concerns extending our construction of the 
thermodynamic limit of the pressure to classical or quantum mechanical systems 
of distinguishable particles interacting via translation invariant two body potentials 
of positive type with logarithmic singularities at 0 distance. For simplicity we 
only consider the case 

V(q,x ;q',x') = q'q' V(x - x'), 

where qC)= _+ 1, 

const log[ i + 21 
and 

VeLl(~V, dVx). (5.11) 

For such potentials we prove some sort of stability (see [6]) at high enough 
temperature. 

Theorem 5.2~ For the systems introduced above the thermodynamic limit of  the 
pressure (with boundary conditions as in Theorem C, resp. QM) exists and is finite 
for all fl < flo(V), where flo(V) is some strictly positive, but generally finite constant. 

Remarks. (1) If the upper bound on V(x) assumed in (5.10) is saturated for small 
[x I then there exists some ]~o(V) such that e pv(x) is not integrable at x = 0, for all 
fl _> flo(V). In this case the system collapses at some temperature flo 1 _> ~o(V )-  1. 
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The estimates on rio = rio(V) obtained in the proof of Theorem 5.3 are rather 
crude and give rio(V) < ~o(V), whenever v > 2. 
(2) We have also proven that the "correlations"<VIt~p(qi,xi)>a(ri, z) (in the nota- 
tion of (4.12) and Proposition 4.2) converge as A T RL This follows from Theorem 
5.2 and the observation that < e ~(-° >A(fl,z)is monotone decreasing in A (another 
simple correlation inequality) and bounded for A = 0, for all f ~ 5f. For the standard 
correlation functions an analogous result requires a proof of uniform upper bounds 
which is non-trivial and not attempted here. 

Proof Using Theorem 3.1, (1) we see that Theorem 5.2 is true, once we have proven 
stability in the form of an exponential upper bound on the partition function for 
small enough/3; see [6]. The Golden-Thompson inequality shows that it suffices 
to prove stability in the classical case. (This also implies stability for the correspond- 
ing quantum system with Fermi statistics, for arbitrary ri, [6]). 

The basic idea is now to reduce the proof of stability to the one for the two 
dimensional, two component, classical Yukawa gas given in [6]. Simple considera- 
tions show that, given a potential V satisfying (5.10) - (5.11), there exists a potential 
W of finite range R with the properties 
(1) W is of positive type, 
(2) ITV(k) > ~'(k), for all k~ R ~ ; (i.e. W > V in the sense of quadratic forms), 

(3) I W(x)] < const' l o g ( ~ ]  + 2 ) .  

Let ~v(ri, z), ~]r(ri, z) denote the grand canonical partition functions for poten- 
tials V, W, respectively. 

If we apply Wick ordering (see Eq. (2.3)) on both sides of the conditioning in- 
equality (Theorem 3.1, (2)) we obtain 

za (ri, z) ___ z); (5.12) 

see [6] for a detailed discussion of such inequalities. Hence it suffices to prove 
stability for Eaw(ri, z). By monotonicity of ~w(ri, z) in A, proven in Theorem 3.1, (1) - 
we may assume A to be a union of cubes A~ with sides of length 4R. We divide each 
cube A i of this cover of A into T disjoint cubes A~, I = 1 .... ,2 ~ with sides of length 
2R; clearly dist (A~,A~,) > 2R, for j 4 f ,  (independently of/). By Equation (2.11) 
of Section 2 we have 

•w(ri, z) = < e~C~a >w, (5.13) 

and, by definition (2.9) of d A, 
2 v 

C~a = Z EC~) • (5.14) 
I = 1  j 

We now apply the H61der inequality with respect to the Gaussian expectation 
< - -  >w to separate adjacent cubes: 

z (ri, z) = e .... /w 
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z~Caj 
= e J 

I w 

/ 2~z2c'~ \ 2-v 
< l i k e  ~ ~) . (5.15) 

1= 1 \ / W  

(The idea of separating adjacent cubes and using inequality (5.15) in the proof of 
stability is taken from [6] ). Next we recall that 

dist (A~, A~,)_ 2R, 

for all 1 and j  Cj ' ,  but that the range of Wis R. Hence 

j --W' 

= ] ]  ( e2~c~ >w, (5.16) 
J 

by inspection. 
By translation invariance the factors on the r.h.s, of (5.16) are independent of 

j and L Thus stability is proven if we can show that ( e  2~zc§ >w is finite, where 
A° AI. 

For v = 2 this follows from [6], for small enough /3, (temperature above 
collapse temperature). The same methods that were developed in [6] for v = 2 
also work for v = 1. For v > 3, we note that 

z~'zS a~ax2 (-I ax~,:eos #~/2~(x): 

~I  2Vz(2R)v- 2 ~ dx ldx2 ,  cos fl l /2~(x) 2 
_< (2R)- ~ + 2 S dx~e . . . . . . . . .  , 

O<<-x~<2R ~ = 3  

by Jensen's inequality. Using the linearity of ( - - ) w  and translation invariance 
we conclude 

( 2Vz(2R)V-2 S dxldx2 pl/2#~(x):) . . . .  
<e2~c~> w < e o~ . . . . . . .  . (5.17) 

W 

By applying conditioning (Theorem 3.1, (2)) once more the r.h.s, can be domi- 
nated by the partition function of a two dimensional Yukawa gas in a square with 
sides of length 2R, at activity z' = 2Vz(2R) ~- 2 and inverse temperature/3'  = C/?, 
where C > 1 is some finite constant. The latter has been shown to be finite for 
(/~,)2 < 4re; see [6]. This proves stability for/~2 < 4•C-2( < fl0(V)2). 

Q.E.D. 

R e m a r k s .  As noted, the estimates used in the proof  of Theorem 5.2 are rather 
crude, in particular (5.17) is a bad estimate. It yields stability only when fl is such 
that 

e < for Ixl 1, 



262 J. Fr6hlich and Y. M. Park 

whereas the correct condition should probably be 

e pv(~) < O(Ixl-~), for txl ~ 1, 

as is the case for v = 1, 2. 
(2) Uniform estimates on the correlation functions haye been proven in [6, 11] 
for v = 2, and the techniques developed there also work for v = 1. For  v > 3 
new methods are needed. It would suffice to show that <-- )a( f l ,  z) is locally L p 
with respect to ( - - ) w ,  with an L p norm bounded uniformly in A. For  v = 1, 2 
this can be shown using a "transfer matrix", [11]. For v _> 3 such transfer matrices 
do not exist. 

N o t e  A d d e d .  After completion of  this paper we learned of  work by A. J. F. Siegert, Ref. [29], which 
contains most of  Section 2. We thank A. Lenard for informing us of  Ref. [29]. We also thank E. B. 
Davies for several helpful comments. 

Appendix 1 

In this appendix we indicate briefly how to construct imaginary time Green's 
functions (ITGF's) for the gases of distinguishable, quantum mechanical particles 
considered in this paper. The hypotheses of Theorem QM are adopted throughout 
this appendix. 

In a system of infinitely many particles we single out N specific particles. 
{Xl,Zl}l = 1 of space points x~ A "configuration" cj of the jth particle is a collection J j L, 

and imaginary times z~ with < j J 0 - ~ 1 < . . . < T 1  <ft. 
We propose to construct the joint probabi'lity 

p(fl, z;c 1 . . . . .  c N) (A.I.1) 

o f  the configurations c l , . . .  ,c N of N particles with generalized charges ql . . . . .  qN 
in the Gibbs state at inverse temperature fl and activity z, in the thermodynamic 
limit, defined by the condition that the imaginary time path ~oj of the jth particle 
obeys the restrictions 

~oj(z~) = x{, I = 1, . . . ,  L j, 

for all j = 1 . . . . .  N. 
First we derive an expression for this probability in the case where the system is 

confined to a bounded, open region A c ~*. It has an obvious definition in terms 
of the kernel 

P~a( (q)N ;(X)N,(X')N) 

of the Hamiltonian semigroup exp [ - zHNa((q)N)]: Let {s~}L= 1 be a permutation of 
N 

the set U {z]}L~ 1 with the property 
j = I  

0~---S 1 <~S 2 < . . .  < £ S L •  f t .  

Let n k be a permutation of {1 . . . .  , N} such that 

'177~(1) = ~_ -Cm~(Nk) ~ .  Sk , 
• , • lN k 
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for some 11 . . . .  , IN~, and z'ff (") ~ s k, for all m > N k and all I = 1 . . . . .  L~(m ) . 
Then 

zN+M 
pA(fl, Z;Cl . . . .  ,CN)--~A(fl, Z) -1 ~ m T 

M=O 

" I d2(q')MI" I dVx k d" k, "'" ~k(J) tY )M 
QM A A k = I  j =  1 

L - 1  

• H p~k., -~k((q)N(q')M ;(Xk)N(3P)M' ( xk + 1)N(Yk + 1)M ) 
k= l  

.p~-sL +~((q)N(q,)M;(Xl)N(Yl)M,(XL)N(yL)M). (A.1.2) 

We propose to reexpress the r.h.s, of (A.1.2) in terms of functional integrals. 
Given a configuration c = {Xz,Zl}L=I, let Pr~a(q,c;da~) be the conditional Wiener 
measure concentrated on all paths coco with the properties 

co(~)~A, for all 0 _< z < fl 

¢0(~1) = x t, l = 1 . . . . .  L, 

determined by the Laptacean with 0-Dirichlet data at 0A. 
Let I;m,~ l denote the o-algebra on path space ~2 generated by all functions 

f(~o(s 0 . . . . .  co(s,)),feC(NV"),n = 1, 2, . . . ,  with ~1 -< sl < ... < s, _< z 2. 

Lemma A.I.1. Let  F 1 be a Nm,~l-measurable function on f2 and F 2 a Xm,~3 l- 
measurable function on fZ 

Then 

I d~x I Pr~4 ~- ~(q, x l,  x ;&o)F 1 (e)) ~ Pr~ ~- ~2(q, x, x 2 ;do~)F2(co) 
A FX 

= ~ Pr~-~(q ,x  1 , x  2 ;doo)Fl(o~)F2(~o). 

Remark. This equation is well known, so that we omit the proof• 
From the Feynman-Kac formula (1.18), definition (A.1.2) and repeated appli- 

cation of Lemma A.I.1 we obtain, upon comparison with (2.14)-(2.17). 

Theorem A.1.2. pA(fl, Z;Cl , ... ,CN) 

N "e  i ! d r ~(qj ,  re.i(7:), T:) 
= eA(fi, z ) -  ~zN ]-I f Pr~(qi, cj ;do, j) .  :e ~c~ . 

j = l ~  

By construction of the Wiener measure for the Laplacean with O-Dirichlet 
data at 0A it follows immediately that 

Pr~(q,c;dco) 

is monotone increasing in A. This permits us to apply the correlation inequalities 
of Section 3 to show that Pa(fl, z ; c l , . . . ,  cN) is monotone increasing in A. 

Assuming that sup V(q,x;q,x)  is finite, the methods of Section 2 yield uniform 
q,x 
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upper bounds on pA(fl, Z;Cl,...,CN) , and this combined with monotonicity in 
A proves the existence of the thermodynamic limit. 

Remark. From the collection {p(fl, z;cl , . . . ,  c~,,)}, for arbitrary c l . . . . .  c N arbitrary 
N -- 0, 1, 2 . . . . .  one can reconstruct a f l - - K M S  state by analytic continuation in 
the time arguments; [26]. 

A p p e n d i x  2 

Here we prove the "inverse" Lebowitz inequality of Theorem 4:6, i.e. 

S 1-I dX(qi)d~'xih((q)4 ;(x)4) 4)(qj,xj) (fl, z) >_ O, 
i = 1  j = l  

for all h, for which 
4 4 

S l-I d~(qt)d~xih((q)4;(x)4) I-I f(qi,xi) >- 0, 
i = 1  i = 1  

for arbitrary real functionsf on Q × W. 
Our proof of this inequality is presented within the general framework 

introduced in Section 3, and the notations used there are kept throughout this 
appendix. Following [18] and [28] we introduce four independent copies of our 
system, i.e. we make use of four independent random fields qS, z,~b' and Z' with 
identical distribution given by the probability measure 

d#(¢) - ~(C,p) -1 exp {~.dp(x) cos dp(lx)}d#c(¢), (A.2.1) 
x 

where dPc is the Gaussian measure with mean 0 and covariance C; see Section 
3 for definitions. 

Next we define four new random fields a, fl, y, a by the equations 

~=½(~+z+ ¢'+/),/~ -1  4,' } - 3 ( 4  + Z - - ; ( )  ( A . 2 . 2 )  
"l=}(¢-z+~b' ' ~  1 -z ) ,  =~(¢ - z - 4 / + / )  
These equations define an orthogonal transformation of ~4; (see [28]). By 

the arguments given in Section 3 we have therefore 

d#c(qh)d#c(z)d#c(dP')d#c(Z') = d#c(~)d#c(fl)d#c(7)d#c(a). (A.2.3) 

The inverse of (A.2.2) is given by 

¢=½(~+/~+~+o),z=½(~+/~-~-~),  } 

~b' a =~(c~-/~+ ~ a),/ - = ~(~ -/~ - ~ + a) . (A.2.4) 

Equations (A.2.4) and the trigonometric identities used in Section 3 give 

cos q~ + cos )~ + cos qS' + cos )( 

= { c o s ( ~ ) c o s ( ~ ) c o s ( ~ ) c o s ( ~ ) +  s m ( ~ ) s m  ( ~ ) s m  ( ~ ) s i n  ( 2 ) } '  

(A.2.5) 
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as is verified on three lines. 
We define 

F = 4~ ' " " {~(lx)'~cosffi(tx)'~ os/7(/x)'~ 

and 

. . . .  /a(/x) '~ " (fl(2/~)) sin ( 2 ~ ) )  sin ( ~ )  • (1.2.6) 

From (A.2.1), (A.2.3) and (A.2.5)-(A.2•6) we conclude d~(4)d~(z)d~(#)d,(z') 

= ~(C,p)-%zre~Xdl%(cOd#c(fl)dPc(y) disc(a). (A.2.7) 

Next, let {f~} be some sequence of vectors in the real Hilbert space ~" (see 
Section 3), and let h(i,j, l,m) be a function with the property that 

h(i,j,l,m)cicjqc,. >_ O, (A.2.8) 
i, j , l ,m 

for all real sequences {c j}. Furthermore, let ( - - )  be the expectation given by the 
measure defined in (A.2.7). Expanding e ~r and e ~z in the measure defined by the 
r.h.s, of (1.2.7) we find 

h(i,j, 1, m) (~(f~)fl(fj)~(f~)a(fm) ) 
i , j , l ,m 

zk+k" k k' 

= E(C,P) -4 ~ ~ S [ I  dp(xi) S 1-I dp(yj) 
k ,k '=O '*" , ' * J 'Xk i= l  X k j = l  

h(i,j, l,m) (a(fl) ) ( (X)R(Y)k') 
i, j , l ,m 

• (fl(f~)} ((X)k(Y)k') (~( f t ) )  ((Xk)(Y)k') (a(f, ,)  } ((X)k(Y)k,), (A.Z9) 

where (a(f))((X)k(y)k,) 

= Sdtzc(a)a(f) 1-I c o s /  - '  / 11 sin = (fl(f)}((X)k(Y)k,) = .... (A.2.10) 
~=1 \ 2 }j=l 

By (A.2.8) and (A.2.10) the integrand of each term in the sum over k and k' 
on the r.h.s of (A.2.9) is non-negative. Hence 

h(i,j, l, m) (a(f~)fl(fj)7(ft)a(fm) ) >- 0 (A.2.11) 
i , j , l ,m 

Using the fact that ( - - . )  is even in ~, Z, qS', and Z' we verify easily that 

4 (a(f~)fl(fj)7(f~)a(f,~) } -- (qS(~)~b(fj)q~(f~)qS(fm) }cCp (A.2.12) 

by reexpressing a, fl, 7 and a in terms of ~b, Z, qS',)( by means of (A.2.2) and using the 
fact that ~b,)~, q7 and X' are identically distributed. Inequality (1.2.11) and (A.2.12) 
give the "inverse" Lebowitz inequality, so that Theorem 4.6 is proven. 

We leave it to the reader to apply (A.2.2), (A.2.5) and (1.2.7) to the proof of many 
other inequalities of the type of the "inverse" Lebowitz inequality• 
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