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ABSTRACT. We give several complements to the paper 'The Bruhat order on symmetric varieties'. 
Our main result shows that the partial order on the set o¢ of twisted involutions in the Weyl 
group W,, which was introduced in the earlier paper, agrees with the partial order on J induced 
by the usual Bruhat order on W. 

In this note, we give several complements to the paper [4], 'The Bruhat order 
on symmetric varieties', which appeared in Volume 35 of this journal. 

1. THE PARTIAL ORDER ON TWISTED INVOLUTIONS 

We follow the notation of [4]. It was stated in the Introduction to loc. cit. that 
the partial order ~ (the 'standard order') on the set J of twisted involutions 
in the Weyl group W, which was introduced in Section 8 of the paper, was 
distinct from the order induced on J by the usual Bruhat order ~< on W. In 
fact, these two partial orders on J agree. We give a proof below. The proof 
depends on the following standard lemma on the Bruhat order (see [3, 
Property Z(s, wl, w2)]): 

T H E  Z-LEMMA. Let  s 6 S  and let x, y e  W. (1) Assume that x < sx and 

y < sy. Then the following three conditions are equivalent: (i) y ~< x; (ii) sy ~< sx; 

and (iii) y ~< sx. (2) Assume that x < xs and y < ys. Then the following 

conditions are equivalent: (i) y ~< x; (ii) ys ~< xs; and (iii) y <~ xs. 

It follows from Lemma 8.1 and Proposition 5.6 of [4] that if a, b E J and if 
a ~ b, then a ~< b, so it will suffice to prove that if a ~< b, then a ~ b. The proof 
is by induction on l(b), where l denotes the usual length function on W. The 
result dearly holds if l(b) = 0. Assume that l(b) > 0 and let s 6 S be such that 
s b < b .  

CASE 1. Assume a < sa; note that this is equivalent to a < aO(s). It follows 
from the Z-lemma that a <<. sb. 

CASE 1.1. Assume that s is real for b, hence that sb ~ J .  Then a <~ sb < b. It 
follows from the inductive hypothesis that a ~ sb and clearly sb ~( b, which 
shows that a ~( b. 
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CASE 1.2. Assume tha t  s is complex  for b. Then  we have s o b = sbO(s) < sb 

and  a < aO(s). I t  follows f rom the Z - l e m m a  tha t  a ~< s o b. By the induct ive  

hypothes is ,  we then ob t a in  a _~ s o b ~( b. 

CASE 2. Assume  tha t  sa < a. It  then follows f rom the Z - l e m m a  tha t  

sa <~ sb.  

CASE 2.1. S is real  for b. Then  we have s o a <<. sa <. sb = s o b < b. By the 

induct ive  hypothes i s  s o a _~ s o b. Hence,  by 8.2, 

a = re(s) * (s o a) ~_ m(s)  * (s * b) = b. 

CASE 2.2. S is complex  for bo th  a and  b. Then s o a = s a O ( s ) <  sa and  

s o b = sbO(b) < sb. By the Z- l emma,  s o a ~< s o b. The  p r o o f  now follows as in 

Case 2.1. 

CASE 2.3. S is real  for a and  complex  for b. Then  s o a = sa  < saO(s) = a and  

s o b = sbO(s) < sb. By the Z- l emma,  s o a ~< s o b, and  the p r o o f  again  follows 

as in Case  2.1. 

This  comple tes  the  proof.  

W e  no te  tha t  the (incorrect)  s t a tement  tha t  the two par t i a l  orders  on J 

were different was no t  used anywhere  in [41  and  so does  no t  affect the  rest of 

the paper .  

The  proofs  in Sect ion 8 of  loc. cit. are somewha t  unsat isfactory,  since the 

p r o o f  of  P r o p o s i t i o n  8.5 uses p roper t i e s  of the K-o rb i t s  on G / B .  If  we use the 

above  resul t  tha t  the  two pa r t i a l  orders  on J a re  identical ,  we can give direct  

comb ina to r i a l  proofs  of  all of the results  of  Sect ion 8. P ropos i t i ons  8.5, 8.11, 

8.12 and  8.13 of  tha t  sect ion all fol low from P r o p o s i t i o n  8.14 and  the general  

results  of  Sect ions 5 and  6. Thus  it will suffice to  give a c omb ina to r i a l  p r o o f  of  

P r o p o s i t i o n  8.14. 

P R O O F  O F  P R O P O S I T I O N  8.14. Assume tha t  a < s o b and  b < s o b. We  

mus t  p rove  tha t  e i ther  (i) a ~< b or  (ii) s o a < a and  s o a < b. Since b < s o b, we 

have b < sb and  thus  s is e i ther  complex  o r  imag ina ry  for b. Again  we need to 

cons ider  several  cases. 

CASE 1. s imag ina ry  for b and  a < sa. Then  b < s o b = sb. I t  follows from 

the Z - l e m m a  tha t  a ~< b. 

CASV 2. s imag ina ry  for b and  sa  < a. Clear ly  s o a < a. Since sa < a, b < sb 

and  a < sb  = s o b ,  it  follows from the Z - l e m m a  tha t  sa < b. Thus  

s o a <~ sa  < b and  (ii) is satisfied. 

CASE 3. s is complex  for b and  s is imag ina ry  for a. W e  have a = saO(s) < sa 

and  sb < sbO(s) = s o b. Since a < s o b, the Z - l e m m a  implies  tha t  a <~ sb. We 
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also have b < sb and a < sa. The Z- lemma now implies that a ~< b. 

CASE 4. S is complex for b, a < aO(s), and s is complex for a. Then a < aO(s) 

and sb < sbO(s) = s o b. The Z- lemma implies that a <<. sb. Since a < sa and 

b < sb, another application of the Z- lemma shows that a ~< b. 

CASE 5. s is complex for b and aO(s) < a. We have sb < sbO(s) = s o b and 

aO(s) < a. By the Z-lemma, aO(s) <~ sb. (1) Assume that s is complex for a. 
Then s o a = saO(s) < aO(s) and b < sb. The Z- lemma implies that s o a ~< b. It 

is clear that s o a ~ b. Thus (ii) is satisfied. (2) Assume that s is real for a. We 
have b < sb and s o a = sa = aO(s) < a. By the Z-lemma, s o a ~< b and, again, 
s o a ~ b. Thus (ii) holds. 

This covers all possible cases and completes the proof  of Proposit ion 8.14. 

REMARK.  All of our definitions carry over to the case of arbitrary Coxeter 
groups W = (W, S) and the proofs also carry over if W is finite. Thus the 

results of this section (and the results 8.5 and 8.11-8.14 of loc. cit.) hold for 

twisted involutions in finite reflection groups. However, if W is not finite the 
proof  of Lemma 8.1 does not hold, since it makes use of the longest element 
Wo of W. Thus it is not clear that Our results hold for arbitrary Coxeter groups. 

We suspect that the results do hold for Coxeter groups. 
We would like to clarify another comment  in the Introduction to [4-1. On 

line 5 of page 392 in loc. cit, it is stated that 'The map q~: ~ e - ~ J  defined above 
is compatible with the respective Bruhat orders'. However, this result is not 

clearly stated and proved in the body of the paper. We give the appropriate 

lemma below: 

L E M M A  1.1. I f  v', v ~ ' l /  and if  v' < v, then q~(v') < q~(v). 

P r o o f  We need the following result, which is an easy consequence of 

Lemmas 7.2 and 7.4: 

(1) Let vE V and s e S ,  with v<m(s ) . v .  Then tp(v)<~o(m(s) . v )=m(s)  *q~(v). 

Now let k denote the weak order (on both V and J ) ,  as defined in 5.1. It  
follows from (1) that ifv'  ~- v, then q~(v') f- ~o(v). Since the Bruhat order on V and 
J is the 's tandard order '  defined in 5.2 of [4], the lemma now follows. 

2. P R O D U C T  OF A M I N I M A L  P A R A B O L I C  A N D  A D O U B L E  C O S E T  

In Section 4 of [4], we analyzed the decomposition of the product Ps(9~ of a 
minimal parabolic subgroup P~ and an orbit (9 v into (B x K)-orbits. In the 
'Case Analysis' of loc. cit. 4.3, no proofs are given and there is only a reference 
to some parts of [5], from which the relevant results can be extracted, with 
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some effort. In this section, we will give a more satisfactory discussion of 
decomposition of P~ (9~. 

2.1. Preliminaries 

If v e V and s ~ S, then m(s)" v is defined in [4, 4.7] and we write v --* m(s). v if 
v # m(s).v. 

Let s ~ S, let x ~ ~ and let TxK = v e V be the corresponding (T x K)-orbit. 

Thus (9 v = BxK.  Let P1 --- x - 1 P s x ,  let B1 = x - 1 B x  and let T 1 = x -  ~ Tx. Let 
@l = Int(x-iX@) = @(T1, G), let @[ = Int(x-~)(@+), let A1 = Int(x-1)(A) and 
let fl = Int(x-  iX,t) ~ A1. Since x ~ ~ ,  the maximal torus T1 is 0-stable and thus 
0 acts on the root system @l. For  each ~ ~ @l, let U r be the root subgroup 
corresponding to 7, let X r be a non-zero element of L(Ur), the Lie algebra of 
U r, and let G r be the (rank one semisimple) subgroup of G generated by 
{Ur, U_r}. Let s r e W(T1) denote the reflection corresponding to 7- 

Let ~(P1) be the variety of Borel subgroups of P~, let 
h:P1--* Aut (~ (P1) ) -  Aut(pl(F)) be the obvious homomorphism and let 
H = h(P l c~K). It is shown in 1"4,4.2] that there is a canonical corre- 
spondence between the H-orbits on ~(P~) and the (B × K)-orbits on G. The 

correspondence goes as follows: Let B2 e ~(P1), so that B2 = gB1 for some 
#eP1-  Then the H-orbit  of B 2 on ~(P~) corresponds to the (B × K)-orbit 
Bxg - 1K. 

Let n = xO(x-1). Then n ~ N(T)  and n represents ~p(v) = a. It is clear that 
Int(n) o 0 = Int(x)o 0 o Int(x-1). Hence Int(x-1)(aO(~)) = 0(fl). Thus ~ (or s) is 

complex (respectively real; imaginary) for a if and only if 0(fl)# ___fl 
(respectively 0(B) = - f l ;  0(fl) = fl). Note that if s is real (respectively imagi- 
nary) for a, then sa < a (respectively sa > a). 

2.2. The complex case 

In 2.2, we assume that 0(fl) ~ + ft. Set 

Z = @~ u { - f l }  = @(T l, P1) and F = E c~ 0(E) = @(T l, P1 c~ 0(Pl)). 

Let Ur be the subgroup of G generated by { Ur [ ~ e F}. It follows from [2, §3] 

that P1 n 0(P1) = T1Ur. 

LEMMA 2.2.1. U r is a O-stable unipotent 9roup normalized by T 1. 

Proof  It is clear that Ur is 0-stable and is normalized by T1. If O(fl)e @+ 

then F c @i ~ and Ur is contained in R,(Bx), the unipotent radical of B 1. If 

O(fl) < 0, then F c sp(@ +) and Ur c R,(spBlsp). 
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LEMMA 2.2.2. I f  U' is a connected P-stable unipotent subgroup of  G, then 

L(U') ° = L(U'°). 
Proof  By [1, Prop. 9.3], the product map z(U') x U '° ~ U' is an isomor- 

phism of varieties, so that L(U')= Te(z(U'))O)L (U'°), where T~(z(U')) denotes 
the tangent space at e e  G of z(U'). Since O(z(9)) = z(9)- 1 for every 9 E G, we 
have O(X) = - X  for X ~ T~(z(U')). Thus L(U '°) is the + 1 eigenspace of 0 on 

~4u'). 

P R O P O S I T I O N  2.2.3. I f  s is complex for a, then H is solvable and 

R.(H) # {0}. 
Proof. By Lemma 2.2.1, P l n O ( P a ) =  TIU r is a solvable group, and 

consequently H = h(Pa n K)  c h(Px n O(PO) is solvable. Assume that 

O(fl)~¢~. Then f i e f  and therefore Xp ~L(Ur). Thus 

(Xa + O(Xp))~L(Ur) ° c L(P1 c~ K). 

Now O(fl)E(~+\{fl}) and therefore O(Up) c R , ( P 1 ) c k e r n e l ( h ) .  Thus 
dh(Xp) = dh(Xa + O(X¢))~ L(H). Now the differential dh maps/-(Ga) isomor- 
phically onto L(Aut(~(P0), so that dh(Xa) is a non-zero nilpotent element of 
L(H) and R,(H)  ~ {0}. If 8 ( -  fl)e (I)~-, a similar argument shows that dh(X_a) 
is a non-zero nilpotent element of L(H). 

LEMMA 2.2.4. Assume that s is complex for a. Then Ps(9~ = Co u (gs. v and 
s" v # v, so that there are two (B x K)-orbits in P~ (gv. We have cp(s. v) = saP(s). 
(1) I f  a < sa, then v ~ m(s). v = s. v, so that Os.v is open and dense in P~Cv and (fo 
is closed o f  codimension one. (2) I f  sa < a, then s'v ~ m(s)'(s'v) = v, so that 
(9~ is open dense in Ps(gv and (9~.~ is closed of  codimension one. 

Proof  By 2.2.3 and [4, 4.2], there are two orbits. By [4, Lemma 2.1], 
~p(s" v) = saP(s) # a, so that v # s. v. Thus PJ_9~ = (9~ u (9~.~. 

(1) Since s is complex for a and a < sa, we have sa < saO(s) and con- 
sequently 

z (BsBxK)  c BsBaBO(s)B = BsaO(s)B. 

It is clear that z((9~.v)c BsaO(s)B and it follows easily from this that 
v ~ m ( s ) ' v  and that m(s) .v  = s 'v .  The other conclusions of (1) follow 
immediately. 

(2) We have q~(s'v) = saO(s) < a. If we interchange the roles of s ' v  and v, 
then the conclusions of (2) follows from those of (1). 

2.3. The rank one case 

Before treating the real and imaginary cases, we briefly discuss the case in 
which G is semisimple of rank one. In this case, G is isomorphic to either 
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SL(2, F) or PGL(2, F). Every non-trivial involutive automorphism 0 of G is 
inner and any two such automorphisms are conjugate by an inner automor- 
phism. The identity component K ° of K = G O is a one-dimensional torus. K ° 
has three orbits on the flag manifold ~(G) ~ P~(F), two fixed points and one 
open dense orbit. If G = SL(2, F), then K ° = K, and the canonical action of 
the Weyl group W o n  the orbits permutes the two fixed points. If 
G ~ PGL(2, F), then K / K  ° is of order 2 and permutes the two fixed points of 
K °, so that there are two K-orbits. 

2.4. The real and imaginary cases 

We assume that aO(~) = _ ~, so that s is either real or imaginary for a. Then 

0(fl) = _+/~, so that Gp is a 0-stable rank one semisimple group. 

Now L 1 = T1Ga is a 0-stable Levi subgroup of P1. Let Tp= Gan  T 1 and 
let ZI  be the identity component of the center of L1. Then T~ is a 0-stable 
maximal torus of Gp and Ta = ZIT~. The group Z1Ru(P) is the solvable 
radical of P1 and kernel(h) ° = Z1Ru(P1). 

LEMMA 2.4.1. I f  O(fl) ~ + fl, then H ° is reductive and, if O(fl) = - f l ,  then H ° 
is a torus. 

Proof  The parabolic subgroup Px c~ O(P 0 is the semi-direct product of the 
P-stable subgroups L1 = Z1Ga and Ru(P 1 c~ O(P1)). Thus 

Ps n K = LO Ru(Px c~ O(P1)) °. 

Since R~(P 1 c~ O(P 1)) is contained in R , ( P  1) and h(R~(P l))--{ 1}, we see that 
H = h(L]). The conclusion of Lemma 2.4.1 follows immediately. 

LEMMA 2.4.2. s is compact imaginary for v if  and only if  P~(9 v = (9~. In this 
case, we have v = s . v  = m(s)'v. 

Proof  It follows from the definitions that s is compact imaginary for v if 
and only if G a c K .  If Ga q:K,  then (LlC~K) ° is a torus and 
h(P 1 c~ K )  = h(L 1 c~ K)  is not transitive on ~(P1). Thus P~(9~ = d~ v if and only 
if Ga c K. 

Assume now that the restriction of 0 to Gp is non-trivial. Let Kp = G~. 
Then C - - K ~  and T~ are maximal tori of Gp and h ( C ) = H  °. Let 
K~ = {g E Gal h(g) e H}. Then 

h(K~) = / /  and C = K~ c Kp ~ K~ c N6~(C ). 
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We note that it is not necessarily the case that Kp = K~ or that K~ = N6~(C). 

We also note that T~ = C (respectively T~ # C) if and only ifs is non-compact  

imaginary (respectively real) for v. Note  also that Z I C  is a maximal torus of 

G. 

L E M M A  2.4.3. A s s u m e  that  s is non-compact  imaginary f o r  v. Then:  O) 

v - ,  m(s).  v and s" v --, re(s)" (s" v) = re(s)" v; (ii) ~p(m(s)" v) = sa; and (iii) 

Ps(9 v = (9~ u ~.~ u Om(,).v. There  are e i ther  two or three (B x K) -orb i t s  in P~(gv, 

depending on whe ther  or not  s ' v  = v. 

Proof .  We have C = T~. Let nx e N6p(C) represent sp. The Borel subgroups 

B t and B'I = n l B l n ;  1 are the fixed points of H ° = h(C) on ~(P1). It is clear 
that n' = x n l  x -  ~ ~ N ( T )  represents s = s~ ~ W (  T).  Thus x n  x = n' x represents 

s" v. Using the correspondence between H-orbits  on ~(P1) and (B x K)-orbits 

on P~ (9~, we see that the H-orbi t  of B[ corresponds to (9~.~. The conclusions (i) 

and (iii) now follow from [4, 4.1-4.2]. 
It remains to prove that ~p(m(s). v) = sa. Let y ~ G~ be such that y -  1Cy is 0- 

stable and not equal to C. Then x y  = x y x - i x  corresponds to m(s ) . v  and 
z(y) ~ n lC .  We have z(xy) = xz (y )O(x-1)  = x z ( y ) x - l z ( x ) .  Since z(y) represents 

sae  W(T1),  we see that x z ( y ) x - 1  represents s = s~ ~ W ( T ) .  Thus z(xy) repres- 
ents sa and consequently q~(m(s), v) = sa. 

L E M M A  2.4.4. I f  s is real f o r  a, then there ex i s t s  v ' e  V such that  

P~(9~ = (9 v, ~ (gs. ~, u 0~. There  are e i ther  two or three orbits,  depending on 

whe ther  or not  s" v' = v'. Fur thermore ,  s is non-compact  imaginary f o r  v' and f o r  

s . v '  and we have: O) v ' - ,  m ( s ) . v ' =  v and s . v ' - ,  m ( s ) . ( s . v ' ) =  v; and (ii) 

~p(v') = ~o(s. v') = sa. 

P r o o f  Since s is real for v, we see from Lemma 2.4.1 that H ° is a torus. 
H e n c e H  ° has two fixed points, say B 2 and B[, on ~(P1)- It is clear that  B1 is 

not fixed by H °. Choose y ~ G~ such that y - I B l y  = B 2. Then C' = (B 2 c~ G~) ° 
is a maximal torus of G~ and is contained in K; hence C' = (G~) °. We note that 

y - lT~y  = C'Z1 is a 0-stable maximal torus of G, so that x y ~  r. Let 
v' = T x y K .  Then (9 v. c P~(9~ and s is imaginary for v'. Lemma 2.4.4 now 
follows from Lemma 2.4.3. 
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