
PETER MCMULLEN 
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ABSTRACT. Pegged filings localize the defining property of Voronoi or Laguerre tilings, and, like 
them, admit a natural duality (corresponding to the Delaunay tilings of Voronoi filings). It can 
thus be shown that the projection method, which is generally used to construct quasi-periodic 
tilings related to Voronoi filings of higher dimensional lattices, applies to this wider class of 
tilings. Of further importance is that pegged tilings are just those which can be lifted to the graphs 
of convex functions with a certain strong locally polyhedrality property. The context of convex 
functions also provides a direct way of viewing the projection method, and leads to alternative 
pictures of special cases such as various grid methods. 

1. I N T R O D U C T I O N  

The development of what is called the projection method for constructing 
quasi-periodic filings owes about  as much to non-mathematicians as to 
mathematicians, as a glance at the extensive literature makes clear. (See [7], 
[10], [12], [15], [18] for samples of this.) In what might be called the classical 
case, when it is applied to the ordinary tiling of ~n by unit cubes (the cubic 
tiling), the underlying theory is transparent enough to be dealt with by hand. 
But, more recently, the method has been generalized to filings of n:" by 
Voronoi regions of a lattice, and here the theoretical underpinnings are, 
perhaps, less obvious (but see also the recent paper [20]). One of our 
intentions in this paper is to show that the intuitive picture held by those who 
use this generalized method is correct, and, in fact, will work in a yet wider 
class of filings of ~:". 

The filings we treat, which we call pegged, are obtained by localizing the 
conditions for a Voronoi domain of a point-set. However, we set things in an 
even more general context, by working with partial filings of (part of) E". The 
global conditions for a generalized Voronoi or Laguerre tiling will clearly 
imply ours. The projection property arises because pegged tilings admit a 
duality in a natural way. Dualizing a pegged tiling, taking a general section of 
the result, and then dualizing again, yield the projection. In one sense, it is 
then better to think of the projection as the inverse of an injection back into 
the original tiling; indeed, it is possible that a misperception of this projection 
has led to some of the underlying principles being overlooked hitherto. (It is 
worth mentioning here the block or Klotz construction of [12], which is 
designed to overcome these conceptual problems.) 

Our theory has implications for the construction of quasi-periodic filings. 
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One wants here not only an essential non-periodicity, but also inflation and 
deflation operations, like those of the famous Penrose tilings. This aim can be 
achieved when the projection method is applied to a tiling whose dual is the 
Voronoi tiling of a lattice with a suitable projection. For  example, new three- 
dimensional quasi-periodic tilings were found by McMullen [ 13] in this way 
(and independently a little later in [3], [11]; [14] also contains a more 
detailed account than [13] of this as well as higher dimensional examples). 

An important  tool in our later investigations is the relation of our tilings to 
the graphs of convex functions with a strong local polyhedrality property. As 
a result, we can show that pegged tilings coincide with Laguerre tilings in a 

generalized sense. In particular, the local property of their definition extends 
to a global property. Various operations on convex functions correspond to 
operations on tilings; the special cases of the projection method which are 
known as grid methods then admit a perspicuous geometric interpretation. 

We should note here an incomplete earlier attempt in [2] (in the context of 
finite tilings, although this feature is unimportant) to establish some of our 
results. We shall discuss this further in Section 7. 

The paper falls naturally into two parts. In the first, we shall treat tilings 
entirely within one space. In the second, we shall lift tilings to convex 
functions, and this will enable us to perform various operations on them. 

Certain results proved in the first part make it self-contained; however, 
equivalent results would still have had to be proved in the second. 

Part of the research in this paper was done during the Study Group and 
Workshop on Quasicrystals held at the Zentrum ffir interdisziplin~ire 
Forschung in Bielefeld in March 1991. The meetings of the Study Group were 
very stimulating; particularly so were several discussions with Martin 
Schlottmann, whose own investigations provided a catalyst (in a somewhat 
different context; see [20]) to the approach to tilings using convex functions. 

2. P E G G E D  TILINGS 

While our main interest is in studying tilings of the whole of n-dimensional 
Euclidean space ~:", there is a more natural context for much of our 
investigation. A partial tiling of n:", or a tiling in (rather than of) N :n, consists of 
a family J -  of convex n-polytopes called tiles, whose domain dom ~ - :=  w~- is 
homeomorphic to ~:n, and which is such that the interiors of two different tiles 
do not meet. As usual, a face of ~'- is a face of a tile of ~--. 

Concepts such as localfiniteness and discreteness for a partial tiling ~-- will 
always be taken relative to dom J - ;  thus local finiteness means that each 
compact set in dom ~" meets only finitely many tiles of ~-. (For the 
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background on tilings in general, see [9].) We shall see later that, even for 

tilings of ~:" itself, a stronger condition on ~--, such as normality, meaning that 

there are fixed bounds for the in- and circumradii of tiles (see [9, p. 122]), 
would be inappropriate. Unless stated to the contrary, we shall always 
assume our partial tilings to be locally finite, and we shall then usually refer to 

them just as tilings. 
We call a tiling 9-  pegged if with each tile P E ~-- is associated a point 

v*(P)e F_", the peg of P, such that, if the tile P '~  J is adjacent to P, and so 

meets it on a facet, then v*(P') - v*(P) is an outer normal vector to P at that 
facet. We denote by V* :-- V*(~--) a peg-set of the tiling ~--. (The notation 

anticipates the duality properties we shall establish later.) If we indicate a tile 

in Y- by Pi, then we write v* := v*(Pi) for its peg, and so on. 
In an obvious way, the definition of a pegged tiling generalizes that of a 

Laguerre tiling (which in turn generalizes that of a Voronoi tiling). Indeed, an 

appropriate  alternative name might be a local Laguerre tiling. However, as 
mentioned in Section 1, it will be shown that (apart from the question of the 

domain) a pegged tiling is, in fact, a Laguerre tiling (see Section 7 below). 
Recall that two sets S~ S' in E, are said to be homothetic if S' = 2S + t for 

some positive number  2 and some translation vector t~ E". An obvious 
remark is 

L E M M A  2.1. Let J-  be a pegged tiling in E n. Then any set homothetic to a 
peg-set V*(~-) of ~- is also a peg-set of ~-, and any two homothetic pegged 
tilings have the same peg-sets. 

In calling a tiling ~-face-to-face we mean that any two tiles of ~- meet on a 
common (possibly empty) face of each. We begin by proving 

T H E O R E M  2.2. A pegged tiling is:face-to-face. 

Suppose to the contrary that J -  is a pegged tiling which is not face-to-face. 

We can thus find a tile Po s Y-, which has a facet F whose relative interior 
relint F meets two or more other tiles in ~-. Then some (n - 2)-face G of such 
a tile also meets relint F. Using the local finiteness of ~--, we can then find 
a point z ~ relint F (a relint G which lies in no face of Y- of dimension less 

than n - 2 .  Then tiles that surround z then form a sequence 

Po, P1 . . . . .  Pk-I ,  Pk = Po, such that Pi-1 and Pi  a r e  adjacent for each 
i = 1 . . . .  , k. The corresponding pegs v* = v*(Pi) (with i = 0 . . . .  , k) must lie in 
a plane orthogonal to the affine hull aft G of G, and, indeed, form successive 
vertices of a convex polygon. But this is impossible, since v • -  v* and 

v*_ 1 - v~ are both outer normal vectors to Po at its facet F, and so are 
parallel. This contradiction establishes the theorem. []  
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3. DUALITY 

We shall now see that pegged tilings admit a natural duality. (Our rationale 
for working with partial tilings appears here, since the dual of a tiling of ~:" 
need not itself tile ~:n.) For  each face F of a pegged tiling ~J-, let 

i f :=  conv{v*(P)lP~'-  and F _ P}. 

We also write ~ instead of {v} when v ~ vert 3-', the set of vertices of J .  

T H E O R E M  3.1. Let J- be a pegged tiling in E ~. Then the polytopes b, with 
v ~ vert ~-,form a pegged tiling 5"* in E ~, whose peg-set is vert 5". Furthermore, 
5-** = J-. 

We need to show first that the polytopes ~ form a locally finite partial tiling 
of E"; it will then be easy to prove that this tiling is pegged. 

We first show that J-* packs H :". Let P e 5 be a tile, F a non-empty face of 
P (possibly F = P), and N(F, P) the normal cone to P at F. If ~ is the set of 
tiles adjacent to P which contain the vertex v of P, and v* := v*(P), then 

N(v, P) = pos{v*(P') -- v*IP' ~ } ,  

where pos denotes the positive hull, Now, we always have 

n {N(v, P) [ v ~ vert F} = N(F, P), 

and since (up to translation) N(F, P) is the cone generated by ff at its vertex 
v*, it easily follows that no two of these polytopes b can overlap. We thus have 
a local packing property. 

The same argument also shows that the polytopes b with v ~vert P fit 
together nicely around the vertex /~, and, indeed, surround if; the local 
finiteness of J -  ensures that their union contains a neighbourhood of/~, since 
only finitely many tiles P' meet P. We now use a standard argument to show 
that no two n-polytopes in ~--* can overlap-such an overlap leads to a loop 
in dom J ' *  which meets no face of ~-* of dimension less than n - 1, and such 
a loop can be contracted over dom ~'-* while only passing through (n - 2)- 
faces because ~=~ is simply connected, implying eventually that the overlap 
was in fact a coincidence. It is now clear that, topologically, ~--* is a tiling in 
dom 3-* dual to f ,  and hence it will be locally finite. Thus ~--* is a tiling- 
that is, a locally finite partial tiling. 

In fact, the argument above shows that if v and v' are the two vertices of an 
edge E of T, then ~ c~ ~' =/~, and v' - v is an outer normal vector to b at its 
facet/~. Thus ~'-* is pegged, with peg-set V := vert ~-'. 

Finally, the construction makes it clear that 5-**(:= (~"*)*) = ~-, and this 
completes the proof of the theorem. []  

Two tilings which are dual in the way described above (that is, the vertices of 
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one form the pegs of the other) shall be called strongly dual (a term also 
occasionally used is othooonally dual). 

4. EXAMPLES 

Before proceeding further, we give several examples of tilings which can or 
cannot be pegged. 

In the first example, we merely make an injudicious choice of a peg-set. Let 
Y- be the usual tiling of E 2 by unit squares, whose vertices form the integer 
lattice 7/2, with 77 as usual denoting the integers. Let T(m, n) be the tile whose 
bottom left corner is (m, n)~ 7/2. Define 

1 
k , : = { 2 - ~  if k > 0 ,  

k if k ~ 0 ,  

and let the peg p(m, n) of r(m, n) be 

p(m, n):= (m', n'), 

for all (m, n)e 7/2. It is easy to see that this indeed forms a peg-set of 3 .  
However, the dual J-* is only a partial tiling of ~:2, since it only covers 
{({, ~/)e ~21{ < 2,q < 2}. 

A modification of the tiling 9- forces such bad behaviour. We now define 

1 
k":= / 2 k - l + ~  if k > O ,  

( 2k if k~<O, 

and let ~-" be the tiling whose tiles T(m, n) have vertices 

vert T(m,n):= {(m", n"), ((m+ 1)", n"), (m", (n+ 1)"), 

((m + 1)", (n + 1)")}, 

with (m, n ) s Z  2. This distorts the square tiles with vertex set 27/2 in the 
positive quadrant. 

We can choose a peg-set as follows. Define 

(m, n) 

( ln) 
(m, 2 - - ! )  if 

p(m,n):= !\ - - ~ - m + i ) ~ + l ) - - - l '  2-- 4mn(m+l)(n+l)--l,l ! if 
['2 2n[2m(n + 1)+ 13 2m[2n(m + 1)+ 13 "~ 

if m~<O,n<~O, 

if m>O,n~<O, 

m~<O,n>O, 

m>O, n>O. 
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(The pegs p(m, n) for fixed m > 0 and variable n >i 0 lie on the line through 
( 2 -  l/m, 0) with slope 2m(m + 1).) Again, the dual tiling only covers 
{({, ~/) e E 21 { < 2, ~/< 2}. 

In this case, no peg-set for J can be discrete. For  fixed m > 0, the tiles 
T(m, n) with n ~> 0 meet on parallel sides, and so their pegs must lie on a line 
with slope 2m(m + 1). Any two such lines for positive m must meet, and so the 
corresponding pegs have a cluster point. 

As a final example, consider the part of the tiling of N :z by regular hexagons 
consisting of one hexagon, and the two successive rings of six and twelve 
hexagons which surround it. Now split the central hexagon into three 
rhombi. Then this patch of tiles cannot belong to any pegged tiling. In trying 
to peg the patch, we are forced to have a ring of equilateral triangles 
corresponding to the two rings of hexagons. But we cannot split the peg 
corresponding to the central hexagon into three separate pegs, since these 
pegs would still have to lie on the same three lines as before. 

Similar examples which cannot be pegged for local reasons can be 
constructed from non-stretchable arrangements of pseudo-lines in the plane. 

Let us end the section with a positive result. 

T H E O R E M  4.1. Let ~- be a face-to-face tiling in ~_", such that each tile P in 8_ 
has a circumsphere whose centre lies in int P. Then ~-- is a pe99ed tiling. 

A circumsphere of a convex polytope is a sphere which contains all its 
vertices. The result is obvious; the pegs are the circumcentres. []  

5. SECTIONS 

Let ~-- be a pegged tiling in F", let L be a d-dimensional linear subspace of E", 
and let M := L + p be a translate of L which meets dom J .  We say that M is 
general (with respect to 5 )  if M meets no face of Y- of dimension less than 
n - d. Of course, 'most' (in an obvious sense) such translates M are general, 
since M only has to avoid countably many (n - d - 1)-faces of ~". The 
following result is intuitively obvious, although not straightforward to prove. 

LEMMA 5.1. Let if'- be a tilin9 in ~_", and let M be a general d-dimensional 
affine subspace of ~_" which meets dom ~-. I f  F is a face of ~- such that 
M c~ F # f2~, then dim(M c~/7) = dim F -- (n -- d). 

Suppose first that M c~ relint F ~ ~Z;. Counting dimensions (actually of 
affine hulls), we have 

dim F - dim(M c~ F) = dim(M + F) - dim M 

< . n - d .  
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Now supl~ose that dim(M n F) ~> 1. We have M n relbd F = relbd(M r, F), 

where relbd denotes the relative boundary. Thus we can find a face G of F 

with dim G ~< dim F - 1, such that M n relint G ~ ~ ,  and dim(M n G) = 

dim(M n F) -- 1., so that 

dim G - dim(M c~ G) ~< dim F - dim(M n F). 

Proceeding in this way, we eventually find a face J of F (and hence of Y)  for 

which M n relint J ~ ~ and dim(M n J) = 0. Since M is a general subspace, 

we must have dim(M n J) >~ n - d, and from 

n -- d ~< dim J - dim(M n J) 

~< dim F - dim(M n F) 

<~n-d, 

we have equality throughout. 

Finally, suppose, if possible, that M c~ F # ~ ,  but that M c~ relint F = ~ .  

There is then a maximal face G of F such that M n relint G # ~ .  By a 

standard separation argument, we can find a hyperplane H in E n, such that 

M _ H and H n relint F = ~ .  Then necessarily G _ H. We now carry out 

the same calculations as above, with H replacing E", to conclude that 

dim G - dim(M n G) = (n - 1) - d. 

But this contradicts the previous calculation. Thus, in fact, M n relint F # ~ ,  

as before. This completes the proof of the lemma. []  

If M is a general affine subspace with respect to the tiling J-,  we define the 

tiling M n ~-- by 

M n Y : =  { M n P I P  is a tile o f g -  with M n P  ~ ~}.  

Such a tiling is called a general section of 9-. It seems to be well known that a 

general section of a Voronoi tiling is a generalized Voronoi or Laguerre tiling 

(compare [20], which provides an alternative proof to what follows for 

Laguerre tilings). The definition of the latter which we adopt is the following. 

Let V* be an infinite set of points in E ~ which has no cluster points in 

conv V*. With each v* E V* is associated a weight co i, and a tile 

Pi := {x e E n I I1 x - v* II 2 _ c o i  ~< II x - v* II 2 _  % for each j ¢ i}. 

Eliminating all points v* for which dim Pi < n, the result is a Laguerre tiling. 
As originally defined, the weights co~ were non-negative, but this has little 
effect on the theory. The name °Laguerre' itself comes from his theorem, 

which states that the locus of points whose tangents to two circles in E 2 have 

equal lengths is a line (the obvious analogue holds in E"). 



190 P E T E R  M C M U L L E N  

We may note that Laguerre tilings are pegged. In a pegged tiling, adjacent 
tiles P~ and P j, with corresponding pegs v* and v*, are separated by a 
hyperplane with equation 

<x, v~ - v,* > = ~ij, 

for some number cqj. For  a Laguerre tiling as above, the numbers ~o are given 

by 

cx~j = ½(Hv7 [I 2 -- ogj -- IIv* H 2 + @). 

The property of sections above generalizes to pegged filings. 

T H E O R E M  5.2. A general section of a pegged tiling is itself a pegged tiling. 

We first translate our tiling J so that the section is by a linear subspace L. 
I f P  i 6 3- is such that Qi := L n Pi # ~ ,  we define the peg of Qi to be the image 
w* of v* under orthogonal projection on L. If Pi and Pj are adjacent tiles of Y-- 
such that L meets P~c~Pj, then, as required, the intersection 

Qi c~ Q1 = L c~ Pi t~ P j lies in 

{ x s L I  <x, v* -- v* ) = e,j} = {xE LI <x, w* -- w* ) = a,j}. 

Since L c~ Y-- is automatically locally finite, this proves the theorem. [] 

I , 

6. T H E  P R O J E C T I O N  M E T H O D  

The projection method is now easily described in our more general context. 
Starting with a pegged tiling f in n :n (and we recall once again that J is 

locally finite, but need not tile all of ~:n), we form its dual ~--* (based on its peg 
set), take a general section M n ~ * ,  and then dualize again, to give 

: u  := (M c~ ~*)* .  

We say that 3"u is obtained from Y- by the projection method. 
Let us give an explicit description of the tiles of Y--M. With our previous 

convention dim M = d, we deduce from the sections above 

T H E O R E M  6.1. The tiles of J u  are the images under orthogonal projection 
on M of the d-faces F of ~-- such that M c~ F ~ ~ .  

Since duality reverses the direction of mappings, it seems to be more 
appropriate to regard this set of d-faces F, which form the broken surface, as 
the inverse image of ~-u under the orthogonal projection. 

We make an easy observation. Since a general section of a general section 
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of a tiling J is itself a general section of 3-, it is clear that tilings obtained by 
the projection method display a similar hereditary behaviour. 

7. C O N V E X  F U N C T I O N S  

What we have done so far gives a somewhat unsurprising generalization of 
the known theory, even though the results are rigorously established in this 
more general context for the first time. (It is, perhaps, useful to note that our 
description of the projection method does not involve any restrictions on 
positioning of a space orthogonal to the subspace M, as seems to be needed in 
the block (Klotz) construction of [12].) 

In two different contexts, it has been observed that certain tilings lift to 
graphs of convex functions. First, Edelsbrunner and Seidel [6] showed that a 
Voronoi tiling with sites (that is, pegs) V* lifts to the function 

f : =  sup{( ' ,  v*) - lily* [[z [v*e V*}. 

Aurenhammer [1] later generalized this result to Laguerre tilings (we shall 
comment on his later paper [2] below). Further, Bohne et al. [4] have 
described the grid method used by de Bruijn [5] to construct Penrose-type 
tilings in terms of the graph of a certain convex function. It is our purpose 
here to show that all pegged tilings have an analogous lifting property; a 
consequence will be that pegged tilings are actually Laguerre tilings (in the 
general sense of this paper). 

Let f be a convex function on E". We shall follow the conventions of 
Rockafellar [19], and regard f as a function taking values in ~ w { ___ oo}, so 
that f is convex if its epigraph 

e p i f : =  {(x,~)eE"+llt / ~> f(x)} 

is convex. This easily allows for the possibility that the domain 

d o m f : =  { x e E " l f ( x )  < +oo} 

is not the whole of E"; observe that dom f is always convex. Our convex 
functions will be proper, in that dom f ~ ~ ,  and f ( x )  :~ - oo for any x a E". 

A convex function f is called locally polyhedral if the restriction f[o of f 
to any convex polytope Q ___ d o m f  is polyhedral, so that ep i f lo  = 
epi f ~ (Q x [0, oo)) is a polyhedral set (see [8]). We call f strongly locally 
polyhedral if, in addition, the regions on which f restricts to a (finite) affine 
function are compact. Then we have the following fundamental result. 

THEOREM 7.1. To each pegged tiling ~" in F_" corresponds a strongly locally 
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polyhedral convex function f ;  the tiles of  ~-- are the maximal regions of  ~:n on 

which f is affine. 

Once again, we remind the reader of our use of the term tiling. We remark 
that the converse of Theorem 7.1 is obvious. 

Our proof of Theorem 7.1 proceeds in several steps. We pick any fixed tile 
in f ,  and call it Pc; we then define tp* := 0. For  any other tile Pj, there is a 

chain Pc = P~o, Pk, . . . .  ,Pk, = Pj, such that Pk,-I and Pk~ are adjacent for 
s = 1 . . . . .  r. With the % as before, we now define 

s = l  

LEMMA 7.2. The numbers q)* are well defined. 

This follows from the fact that, if (with changed notation) 
Pc, P1 . . . . .  Pj = Pc is a closed chain of tiles containing a fixed (n - 2)-face G, 
then for any x ~ G, we have 

( x ,  v*  - v*_ , ) = ~ ,_  1,,, 

so that E¢= 1 ai-1,1 = O. In the general case (of a closed chain of tiles with 
empty intersection), we argue as in the proof of Theorem 3.1. Such a chain 
gives rise to a loop which can be contracted to a point avoiding (n - 3)-faces 
of ~--, and in contracting over a (n - 2)-face we can appeal to the previous 

case. []  

At this point, it is appropriate to comment on [2]. The definition adopted 
there is a local Laguerre condition: it only applies to adjacent tiles. However, 
the condition is equivalent to ours. The proof, though, effectively proceeds 
only as far as establishing (the analogue of) the first part of Lemma 7.2 (where 
the tiles have a common intersection); the general case is not discussed. What 
follows below is also lacking; in fact, the local convexity property is clear in 
the alternative formulation, but is not specifically mentioned. 

We now define our function f by f ( x )  := (x ,  v* ) - ¢p~ if x ~ Pi. Certainly, 
f is continuous, and further has a restricted local convexity property, in that, 

if Pi and Pj are adjacent tiles, then for x e Pi we have 

( x ,  v* - v * )  < % = ~o* - ~o*, 

with strict inequality if x ~ int  P, ,  so that 

f ( x )  = (x ,  v* ) -- (p* >1 (x ,  v* ) -- q)*. 

However, this restricted property, together with local finiteness of J ,  implies 
that f is convex in the usual sense, since a line segment lying in dora ~'- is the 
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limit of such line segments which do not meet (n - 2)-faces of ~-, and it is 
clear that f is convex on such a segment. 

The remaining properties of a strongly polyhedral function are obvious. 
[] 

The relationship between tiling and function given above is described by 
saying that f is lifted from ~--, or J -  is dropped from f, and that f and ¢- are 
associated. Note that f drops to a unique tiling ~--, whereas 9- can lift into 
many different functions f. We shall consider the latter point in more detail 
below. 

As we remarked above, Aurenhammer ([I]) showed that Laguerre tilings 
admit such liftings to convex functions. If we allow Laguerre tilings to have 
domains other than rF" itself, what we have done actually proves that this 
result is the most general possible. 

T H E O R E M  7.3. A tiling ~-- in IF" can be lifted to a convex function is and only 
if it is a Laguerre tiling. In particular, pegged tilings are Laguerre tilings. 

We have just seen that pegged tilings do lift to convex functions, and 
Laguerre tilings are pegged. But conversely, if the tiling ~- does lift to a 
convex function f, then corresponding to each tile P~ E ~-- are a point v* e E n 

and a number (p* ~ R, such that f ( x )  = (x ,  v* > - q)* for x ~ Pi. If we now 
define the weight o) i by 

o~i:= IIv* 112 - 2~0", 

then this expresses J -  as a Laguerre tiling with sites v* and these weights. 
[] 

We finally remark here that, although we have demanded that our tiles be 
compact, this is not necessary for the validity of the proof above (when we 
change the language appropriately). 

8. C O N J U G A C Y  AND DUALITY 

Let f be a closed convex function on N TM. The conjugate f *  of f is defined by 

f * ( x* )  := sup((x*,  x> - f ( x ) [ x  ~ ~-"} 

(see Rockafellar [19]). Then f *  is also a closed convex function, and 
f** ( :=  ( f*)*)  = f. Actually, the conjugate is defined for any function f on 
F"; f *  is still closed and convex, and 

f * *  = cl conv f := sup{g I g is closed and convex and g ~< f}.  
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Intimately connected with conjugacy are the notions of subgradient and 
subdifferential. We call a* a subgradient of the convex function f at the point 
a at which f is finite if 

f ( x ) ~ f ( a ) +  <x - a, a*)  

for all x e E". The family of subgradients of f at a is called the subdifferential of 

f at a, and is denoted Of(a). Note that a* e Of(a) precisely when (a*, - 1) is an 
outer normal vector to a support hyperplane of epi f at the point (a, f(a)), 
and hence it is easy to see that Of(a) is a convex set, which is closed and non- 
empty if a ~ relint dom f A crucial relationship to which we need to refer is 
(see [19]): 

LEMMA 8.1. Let f be a closed convex function on E", and suppose that f (a)  is 
finite. Then the following are equivalent: 

(a) a* ~ Of(a); 
(b) a ~ Of*(a*); 
(c) f (a)  + f* (a*)  = ( a , a * ) .  

Our first result using eonjugacy is 

T H E O R E M  8.2. Let f be a strongly locally polyhedral convex function on IF_", 
and let Y be the tiling associated with f Then the conjugate f *  o f f  is also 
strongly locally polyhedral, and the tiling 3-* associated with f *  is strongly 
dual to ~J-. 

In fact, f *  has the following explicit description, which shows why it is 
strongly locally polyhedral. As usual, if v .  is the peg-set of ~-, and ~o* is 
defined as before for each v* ~ V*, then 

as as as f ( x )  = sup{<x,v*) - ~pj Ivj e V } 

shows that f *  = el conv g*, where 

Sq~* if x* = v* for some j, 
g*(x*) "i 

( +  ~ otherwise. 

Again as before, we let V:= vert Y", and for v~e F, define ~01:= f(vi). If P i e  ~-" 
is any tile containing vi, then 

so that 

= f ( v , )  = <v, ,  v? > - z T ,  

f*(v*)  = <v*, v~) -- ~Pi 

for each such peg v~'. If P* := bl is the tile of J ' *  corresponding to vl, we thus 
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see that 

f* (x*)  = (x*, vi) - q)i 

for all x* ~P~'. It follows that aj-, lifts to f* ,  and since ~'-* is strongly dual to 
9-', this completes the proof. [] 

The subdifferential relationships of the lemma can be used to show what is, 
perhaps, now fairly intuitive, that if F is a face of J ,  and if a ~ relint F, then 
0f(a) = b ~, the corresponding face of Y'*. In particular, of(vi)= P* for 
v~ver t  ~-, and similarly, Pj = of*(v*) for a peg v* ~ V*. 

We have already remarked that a pegged tiling 3- does not lift to a unique 
convex function f ;  indeed, the lifting is determined by the peg-set, and this 
can vary, for example, by replacing it by a homothetic copy of itself. We now 
consider the corresponding effects on convex functions. 

We begin by introducing some operations on convex functions; we shall 
make further use of these operations later. Let f, g be convex functions on E d, 
and let 2 > 0. The sum f + g and left scalar multiple 2f  are defined in the 
usual way; the infimal convolution f [] 9 is defined by 

( f  [] g)(x):= inf{f(y) + g(z)[y + z = x}, 

and the right scalar multiple f 2  is defined by 

(f2)(x) := ) . / (2-  ix). 

In terms of epigraphs, the last two are given by 

epi(f  [] g) := cl(epi f + epi 9); epi(f2):= 2(epi f) .  

Conjugacy interacts with these operations in the following way. 

LEMMA 8.3. Let f, g be closed convex functions on E", and let 2 > O. Then 

( f  + 9)* = f *  [] g*, ( f  [] 9)* = cl(f* + g*), 

(2f)* = / ' 2 ,  (/2)* = 2f*. 

The sum of any two convex functions which occur here will actually be 
closed, so the closure condition for ( f  [] 9)* can always be dropped. 

For the moment, we only need special cases of such operations. The convex 
indicator function 6(K,.) of a convex set K in E" is given by 

g(K'x):={O+oo ifxCK.ifx~K' 

We shall write 6(a,. ) rather than 6({a}, • ) if K = {a} consists of a point. Then 
we have 
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LEMMA 8.4. (a) I f  a* ~ P and a ~ R, then 

((., a* )  + ~)* = 3(a*, ") - a. 

(b) I f  L is a linear subspace of ~_", then 

6(L, .)* = 6(L ±, "), 

where L ± is the orthooonal complement of L. 

Now, if f is one lift of the pegged tiling ~-, then so is 2 f  + ( ", a* ) + a, for 
any 2 > 0, a* ~ n za and a e  R. Its conjugate is then f * 2  []  (3(a*, ") - ~) = 9", 

say, where 

9*(x*) = 2 f * ( 2 - l ( x *  -- a*)) -- a, 

which we recognize as a lift of the tiling 2J-* + a* homothetic to ~ * .  (Since 
adding a constant to a function results in subtracting the same constant from 

its conjugate, we shall henceforth ignore such changes in lift.) 

9. TILINGS OF THE WHOLE SPACE 

It is convenient here to change a definition of Rockafellar [19] somewhat, 
and call a vector y ~ E" a direction of recession of the convex function f if f is 
bounded above by an affine function on {x + 2yJ 2 ~> 0} for some (and hence 
for all) x ~ relint dora f This means that (y, a) is a recession vector of epi f for 
some ~ e R. In this context, we recall that z is a recession vector of the convex 
set K if x 4- 2z ~ K for some x ~ relint K and all 2 ~> 0; the set of recession 
vectors of K is denoted rec K, and is called the recession cone of K. The 
recession function r e c f  of f is then the convex function defined by 

epi(rec f ) : =  rec(epi f ) .  

The function r e c f  is denoted f 0  + in [19]. Note that the zero vcctor o is 

always a (trivial) direction of recession of f 
Now (see [19]) rec f is the support function of dora f* ,  and so, interchang- 

ing the roles of f and f* ,  we have immediately 

T H E O R E M  9.1. I f  J" is the tiling associated with the strongly locally 
polyhedral convex function f, then ~- tiles the whole of space if and only if the 
conjugate function f *  has no non-zero directions of recession. 

It is helpful to have an alternative description of this situation. We keep to the 

notation introduced in the previous section. 

T H E O R E M  9.2. Let J" be a pegged tiling, with peg-set V*. Then 



C E R T A I N  E U C L I D E A N  T I L I N G S  197 

dom 3- = E" if and only if, for every sequence (v* [j ~ N) in V* with *Iv* II --* 0% 

got 
- -  - - ~  0 0 .  

II v* [I 

First, suppose that dom ~- = E ", that is, that f *  has no non-zero directions 
of recession. We show that the condition of the theorem must hold. 

Suppose, if possible, that it does not. Then we have some sequence 
(v*lje N) in V* and some constant/a, such that llvjll --* 0% but  go*/llv* II ~< #. 
By compactness of the unit sphere, the sequence (llv*ll-lv*ljEN) has a 
convergent subsequence, which we can identify with the original sequence, 
and so assume that 

lim IIv* II-lv* =:y*  
j~ao 

exists. Let x* s relint dom f *  be arbitrary. For any j and any 2 > 0, we have 

(( ) ) x* + )Ly* = lim 1 2 x* + v* 
j-,~ liv* I1 ~ ' 

so that, using the continuity of a convex function at a relatively interior point 
of its domain, we have 

f*(x*+2y*)=j~olim f *  1 -  2 x * + ~ v j  

~ < l i m ( ( 1 - 2  ) 2 . . \  (v,)) 

~ l i m ( ( 1 - - ~ ) f * ( x * ) + 2 # ) S _ ~ o  

= f* (x*)  + 2# 

since f*(v*) = go t .  It follows that y* is a direction of recession off*,  contrary 
to assumption. 

For the converse, suppose that the condition of the theorem holds. Thus, 
for every /~ > O, there exists a p > O, such that whenever v'~ ~ V* satisfies 
IIv*ll > p, then go* > #llv*ll. It follows that i n f f *  =:a*, say, is finite, and 
hence that epi f*  ~_ K o + C,, where 

go:= {(x*, ~*)eE"+l  I IIx*ll ~< p} 

c .  := {(x*, ~*) e n :d+ 11 ~/*/> ~llx* It }. 

Thus the recession cone of epi f *  lies in C,; since/l is arbitrary, this shows 
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that f *  has no non-zero directions of recession, and hence that dom J = E". 
This proves the theorem. [] 

We remark that Schlottmann 1-20] has a different criterion (expressed in 
terms of Laguerre tilings) which ensures that both 9" and 3 *  tile the whole 
of ~:". 

10. O P E R A T I O N S  ON TILINGS 

We now consider various operations on tilings, which correspond to the 
operations on convex functions which we described in Section 8. Since left 
scalar multiplication (by a positive number) of a convex function associated 
with a tiling gives another function associated with the same tiling, and right 
scalar multiplication merely leads to a homothetic tiling, we can confine our 
attention to the results of taking sums and infimal convolutions of such 
convex functions. 

We begin with the sum. If the tilings ~ and J2 are such that 
dom ~ c~ dom ~2 ¢ JZf, and if J//lifts to the convex function f / fo r  i = 1, 2, 
then f l  + f2 gives rise to a tiling which we denote ~ A J2, and call the meet 
o f ~  and ~2. The reason for the name is clear from its description-the tiles of 

A ~2 are just the intersections of tiles of ~ and J2 which have non-empty 
interiors, since these are the maximal regions on which f l  4- f2 is affine. (We 
use a slightly different name and symbol from the ordinary intersection, to 
avoid confusion with this.) We observe that the tiling ~ A J2 does not 
depend upon the particular functions to which ~ and ~2 are lifted. 

The situation is quite different for the infimal convolution; we shall make 
use of this fact in the next section as well as in this. Let the tiling ~ lift to f~ 
(i = 1, 2) as before. Then the tiling corresponding to fx [] f2 is denoted 

4-F2, and is called a sum of ~ and ~2. Again, the reason for the 
terminology is clear. Since the epigraph of f~ [] f2 is epi f l  + epi f2, we see 
that the tiles o f ~  4- ~ are sums F 1 + F 2 of faces F~ o f ~ f o r  i = l, 2. In the 
most interesting case, when the tilings ~ and ~2 are in general position 
relative to each other (or, rather, when the epigraphs of the associated convex 
functions are), the dimensions of the faces F1 and f 2 are  complementary. 

That the sum does depend on the choice of liftings is obvious. Indeed, we 
have 

THEOREM 10.1. For i = 1, 2, let the tiling ~ lift to the convex function fi, let 
F i be a face of 4 ,  and let agerelint F i. Then F 1 4- F 2 is a tile of the 
corresponding sum ~ 4- ~-2 if and only if dim(F x 4 -FE)=d ,  and 

Ofx(al) n C3fz(a2) ~ ~ .  
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The theorem just expresses the condition for the epigraphs of f~ to have 
parallel support hyperplanes at (ai, f~(a3) for i = 1, 2. This condition is not 
usually preserved when f~ is replaced by a different lifting. 

11. SECTIONS AND PROJECTIONS 

We now set the projection method in the context of convex functions; to do 
this, we just translate the material of Sections 5 and 6 into the appropriate 
language. 

We can clearly relate a tiling of an affine subspace of E" to a strongly locally 
polyhedral convex function whose domain is not full dimensional. However, 
the conjugate of such a function is not strongly locally polyhedral; instead, its 
epigraph is the sum of that of a strongly locally polyhedral convex function 
whose domain has the same dimension, and a certain affine subspace. More 
precisely, suppose that g is a convex function, whose domain spans a linear 
subspace L := aft dom g. If a e L ±, the orthogonal complement of L (this is 
general enough for our purposes), then the domain of g [] 6(a,.) spans the 
translate M := L + a of L. The conjugate of g [] 6(a,.) is then 

(g [] 3(a, "))* = 9" + (a," ), 

whose epigraph is the sum of that of 9" [L (which is the conjugate of g 
calculated in L), and the affine subspace 

2Q := {(x*, (x*, a))l x* e L ± }. 

More generally, let f be a strongly locally polyhedral convex function, 
associated with the tiling J of E", let L be a linear subspace of E", and let 
a e L ± be such that M n dora Y- ¢ ~ ,  where M := L + a. Then f + 6(M, ") is 
a convex function associated with M c~ ~ .  We can work out its conjugate as 
above, obtaining 

( f  + 3(M, "))* = 

whose epigraph is epi f *  + 

f *  [] 6(M, ")* 

f *  [] (6(L, " ) [] 6(a, "))* 

f *  [] (3(L1, ") + (a , ' ) ) ,  

M, where M is defined as above. We can now 
associate with this conjugate a tiling of L itself; its lifting is just the sum of this 
function with 6(L,-), which restricts it to L. This, then, gives the projection 
method in terms of associated convex functions. 
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There is an appealing picture of what is happening here. The epigraph of 
the final function 

(f* [] (b(L ±, ") + (a , . ) ) )  + b(L, .) 

is just the projection ofepi f *  on L x • in direction/14, or, more picturesque- 
ly, what we see when we look at epi f *  along M. As we vary a (keeping L 
fixed), we tilt M, and so change the viewpoint. 

As a final remark in this section, if the hereditary nature of the projection 
method were not already apparent from Section 6, it should now be obvious. 

12. G R I D  METHODS 

We shall now discuss several kinds of grid methods in the context of convex 
functions. Bohne et al. 1-4] first made the observation that related the original 
grid construction of de Bruijn 1-5] to the epigraph of a certain convex 
function. We shall exhibit this and other grid constructions as particular 
cases of sums of tilings. 

The general idea of a grid method is the following. We overlay (that is, take 
the meet of) several copies in different orientations of a fixed tiling (which 
may degenerate in some way, for example, to a set of parallel strips), and then 
take the strong dual. (Previous descriptions have usually been somewhat less 
succinct.) This dual is then, as we have seen above, a sum of the duals of the 
component filings; in degenerate cases, these filings may be lower 
dimensional. 

We begin with planar filings. The original grid method of l-5] took five 
families of filings by equal strips, rotated relative to each other by multiples of 
27r/5. If these filings are in general position (relative to each other), then the 
resulting dual is a tiling by rhombi of angles re/5 and 2rc/5. In the present 
context, we think of this tiling as a sum of tilings of lines, in these five 
directions, by equal line segments. Similar sums of other numbers of linear 
tilings rotated by angles such as re/4 (see also immediately below), ~r/6, and so 
on, have also appeared in the literature. 

There are three regular tessellations of the plane-by squares, equilateral 
triangles, and regular hexagons. If we take two equal copies of the square 
tessellation, rotate one with respect to the other by zc/4, and take a sum, we 
obtain a quasi-periodic tiling of squares and rhombi of angle re/4. Such tilings 
were discovered (independently) by Ammann and Beenker; they can also be 
obtained as sums of four linear tilings. Similarly, we may take two equal 
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tessellations of triangles (or hexagons), rotate one against the other by re/6 (or 
n/2), and take a general sum. The resultings tilings consist of triangles (or 
hexagons), together with squares and rhombi of angle 1r/6. Tilings of this kind 
have been described by Stampfli ([21]), and with different rotation angles by 
Niizeki ([151-[17]).  

There are two analogous kinds of  four-dimensional tilings. For the first, we 
begin with the regular honeycomb {3, 3, 4, 3}, whose tiles are regular cross- 
polytopes (analogues of the octahedron). We can rotate a second copy of this, 
so that the new vertex-figure is in reciprocal position to the first. 

A general sum of these tilings has tiles which are regular cross-polytopes, 
two kinds of prisms on regular tetrahedra (right and oblique), and two kinds 
of direct sum of equilateral triangles (again, right and oblique). These tilings 
are obtained in a different way in McMullen ([14]), where it is shown that 
they are quasi-periodic. The second kind of tiling in ~:4 is obtained in a similar 
way from the dual honeycomb {3, 4, 3, 3}; this time, the tiles are 24-cells 
{3, 4, 3}, two kinds of prism on octahedra, and two kinds of direct sum of 
triangles. 
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