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Abstract. We use the subset containment relation to construct a probabilistic nonadaptive group 
testing design and decoding algorithm that, in the presence of testing errors, identifies many 
positives in a population. We give a lower bound for the expected portion of positives identified 
as a function of an upper bound on the number of testing errors. 
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1. Group Testing and DNA Library Screening 

Suppose we have a finite ground set or population containing elements which can be 
uniquely characterized as positive or negative. We refer to the collection of  positive 
elements, which is initially unknown, as the positive subset P. In the abstract group 
testing problem, P must be identified by performing 0, 1 tests on subsets orpools of the 
population. A pool is said to be positive (1) if the test result indicates that a member of  
P is in that pool; the pool is said to be negative (0) if the test result indicates otherwise. 
Note that the terms positive element, positive subset, and positive pool have different 
meanings. 

Using probes to screen DNA libraries of  clones fits the group testing paradigm in 
the following way: The population is the DNA library which consists of  thousands of  
separate recombinant DNA clones each of  which represents some contiguous piece of  
a contiguous superpiece of  DNA. To help understand what a DNA library is, think of  
several copies of  an identical but incredibly long word (i.e., a chromosome), each of  
which has been cut into thousands of  contiguous pieces. Take each piece and copy that 

* The algorithms contained herein are part of The State University of New York Research Foundation 
invention C1230-125, Probabilistic and Combinatorial Nonadaptive and Two-Stage Group Testing and 
DNA Library Screening by A. Macula and K. Anne. 
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letter string onto its own separate small piece of paper. The thousands of resulting 
pieces of paper (i.e., clones) essentially constitute a DNA library. 

A unique, identifiable, predetermined, and contiguous DNA subpiece is called a 
sequenced tagged site (STS). A clone is called positive for an STS if it contains that 
STS (see Example 1.1). A pool is a subset of the clones that are mixed together and 
tested by exposing the entire group to a chemical probe. A pool is labeled positive for 
an STS if the probe chemically indicates its presence. In other words, if the tests are 
error-free, then a pool is labeled positive for an STS if and only if that pool contains at 
least one clone that contains that STS. 

After the same DNA library has been repeatedly screened with different probes and 
the clones positive for each individual STS have been identified, then clones positive 
for more than one STS are used in the construction of gene maps precisely because 
the interval of DNA between two STSs is contained in each clone positive for both of 
those STSs (see Example 1.1). This is one reason why it is important to identify as 
many positives clones as possible--the more positive clones per STS, the higher the 
probability of identifying clones positive for multiple STSs. 

Example 1.1. Let the DNA superpiece be AAAGCGTCTTAACCGATAGGCAACTTG. 
Suppose the library is {C1, C2, C3, C4, C5} where C1 = AAAGCGTCTTAA, C2 = 
GTCTTAACCGA, C3 =CCGATAGGCAAC, C4 = CTTAACCGATAGGC, and C5 = 
AGGCAACTTG. Let STSt = AAA and STS2 =TAA. Then C1 is positive for STS1 
and CI, C2 and C4 are positive for STS2. Note that CI is positive for both STSs. 

Primarily because the same DNA library is screened with many different probes, 
parallel rather than sequential screening methods are generally preferred. For other 
screening cost factors (see [8]). Consideration of analogous factors in other testing, 
screening, or coding situations predates the Human Genome Project and leads to the 
development of nonadaptive group testing (NGT) (see [5]). There are two traditional 
categories of NGT, probabilistic nonadaptive group testing (PNGT) and combinatorial 
nonadaptive group testing (CNGT). An essential difference between these categories is 
that in PNGT one considers the average cost, and in CNGT one considers the worst 
cost. In both NGT categories, one must decide exactly which pools to test before any 
testing occurs. An NGT algorithm is sometimes referred to as a one-stage algorithm. A 
two-stage algorithm is a nearly nonadaptive algorithm. In a trivial two-stage algorithm, 
all nontrivial pools occur in the first stage. After the first stage is complete, one has 
a set CP called the candidate positives. In the second stage, each candidate positive is 
individually tested to see if it is an actual positive. In [8], a lower bound for the expected 
number candidate positives, as a function of the number of first stage pools, is given. 

When screening DNA libraries, screening errors almost always occur during the 
testing procedure, and there are constraints on pool sizes. Practical algorithms must be 
able to identify a large portion of the positives when error rates can be as high as 10%, 
and it is reasonable to assume the error probability increases with pool size. This paper 
addresses PNGT by probabilistically analyzing a class of CNGT algorithms. In [2], 
a nice overview of nonadaptive pooling designs is given. Our mathod is not described 
there, but it has similarities to aspects of set packing and random r-set designs which are 
(also see [3]). We consider a class of CNGT error-free algorithms that always determine 
P when IP[ _< 2 (see [7, I 1,13]). Then we probabilistically analyze how well these same 
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algorithms identify P in the presence of errors when IPI > 2. For P with [P[ > 2, we 
do this by computing an upper bound on loP t and the expected value of IcPnPt. Our 
method also gives us control over the pool sizes. 

2. The Mathematical Objects in Our Algorithms 

Throughout this paper, all simple lower case variables are nonnegative integers. Let 
[hi denote {1,2,. . .  ,n}. Given set S, tst denotes its cardinality. We call a subset of [hi 

with cardinality k a k-set. Let ([~]) denote the k-sets of In]. Let J bed subset of [n] and 

let (J,~n]) denote the k-sets of [n] that have a nonempty intersection with J. Let (j,n) 

denote the cardinality of ([J]~[n]). Then (J'k n) = (nk)- (nkJ) and (J~k n) = (~)whenever  

k > n - j .  

Definition 2.1. For 2 < k < n, let the rows and columns of  the O, 1 matrix 8(j, n, 2, k) 

be respectively represented by the members of  ([j]~[n]) and ([~]) ordered lexicograph- 

For T E ([J]'2 [n]) and K C ([~]), thematrix 8(j ,n,  2, k) hasa l in its ically. (T,K) th 
\ J 

entry if  and only if r C K. 

We let eK denote the column of 8(j, n, 2, k) corresponding to the k-set K. Let Yxy 
denote the row of 8(j, n, 2, k) corresponding to {x, y}. Note 7xy = 7yx (see Figures 1 
and 2). 
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We use the matrices 5(j,  n, 2, k) to model a pooling strategy. We identify a popu- 
lation of  cardinality z _< (~) with a random z-set of  columns of 8(j ,  n, 2, k). This iden- 
tification defines a submatrix, 8z(j, n, 2, k), of 5(j,  n, 2, k). A row Txy of 5z(j, n, 2, k) 
determines a pool of the population in the obvious way. That is, eK is in the pool deter- 
mined by Yxy if and only if {x, y} is contained in g .  We identify a row of 8z(J, n, 2, k) 
with the pool of columns of 5z(j, n, 2, k) that it determines. 

Fix j.  Since the ratio of the weight of any row to the total number of  columns 
k(k-~), 

in 5(j ,  n, 2, k) is ~ then using a binomial approximation to the hypergeometric 

distribution for the number of l ' s  selected from a given row of 5(j ,  n, 2, k) when z 
k(k-~). columns are randomly chosen, we can assume n n-N-~_i)z approximates the number of l 's  

in a row o fa  submatrix fiz(J, n, 2, k), because in most cases, k(k-1) < .05 and z _> 5000. 
This observation gives us considerable control over the pool sizes. As noted Section 1, 
this is an important practical consideration. 

3. The Nonadaptive Algorithm with No Testing Errors 

Given a population of cardinality z < (~), let P represent the positives and suppose ]PI = 
p. Let j ,  k < n. Identify the population with a random z-set of columns of 8(j ,  n, 2, k). 
Then P is randomly associated with a subfamily of columns of 5z(j, n, 2, k), which in 
turn are represented by a p-family {K1, . . . ,  Kp} of k-sest of  [n]. By testing each row of 
5z(j, n, 2, k), we define an output vector o by setting Oxy equal to 1 if the test result of 
pool Zry is positive and 0 if not. Suppose the test results are free of any errors and we 
have tested each row of 5z(j, n, 2, k) and the output vector o which contains no errors. 
We use o to probabilistically identify P. Since 7ay = ~'yx, then Oxy and oyx denote the 
same entry in o. 

Definition 3.1. Let {Kt , . . . ,  Kp} be a randomly selected p-family of  k-sets from In]. 
Let J be a subset of In] with IJI = j. I f  for g~, there is an element xi in Ki, but not 
in any other Ki, with i ~ ¢ i, then we call xi a representative of Ki in {K1,...  ,Kp}. 
Let (~i(J, n, p, k) be the probability that Ki has a representative contained in J. Since 
•i( J1, n, p, k) = *i, ( J2, n, p, k) when IJl l  --  1121 -- j ,  we simply let d?(j, n, p, k) be the 
probability that Ki has a representative contained in J. 

Algorithm 1. For a population of cardinality z identified with the columns of  5z(j, n, 2, 
k), test the pools identified with the rows of gz(J, n, 2, k) and consider the output vector 
o. Search for all x in [j] with the property that I{Y : Oxy = 1 }I = k -  1. For each such x, 
from the k-sets {x} U {y : Ory = 1 }. Take these k-set to represent the positive elements. 

Note that, when using 5z(j, n, 2, k), Algorithm 1 will never identify more than j 
positive objects. 

Theorem 3.2. Suppose the tests are error-free. For a population with cardinality z and 
tPI = p, the expected number of  positives identified using 8z(j, n, 2, k) in Algorithm 1 
is p . ~ ( j , n , p , k ) .  

Proof Suppose P is randomly associated with the p-family {K1,... ,Kp} of k-sets of 
[n]. It is easy to see that xi is a representative of Ki in {KI, . . .  ,Kp} if and only if 
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{{xi, y} :  {xi, y} C Ki forsome 1 < i < p} = {{xi,y}: {xi,y} C Ki} and that this 
equality occurs if and only if [{y : %y = 1}1 = k -  1. So the probability of identify- 
ing K1 using 5z(j, n, 2, k) in Algorithm 1 is ~(j, n, p, k). Thus, all of  the positives 
with representatives can be extracted from o by searching for all x E [j] with the 
property that I{Y : oH = 1 } I = k - 1. Hence, the expected number of positives iden- 
tified using 8z(j, n, 2, k) in Algorithm 1 is equal to the expected number of members of 
{ Kh . . . , Kp } with representatives. 

Fix j and let o3 = (KI,.. .  ,Kp) be a randomly chosen ordered p-family of distinct 
k-sets in In]. Clearly the expected number of k-sets with representatives in an ordered 
p-family of distinct k-sets is equal to the expected number of k-sets with representatives 
in an unordered p-family. Let Xi be the random variable that sends co to 1 if and only 
if Ki has a representative in [j]. Then the expected value of Xi is ~(j, n, p, k). If we let 
X = ~P=I Xi, then X gives the number of coordinates of co with a representative. The 
desired result follows from the additivity of expectation. | 

Example 3.3. The simplicity of the decoding procedure can be demonstrated by dis- 
playing a modified output vector. Consider using 5z(4, 7, 2, 3) when there are four pos- 
itives which are represented by P = { { 1,2, 3}, {3, 4, 5}, {3, 5, 7}, {5, 6, 7} }. Here, 1 
and 2 represent {1, 2, 3}, 4 and 6 are the sole representatives of {3, 4, 5} and {5, 6, 7} 
respectively, and {3, 5, 7} doesn't have a representative. Because Oxy = Oyx, the out- 
put vector o = (012,013,014,015~ 016~ 017,023~ 024~ 025,026,027,034,035,036,037,045, 
046,047) = 110000100001101100 can be displayed as 

1 
012 013 014 015 016 017 

1 1 0 0 0 0 

3 
031 032 034 035 036 037 

t 1 1 t 0 1 

2 
021 023 024 025 026 027 

1 1 0 0 0 0 

4 
041 042 043 045 046 047 
0 0 1 1 0 0 

Now the sets {x} U {y : Oxy = 1} with I{Y : O~y = I}I = k - 1 are easy to locate. In 
this case, j = 4, n = 7, and k = 3, so we divide the entries of the augmented output 
vector into four groups of six (one for each element of [j]) and we look among those 
groupings for those with two 1 s. In our example, the first, second, and fourth groups of 
six indicate that {1, 2, 3}, {2, 1, 3} and {4, 3, 5} are positive. Hence, two of the four 
positives are identified. Since { 1,2, 3} has two representatives, it is identified twice. 
The positive {3, 5, 7} is not identified because it does not have a representative, and the 
positive {5, 6, 7} is not identified because its representative is not in [4]. For general 
5z(j, n, 2, k), we can display the output vector in a similar fashion by repeating the 
value of Oxy when Oyx is required. Then the positives can be identified by looking among 
the k-groupings indexed by [j] for those with exactly k -  1 Is. Note that each k-grouping 
has at least k -  1 ls and that regardless of the values ofp  and k, the decoding complexity 
of Algorithm 1 is (j~n) because O~y = Oyx. Most other nonadaptive algorithms have a 
decoding complexity equal to the size of the population. This heuristic will be useful 
when we consider how testing errors affect the identification of the positives. 
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For simplicity and practicality rather than necessity, we approximate the value of 
O(J, n, p, k). 

Proposition 3.4. Let k < j < n, then 

k , _ • - I~(j,n,p,k),~ (:)-Pi~l(-1)ii-l(Ji) (:2:)(n k l) p 1. 

Proof  Let ~ = (K1,...  ,Kp) be a randomly chosen ordered p-family of k-sets (with 
repetition allowed) in [n] and let E1 be the event that Kt has a representative in [j]. We 
can compute ~)'(j, n, p, k) = prob(E1) by enumerating the number of families )~ in El. 
For each x E [j], let O(x) = {~, : x is a representative of K1 }. Then E1 = Uxc[j]~(x). By 
inclusion-exclusion, we have that 

(0()(;) IE, I = ~ ( - 1 )  e+l n - i  n i p-1 
i=I k - i  " 

Since (~(j, n, p, k) ~ ~(j, n, p, k), the result follows. 

4. Applying the Main Result 

To apply this result to a population of cardinality z that contains at most p positives, 
we must choose j,  n, and k so that (~) _> z, p .  ~)(j, n, p, k) is at the desired level, and 

~(kn-ll)Z is an upper bound for our pool size. It is easy to see that, for fixed values of n ( - )  
and p, the value of k that maximizes ~)(n, n, p, k) is the same value of k that maximizes 
~(j, n, p, k) when j < n is also fixed. For almost all values of n, k, and p, we have the 
following sequence of successive approximations to ~(n, n, p, k): 

/ = i t - - /  ki] t W  ) "~"~-,ki=l(--l)i-I-l(ki) ('~)k(p-1) 

,.~ ]F_,ki=l(--1)i+l(~)e-ki(,p,-t)= 1-- ( 1 -  e-k(P-1)) k 

The latter estimate is more lucid. More importantly, for fixed parameter values 

( -k(nP-1) ) k nln(2) Thus, o f n  a n d p ,  1 -  1 - e  attains its maximum value w h e n k -  p-1 • 

given a desired value (~o of (~(j, n, p, k) when p is fixed, initially we choose n = no and 
k = ko in 5z(j, n, 2, k) with ~ close to 2221n(2), (~) -> z, ~(no, no, p, ko) _> q~o and no as 
small as possible. From these initial choices, adjustments ni, kl to no, k0 respectively 
are made keeping nl as small as possible, (~) _> z, ~)(nl, nl, p, hi) >_ go, and making 

kl(k~-1)Z less than the desired pool size. It is easy to see that for fixed values of k nl(nl-1) 
and p, ~(n, n, p, k) is an increasing function of n, and for fixed values of n and p, 

nln(2) ~(n, n, p, k) decreases as k moves away from -~T--I - Finally, j0 < n1 is selected so that 

~(jo, n l ,  P,  kl)  2> (~0. 
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Example 4.1. Suppose a population has z = 105 objects, p = 5, the pool size must be 
less than 2500, and we want to identify 90% of the positives on average, i.e., ~)0 = 
0.9. Since p-ltn(2) ~ 5.8, we initially choose no = 29 and k0 = 5. This gives (~) > 

z, ~(n0, no, p, ko) = .97 and ~ z  = 2463. Selecting j0 = 22 gives ~(j0, no, p, ko) 
= .902. Since 5z(jo, no, 2, ko) has 385 rows, we need 385 pools. If the pool size needs 
to be approximately 1500, then we choose nl = 37, kt = 5, and jo = 24.This gives 

(~i) > z, ~(jo, nl ,p,  kl) = .905 and ~(k~-t)z = 1501. Since 5z(jo, nl 2, kl) has 588 
- -  n l ( n i - l )  , 

rows, we need 588 pools. 

5. The Nonadaptive Algorithm with Testing Errors 

In this section, we assume errors may occur only in the testing and not in the formation 
of  the pools. As in Section 3, given a population of cardinality z < (~), let P represent 
the positives and suppose IPI = p. Let k < n. Identify the population with a random 
z-set of  columns of 5z(n, n, 2, k). Then P is represented by a p-family {K1,.. .  ,Kp} of 
k-sets of In]. Test each row of 6z(n, n, 2, k). If pool ]'xy contains a positive element but 
is mislabeled by the test result as a negative pool or viceversa, then we say that Oxy is 
an outcome error. 

When using 8z(n, n, 2, k), how do outcome errors affect the efficacy of Algorithm 1 ? 
If outcome errors occur, then we can no longer be sure that all of  the objects identified 
by Algorithm 1 will be positive. Instead, the objects identified in the decoding part 
of the algorithm will be candidate positives. Let CP be the set of candidate positives. 
It is easy to see that [CP I <_ n. Recall the augmented output vector in Example 3.3. 
Algorithm 1 identifies the sets {x} U {y : Oxy = 1 } with I{y : Oxy = 1 }[ = k - 1 as CP. 
These sets are identified by looking for the k-groupings that have exactly k -  1 l 's. 
Thus, it is straightforward to see that the way in which outcome errors affect [CP n PI 
is by changing the number of l 's  in a k-grouping in the modified output vector whose 
index value is a representative of a positive element. Thus, if we to quantify the number 
of k-groupings unaffected by a fixed number of outcome errors, then we can compute 
the expected value of [cPn P]. 

Definition 5.1. Let k < n. When using 5z(n, n, 2, k) in Algorithm I for a population 
with cardinality z with IPI = p, if e outcome errors occur, let y(n, p, k, e) denote the 
expected value of tCP f3 PI. 

Theorem 5.2. 

(2) -emin(n'2e) Y i n ( ~ ) (  2-1)e 
y ( n , p , k , e ) ~ p .  E E ( - 1 )  ( ~ Y ~ ( n - y , n , p , k ) .  

y=2 i=0 \ Y /  

Proof Suppose P is represented by {KI, . . .  ,Kp}. Since each pool in 5z(n, n, 2, k) is 

2-set in ([~J), if e random outcome errors occur, then the number of represented by a 
% ] 

unaffected k-groupings will be equal to the number of elements in [n] that are not in the 
union of the e 2-sets that correspond to the pools ha which the outcome errors occurred. 
In other words, if J is the set of elements of [n] not in the union of the e 2-sets that 
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correspond to the pools in which the outcome errors occurred, then the probability that 
/(1 will still be identified by Algorithm 1 is ~(j ,  n, p, k) when IJI = j .  Thus if Y(e) 
is the random variable that gives the cardinality of  the union of  e 2-sets of  [n] (with 
repetition allowed), then the expected value of ]CP f? P] is approximately equal to the 
expected value p. ~(n - Y(e), n, p, k). By an inclusion-exclusion argument, we have 
for 2 _< y _< 2e that 

- e  min(n,2e) 

Prob(Y(e) = y ) =  ( 2 )  ( ; )  ~ ( - 1 ) i ( : ) ( Y 2 t )  e" 

From this, the result follows. 

Example 5.3. Suppose a population has z = 105 objects, p = 5, and the pool size must 
be less than 2500. Assume the outcome error rates are 1% , 3%, and 5%, and let 
el,  e2, and e3 denote the actual number of  errors in each case, respectively. As in 

Example  4.1, we choose no = 29 and ko = 5. This gives (~)  > z, and k° (~-Uz = 
- -  n0(n0-1) 

2463. I f  we use 8z(no, no, 2, ko) and assume an outcome error rate of  1%, then el = 
[.01 (~o)] and 7(no, p, ko, el) = 4.39. Since 8z(no, no, 2, ko) has 406 rows, using those 
406 pools in Algorithm 1 will give ICP[ < 29 and the expected value of [CPNP[ = 4.39. 
Assuming an outcome error rates of 3% and 5%, then ez = [.03 ( 7 ) ] ,  e3 = [.05 (n2°)] 
and y(no, p, ko, e2) = 3.26, 3'(no, p, ko, e3) = 2.16 respectively. 

A c k n o w l e d g m e n t .  The author thanks John Sponge of NIH for his helpful suggestions concerning 
some of the technical aspects of this paper. 
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