
Commun. math. Phys. 45, 35--52 (1975) 
Communications in 
Mathematical 

Physics 
@ by Springer-Verlag 1975 

Characterization of Particles by Means of Local 
Observables 

Volker Enss 
Abteilung fiir Theoretische Physik, Fakult~it ffir Physik der Universit~it Bielefeld, D-4800 Bielefeld 1, 
Federal Republic of Germany 

Abstract. We introduce the notion of singly localized states and use it to 
characterize the one-particle states as those states which are singly localized 
at all times. For theories which satisfy the Haag-Swieca compactness criterion, 
we show that a state has a discrete mass spectrum if and only if it is a "geo- 
metrical one-particle state". 
Using a mathematical description of coincidence arrangements of counters 
we show that in asymptotically complete theories the asymptotic particle 
number is the asymptotic number of localization centres. 

I. Introduction 

In relativistic quantum theory a particle is usually defined to be a state that 
belongs to an irreducible representation of the Poincar6 group. In an experiment, 
however, one identifies a particle by its localization properties, e.g. its track in a 
bubble chamber. A geometrical characterization of a one-particle state should 
allow for the experimental situation. 

Apart from being very abstract, the usual particle definition has other draw- 
backs: In theories with long-range forces, like quantum electrodynamics, it is an 
open question whether the electron has a discrete mass or whether it is an "infra- 
particle" with continuous mass distribution [6]. In the latter case it would violate 
the usual particle definition, although it behaves like a particle in experiments. 

In theories with short-range forces, the Haag-Ruelle scattering theory [5] 
provides the existence of states which can be interpreted as incoming or outgoing 
particle configurations. It relies on the conventional notion of a particle. It is not 
yet clear which physically plausible assumptions ensure an asymptotic particle 
interpretation of all states (asymptotic completeness). 

As a contribution to these problems, we will characterize the particle states 
by their local properties, because the physically and mathematically basic objects 
in the theory are the local observables. We confine ourselves to theories with 
short-range forces. 

In what follows, a "particle" will be any physical system which remains 
connected for all times when external forces are absent, i.e. a system that does not 
decay into subsystems which become separated and independent of each other. 
A particle of this kind can be a stable elementary particle, or a stable bounded 
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system like the ground state of a hydrogen atom. Although the possibly existing 
different components of the particle remain close to each other, the centre of mass 
motion of the particle exhibits the quantum phenomenon of "spreading": the 
region where the particle can be found increases with time. 

Therefore the notion of a state that is "localized in some region at time t" 
cannot be used to distinguish the one-particle states from the others. For  our 
purposes, the appropriate generalization is the notion of a state which is "singly 
localized at time t with correlation-radius r". These states can be constructed by 
superposition of state-vectors which are localized at time t in various regions of 
radius r. Alternatively, the singly localized states can be characterized by their 
inability to trigger a coincidence-arrangement of two counters separated by a 
longer distance than r. In non-relativistic quantum mechanics, a system of n 
elementary particles is singly localized with correlation radius r at a given time 
if its wave function f( t;  xl . . . . .  xn) vanishes as soon as one of the relative co- 
ordinates becomes bigger than 2r. 

Accordingly, an N-fold localized state will trigger a coincidence arrangement 
of N separated counters, but not one with N + 1 counters. 

Loosely speaking, a one-particle state is singly localized for all times. The 
precise statement of this is the 

Geometrical Particle Definition: 

7 j is a one-particle state if for any e > 0 there is a radius r, independent of t, such 
that it~-exp(iHt)q~tII <e, where exp(iHt)~, are suitable states singly localized 
at time t with correlation radius r. 

Similarly, we define the 

Geometrical Asymptotic Particle Number: 

A state is an outgoing (incoming) N-particle state if it is N-fold localized for 
t - ~ ( -  o9). 

In Section V we will check the equivalence of the geometrical particle definition 
with the usual one. The "compactness criterion" postulated by Haag and Swieca 
[3] plays an essential role. It says roughly that there are only a finite number of 
distinct states which are localized in some region and are bounded in energy. 
In a theory which satisfies this criterion, both notions of a particle are equivalent. 
The typical behaviour of a one-particle state in space and time entails its discrete 
mass and vice versa. The proof of the equivalence theorem depends very little on 
the details of the construction of singly localized states. Therefore a generalization 
to theories with massless particles might be possible. 

The mathematical properties of "coincidence operators", and the equivalence 
of the asymptotic particle number with the asymptotic number of localization 
centres will be discussed in Sections VI-IX for asymptotically complete quantum 
field theories. 

The framework for our investigations is the relativistic local quantum theory 
according to Haag-Araki [1]. An open region of Minkowski space is denoted 
by (9, and a~(C0) is the yon Neumann algebra generated by the observables of this 
region. U(x)= exp{iP~x~} is a unitary, strongly continuous representation of the 
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translations on the Hilbert space Jg. The spectrum of their generators is contained 
in the set 

{p" = 0}w {pU I p° > 0, pUpu > ~:2 > 0}. 

The vacuum f2 is unique. 

IIa. Localized States 

Haag and Swieca described states which are at some time localized in a fixed 
region of space. We will state their definition and some relevant properties; 
further details can be found in [3]. 

We confine our attention to the vacuum sector of the theory. The generaliza- 
tion to theories with superselection rules is obvious if one uses the local field- 
algebras instead of the observable-algebras. 

Let C be a fixed bounded region in space-time. We use local operators Q with 
the following properties: 

Q ~ ~((9), (~2, Qf2) = 0, II Q ]l < exp0 or) II Q• [I, (2.1) 

(~ is the lower bound of the mass spectrum) to create from the vacuum the set ~¢/r 
of states which are at time t = 0 localized in a region of radius r around the origin: 

..//dr = {Qf21Q satisfies (2.1)}. (2.2) 

J¢/, is not a linear subspace of the Hilbert space, but 

T ~ J ¢ , ~ 2 T ~ d / I , ;  d/,CX{,, if r<r'  ; 

and given two vectors ~, T e i t / ,  there is an r' such that 

2~b+#TeJg , ,  forall  2 ,# .  (2.3) 

f2 (~ U~d/ ,  = {~((9)f2} is dense in ~ (2.4) 

by the Reeh-Schlieder theorem (e.g. [1], Part I, Satz (10.2)). 
The states which are localized at time 0 in n widely separated regions are 

I-I?= 1 Q,(x,)~, Ixi -  x ~l > r,  

where all Qi satisfy (2.1). 
The localization of the states shows up in the following properties: 
1. There are numbers A and ~ > 0 such that for all ~, T e J/l, 

I(~, U(x)7')l _<_ I[~11 II ~e IIAexp{- 7(Ixl - r)}. (2.5) 

2. Any state in J//r is almost orthogonal to any state which is localized in 
several regions. 

3. Let C be a "counter-operator" [cf. (6.10)], i.e. an almost local operator which 
annihilates the vacuum; then for any r there is a rapidly decreasing function 
~p,(x) such that 

I(~, C(x)'e)l < II T[12~p,(lx[) V T e ~ .  (2.6) 
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To prove (2.6) one uses the local approximations of C(x) that tie spacelike to the 
creator of ~P. 

The only strictly localized states are those which are created from the vacuum 
by local isometric operators. All other states differ from the vacuum even at 
spacelike distances from (9, but the amplitude of this difference falls off very fast 
with increasing distance. So it is impossible to fix a unique region of localization 
for the states in Jdr; r is not an exact radius, but a non-calibrated parameter for 
the spacelike extension of the state. 

lib. The Compactness Criterion 

Haag and Swieca set up a compactness criterion in order to characterize asymp- 
totically complete theories by their local properties [31. 

A closed bounded subset ~ of a Hilbert space is compact (in the strong topology) 
if it is almost finite dimensional, i.e. for any e >0  there is a finite dimensional 
projector F with 

IT ~ - F g / l [  < e V ~ f .  (2.7) 

The states of a physical system which are localized in some finite region and 
have bounded energy occupy a finite volume F of phase space. Quantum physics 
says that there is only a finite number of these states, namely F/h a: Amrein and 
Georgescu [8] showed in non-relativistic scattering theory that the localized 
states with finite energy form a compact set (for all realistic potentials). Taking 
this over to relativistic quantum theory yields the compactness criterion: 

f,.,e={Pe~Pl~JZr, []ku]j<l}- iscompact Vr, E. (2.8) 

~dlr contains the localized states with radius r (2.2), Pz is the projection on the 
states with energy smaller than E, and { }- denotes the closure of { }. We won't 
need the postulates on the size of the compact sets given in [3]. 

The free massive field satisfies this criterion, which means that for a system 
of free particles there is essentially a finite number of states with bounded energy 
which are localized in a finite region. The generalized free field, however, which 
obeys all the axioms except asymptotic completeness [7], violates the criterion. 

In an interacting asymptotically complete theory with short-range forces, the 
localized states of finite energy evolve into states of freely moving particles. To 
a given accuracy, the interaction between the particles can be neglected after some 
finite time interval. Since the states are then localized in some bigger but still 
finite region, there should not be more than a finite number of these states. There- 
fore one expects that an asymptotically complete theory satisfies the compactness 
criterion, although this conjecture has not yet been proved. As we are interested in 
theories with particle interpretation, we shall assume in the sequel that (2.8) is 
fulfilled. 

III. Separation of the Momentum Distribution 

We will decompose the state space into a direct integral of eigenspaces of the 
momentum operator P (in quantum mechanics this is the same as separation of 
the centre of mass coordinate). This representation is useful for describing the 
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translation invariant sets of singly localized states, and it facilitates use of the time 
evolution to distinguish between states with discrete and continuous mass. 

The vectors ~b with ~d3x[(~, U(x)~)[ < oo are dense in the orthogonal com- 
plement of the vacuum. For any given p ~IR 3, the pairs (~, p) with 2(~, p )+  
/4~', p) = (2~ + #~b', p) span a linear space which can be equipped with the positive 
semidefinite scalar product 

((~, p), (cb', p)) = .f d3x exp(ipx)(q~, U(x)~'). (3.1) 

A standard mathematical procedure (as described e.g. in [9, Chapter 3.4]) yields 
a Hilbert space ~p for any p. ~b(p) E gp denotes the equivalence class of pairs 
(~, p). 

The momentum operator acts on @ according to 

(U(x)~)(p) = exp( - ipx)~(p). (3.2) 

The Hilbert space is decomposed into * 

H = {20} • ~m3 G d3P@, (3.3) 

II 7'112 = I(~, O)l z + ~d3pll kg(p)[l~. (3.4) 

For an L2-function there is a unique continuous representative f (p)  if its Fourier- 
transform f (x)  is in L 1. So the mapping f - - , f (p )  makes sense. Similarly the above 
construction gives a unique mapping ;g ' - - ,gp :<b~(p)  for any p and all • with 
~d3xt(4 ~, U(x)~)l < o% although two functions 4~(p) and ~(p) represent the same 
vector in ~ f  if they coincide for almost all p. 

Using this unique mapping it is easy to show that the strongly continuous 
unitary group of time translations induces on each ~p a strongly continuous 
unitary group. It defines the positive setf-adjoint "reduced" Hamiltonian and 
mass operator with 

H[p]  = (p211 + M e Ep])l/2. (3.5) 

To characterize the singly localized states, we will need the following lemma. 

Lemma 3,1. In a theory which satisfies the compactness criterion (2.8), the sets 

{(PMgJ)(q)l ~U e JOgs, II ~1[ _-< c}- 

are compact in Aq for all M, q, r, and c. 
PM is the projection onto states with mass bounded by M. 

Pro@ For any ~g e dt~, II~ull <c, there is a Q eN((9), l tQIl<cr ~ with ~'=QO. 
There is a double cone (91 such that [Q*, Q(x)]=0 for all x e 0'1 (the spacelike 
complement of C0. Using the Jost-Lehmann-Dyson representation of 
(Q, Q*Q(x)Q)-(O, Q(x)Q*Q) and the properties of the solutions of the five- 
dimensional wave equation [11] one can show that 

(f2, Q* PMQ(x)O)-(O, Q(x)PMQ*O)=O V x e C'~ . 

1 We shall omit the indices of the norms when no confusion is possible, 
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Now one can apply the method of [3, Eqs. (3}-(15)] to estimate 

[(PMW, U(X)PM7")[ <: cZe2'~q~(lxl)V M , 

where qfflxl) decreases faster than any inverse power of Ixl. So we get 

IVpl[(PM T')(p)ll21< S daxlxlcZ eZ~ q)(lxl)= f (c, r) . (3.6) 

For a given e>0, define 6=e2/f(c, r) and Po as the projection onto those 
states whose support in momentum space is contained in a &neighbourhood of q. 
The linear mapping tq :x4 P 3 P~PM~,--,dq: I~(P~PMT') = (P~Pr~7")(q) = (P~7")(q) is 
uniformly bounded on those vectors with ll(e~7')(q)ll _>-e: the estimate (3.6) gives 
II(PM~/J)(P)It 2 >- tI(PMT'Xq)II 2 _ f(c, r)lp-ql,  

II PaP~7"II 2 >_ II(PMT')(q)lle(4rc/3)6 3 - f(c, r)Trg)" 

_>_ 1/3 II(P~7"Xq ) I[ 2~z(~3 

which shows that tq is bounded, 
The set {P~PMT'[7" eJ¢/~, 117'[I <c, [[(P,~7"Xq)[[ _->~}- is compact as a closed 

subset of the compact set (by 2.8) {P~PMgq-. Since l~ is continuous on this set, 
its image {(PMT')(q)lT'eJg~, tlTql~c, [[(PMT')(q)ll_->e} - is compact for any e; 

therefore {(PMT')(q)lT" s ~ ,  1[7"l[ _<c}- is compact for any q, r, c, M. [] 

IV. Singly Localized States 

We pointed out already in part IIa that in relativistic quantum theory even most 
of the well-localized states have no fixed localization region. Accordingly, the 
sets gr of states which are "singly localized at time 0 with correlation radius r" 
are not uniquely fixed. For the proof of the equivalence theorem, however, it is 
not necessary to know the sets gr in detail. Therefore we will state only some of 
their important properties. 

Let {Kd} be any sequence of translation invariant operators measuring those 
spacelike correlations in the states which extend over a longer distance than d. 
An example is provided by the coincidence operators introduced in Chapter VI. 

Since by (2.5) the correlations for well-localized states decay very fast, one 
expects that for d > r: 

ItKaW II =< z ( d -  r)II W II V ~' ~ J/d~, (4.1) 

)~(d) = Aexp(-  ad), a > 0 .  (4.2) 

If a state obeys the same inequalities (4.1) as the states in ~¢[, do, it is surely 
singly localized with correlation radius r. This leads us to the following two 
properties that determine which states will at least belong to the sets g~. Let VCP) 
be unitary functions of the momentum operator. They commute with all Kd. 

El :  V ( P ) ~  C ~ V  V(P). 
E2: For any e > 0 there is a radius r' such that for all 7"i e ~/~r, II 7"ill < 1, and 

for all V~CP) 

v1( )7"1 + v2(g)7"2 + % .  
~/G is the ball of radius ~ in state space. 
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Property E2 describes "restrained linearity" of the sets gr, which is analogous 
to property (2.3) for Jg,. E2 is surely true if IIV~(P)Tt+V2(P)T2II<e. In the 
opposite case, 

IIKa(VI(P~)Ta + V2(~P)T2)I[ < [IKaT1 II + IIKd% II 

-<_ z ( d -  r)(ll ~gl I[ + II ~2 II)_-__ 2/~ z ( d -  r) l[ V,(g)~l + V2(~)% II 

= z(d - / ) l l  Vl(e) ~ 1 + V2(g) % II. 

For our purpose, the weak property E2 is sufficient. It is valid for a much wider 
class of functions Z than those of the form (4.2). 

In non-relativistic quantum mechanics, the support of the states f ( x l  ..... x,)sgr 
in the relative coordinates x i -  x~ is contained in a ball of radius 2r. Separating off 
the total momentum p gives the wave function f (plx  1 - x  2 . . . . .  xn_~-x , ) e~p .  
For all p there exists a wave function 9veJ[2 , ,  namely gv(xl . . . . .  x,)= 
gv(~= 1 xi)f(P[Xl - x2 .. . . .  x,_ 1 - x,), where the support of gp(y) is contained in a 
ball of radius 2r. For sufficiently large r, one can choose Or(p)=1 
and [d3ylgv(y)l 2 ~ 1. Then 

Op(plx~ - x2  . . . . .  x . _  ~ - x . ) =  f (p l x~  - x 2  . . . . .  x . _  1 - x . )  

and Hgv(xl .. . . .  x,)ll~e<[lf'(plxl-x2 . . . .  ,X,-x-X,)[ l~.  Therefore it is plausible 
that in relativistic quantum theory one can assume the following much weaker 
property: Let T e g~. There exist a bound c(r, p) and, for any p, a vector ~v ~ ~/~2r 
such that II%[l~_< e(r, p)[[ T(p)II~, and ~v(P) = T(p). 

In theories which satisfy the compactness criterion, one can apply Lemma 3.1 
to get property 

E3: For all M, r, c, p the sets 

fM(p)= {(pMT)(p ) e @ l T  e g~, !I T(p)il~ <c}-  (4.3) 

are compact. 
This property says what the maximum number of states contained in the sets g, is. 

The natural choice of the states, which are singly loaclized at time t is U(t)g,. 

V. Equivalence of the Particle Definitions 

In this chapter we will prove our first main theorem: 

Theorem 5.1. In a massive relativistic quantum theory which satisfies the 
compactness criterion (2.8) a state obeys the geometrical particle definition 
(Chapter I) if and only if its mass spectrum is discrete. 

In non-relativistic quantum mechanics, Ruelte [10], and Amrein and Georgescu 
[8] proved an analogous theorem on the geometrical characterization of bounded 
systems. Parts of our proof parallel the one given in [8]. 

Proof. "if'-part: A state T with discrete mass spectrum can be approximated 
uniformely in time by a finite linear combination of eigenstates of the mass 
operator: 

Ilexp(iHt)T- ~=1  VI(P, t)tpl II < e/3 V t ,  

Vt(P, t) = exp{i(P z + m~)t/zt},  MTl  = mttlJt. 
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For all 7Jl there are, by (2.4), a radius r and vectors ~l ~ ~ r  such that II ~ ' t -  q~lll < 
e/3NVl. Property E2 (Chapter IV) ensures that v~e can find a radius r' and vectors 
q~i s Er, such that 

N 
t l Z l  =1 V/(P, t)clb I - -  ~'tll < g/3 V t .  

So I l e x p ( i H t ) ~ -  ~b'tl [ < e V t, i.e. ~ satisfies the geometrical particle definition. 
"only if"-part: We will show that a state with purely continuous mass spectrum 

is orthogonal to any geometrical one-particle state. We need no special assump- 
tions about the mass spectrum - it can contain a continuous singular part. 

For fixed momentum p, we define the set ~pCdp by ~p={d~@[ for any 
~>03r,  such that for all t there is a ~t ~ gr with Hgtt(p)ll = I1dll, Ilexp(iH[p]t)d- 
~t(p) il < ~}. 

~(p) E ~p for almost all p if ~ satisfies the geometrical particle definition. 
As a consequence of the compactness criterion, for any d e yp there is a finite- 

dimensional projector F s N(@) such that 

II 0 t -  F)exp(iH[p]t)d II < ~ IL d/I v t. (5.1) 

To prove this we choose M such that I](l[-PM)dl]<ll.dlle/4 and r so big that 
Ilexp(iHEp-]t)d-7"t(P)ll<lldi[e/4 for suitable 7~egr ,  ilT-'~(p)li=lldl[. Then 
[lexp(iH[p]t)d-(PMT~t)(p)ll<lldlle/2Vt. According to property E3, the vectors 
(P~tgJt)(p) are all contained in the compact set f~ (4.3), and by (2.7) there is a finite- 
dimensional projector F ~ ~(~p) such that I[(~- F)(PM tet)(P)II < lid II E/2V t, This 
gives (5.1). 

We denote by ~ the subspace of d# corresponding to the continuous spectrum 
of the reduced mass operator M[p] or the reduced Hamiltonian Hip]. 

For a vector 4~ with purely continuous mass spectrum, 4~(p) lies in /;~ for 
almost all p. Therefore it is sufficient to show that ~ is orthogonal to gp. 

Lemma 5.2. Let e~d~ and f ~ ,  be given; then 

lira (2T) -1 ~r_ r dtl(f, exp{iH[p]t}e)l 2 = O . 
T ~ m  

Proof. Hip] =~#dE(# )  is the spectral decomposition of the reduced Hamil- 
c tonian on dp. 

I(f, exp(iH[p] t)e)12 

= ~exp( i (2-  #)t)d(e, E(2) f)d(f, E(#)e) (5.2) 

The polar decomposition of the measure 

d(f, E(#)e) = dea (#) -  de2(#)- idea(#) + id@4(#) 

gives four positive bounded measures ~(#), ~do2{#)< 1. We estimate the first term 
in (5.2): 

I ~ -  ~ ~_ ~1-- I ~, ~= oeiUtd(f , E(#)e) ({E(# + 6) - E ( # -  6)}e, exp(iH[p]t) f)l 

__< sup I[ {E(# + c5)- E ( # -  cS)}e II ~ = ~  ~de3(#)V t. 
tt 
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For e s ~ ,  E(A)e is uniformly strongly continuous in 2. For any e> 0, we can 
find a 6 > 0 such that 

ISfl,-.l_-<~l < 4 s u p  II{E(12+(5)-g(~-~)}ell < ~ / 2 V t .  

The time-avarage of the second term in (5.2) is 

(2 T)- 1 yr. T dt YYI*-,I-->~ exp {i(#- 2)t}d(e, E(2)f)d(f,  E(lz)e) 

< YYl z - ul >_o ]sin { ( p -  2) T }/((# - 2) r)l ~j dej(;O ~, de,(#) 
<16/ (6 .T)<e /2  for T>32/(be). [] 

Corollary 5.3. Let F ~ ~(~p) be a finite-dimensional projector. For all e ~ ~ 

lim (2T)- 1 yrrdtlTFexp(iH[p]t)ell2 = 0 .  
T ~ o o  

Remark. If e has a Lebesgue-absolutely continuous mass spectrum, 

lira IIFexp(iH[p]t)e[]2=O. 
t ~ O 0  

Lemma 5.4. I f  d ~ g ,  and e ~ ~ ,  they are orthogonal. 

Proof. 

I(d, e)l 2 

= (2T)-1 y r - Tdtl(d, exp{iH[p]t}(l l-  F)exp{ - i l l [p i t}e )  

+(d, exp{iH[p]t}Fexp{ - iH[p]t}e)l  2 

< 2sup I1(~-- F)exp{iH[p]t}dli 2 
t 

+ 2(2T)- 1 yT Tdtl!Fexp{iH[p]t}ellZ V T, F .  

For a given ~>0, we choose a finite-dimensional projector F such that by (5.1) 

It(ll - f)exp{iHEp]t}dll 2 < 8/4V t .  

For sufficiently large T, by Corollary 5.3, 

(2 T)-  1 yr_ T dt [I Fexp(iH [p] t)e I I 2 < ~/4, 

so that I(d, e)[ 2 < e. [] 

VI. Coincidence Arrangements of  Counters 

In the following sections we will describe mathematically a coincidence measure- 
ment with counters by "coincidence operators". If the theory has a complete 
particle interpretation, we can show that the asymptotic number of localization 
centres is the particle number. 

To simplify the notation, we deal with theories describing only one kind of 
particle with mass m>  0. The energy-momentum spectrum is: 

{p" = 0} w {pUlpupU = m 2, pO > 0} C2 {pUlpup u >= 4m 2, p0 > 0}. (6.1) 
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We use the formulation of Haag-Ruelle (H-R) scattering theory [5] in terms of 
bounded, almost local operators [4]. 

A bounded operator A is almost local if it can be approximated by local 
operators A r e N((gr) ((9 r is the double cone around the origin, with a basis of 
radius r) such that 

[[A[I= HAr[ 1, [[A-Ar[I < []A][cp(r), 
q~(r) __< 1, lim rN cp(r) = 0 V N . (6.2) 

r ---~ c ~  

There exist bounded one-particle creation operators A*: 
A is almost local, 

A*~2 E 9f~l, A~2=0, (6.3) 

(2zr)3/2(2c%)-i/2(plA*f2)=lVp with c % < E , ( p I A * f 2 ) ~ ( I R 3 ) ,  (6.4) 

where c%=(pZ+m2) t/2 and IP> is the improper one-particle vector with 
momentum p. We use the normalization 

(p[q ) = 2o0p6 3(p _ q) . (6.5) 

The /-particle scattering states ~i n, 7*~ at are limits of the H-R approximations 

1 t 
7*t(t) =~7.v Y l-It= 1 d3x,ft(t; x l  . . . . .  xt)A*(x,, t)... A*(xt, t)f2, (6.6) 

¢ 

gila (°"t) = s-lira 7Jr(t), (6.7) 
t ~ -  oo(+ oo) 

with wave functions 

ft(t; xt  . . . . .  xt)=(2~z) -3t/z ~1-[~= l(d3piexp(iptxi - i¢opit))ft(Pl . . . . .  Pt). (6.8) 

If the ft(Pl, . : . ,Pt)~(IR3t)  have non-overlapping support in velocity space 
(i.e. the planes pi/o~v~ =pffo~pj don't lie in the support of ft) the sequence ~t(t) 
converges very fast: 

[tlN]l ~l(t ) _  k~in (o,0 l[ < MN V N, V t < 0(t > 0). (6.9) 

These non-overlapping scattering states form a dense set in Yf if the theory is 
asymptotically complete. 

For the /-particle states with bounded energy in the free field theory, we will 
also use the representation (6.6). In that case A* is the free field, smeared with a 
suitable test function from 5P(IR4), so that (6.3) and (6.4) are valid. [A Wightman 
field, smeared with a test function from 5e0R4), is an unbounded almost local 
operator.] 

The decay properties of truncated vacuum expectation values (TVEVs)  of 
almost local operators have been studied in the literature for the cases where all 
operators are bounded (e.g. [1]) or unbounded (e.g. [2]). We will need the following 
case: 

Lemma 6.1. In a theory with mass gap ~c>O, let A t be unbounded and Q~ be 
bounded operators which are almost local. For all N, there are M N such that 

[(f2,1~Ji At(at) HT'dl Q~(a~) ~I72=1 Aj(aj)f2)T I <= MN(1 + d(9))- N 

where d(a)=max{la i -  ajl } is the diameter of the set of points {ai}. 
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To prove the statement, one approximates the unbounded almost local 
operators by unbounded local ones [i.e. Wightman fields tested with functions in 
~(IR4)]. The polar decomposition of the latter, and the subsequent spectral 
resolution of its positive part yields a bounded local approximation if one cuts 
off the spectral integral. The cut-off parameter depends, for each Al, on d(9) and 
on the position of A t in the T V E V .  Approximating the Qi by bounded local 
operators, one gets rapidly decreasing T V E V s  of local operators I l l ,  thus sup- 
pressing the polynomially growing norms of the bounded local approximations 
of the A,. 

Now we describe the counters. They are localized observables with positive 
bounded expectation values which don't count the vacuum. Therefore we call any 
operator a "counter" which has the following properties: 

C ahnost local, C>0 ,  CO=0,  IlCll = 1. (6.10) 

The product of two spacelike widely separated counter operators represents a 
coincidence circuit of the detectors. So we describe a coincidence arrangement 
of n counters Ci at time t with minimal separation d by "'coincidence operators" 

K~a")(t) = ~1~,- ~Jl >=ad3zl "'" d3ZnCl(Z 1, t) . . .  Cn(Zn, t) . (6.11) 

The space integration is chosen so that the expectation of K(a")(t) measures the 
probability that there are at least n particles with minimal pairwise separation d 
in the state. 

The unbounded operators K~a")(t) are idealizations of measurements in bounded 
regions, so we determine the domain of K~a")(t=0) using the approximating 
sequence of bounded operators 

K(a"){ R}  = l lz , -  zil >=a, Iz,I _<n d3zl ... d3znCl( z 1)... Cn(Zn) . 

Let ~ be ~ =  {~p ~ ~]w-  lim K~a"){R}tP exists and 
R--* co 

w- lim K~a"){R}*~P exists}. 
R--* oo 

is dense in ~ ,  because it contains all vectors created from the vacuum by 
almost local operators. On 

/~a ")= w- lim K(a"){R} 
R---~ oo 

is a closable operator whose closure defines K(a"~(t = 0): 

K~")(t =0) = g ~  ")** . 

The natural domain of K(a")(t) is 

N(K~")(t)) = exp(iHt)~(K(e")(O)). 

One could define hermitian coincidence operators if one used the symmetrized 
product of counters in (6.11). They would differ by a bounded operator whose 
norm decreases faster than any inverse power of d. 

Next we show that the states of bounded energy for the free massive field 
theory, and the non-overlapping scattering states with bounded energy in an H-R 
scattering theory are contained in the domains of all coincidence operators. As 
the K(e")(t) are closed operators, we will construct a sequence 7JR e ~(K(a")(t)) 
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so that s- lim t/' a = 7 j and s- lim K(f)(t)~R exists. Then kueN(K(d")(t)) and K(f)(t)~ = 
R - ~ o e  R ~ o v  

s- lim K~")(t)gt R. 
R " *  o9 

Lemma 6.2. Let A~, . . . ,A~ be almost local creation operators (i.e. AiO=O), 
f (xl . . . . .  xz) E Lz(IR at, dalx) and let 7 t = ~ d3xl ... d3xzf  (xl . . . . .  xL) A*(xO...A*(xt)O. 
Then 71 e N(K~")(t)) and I]/(f(t)~ u [I < Mll f II 2. 

The lemma says that all states of bounded energy for the free field, and the 
H-R approximations of scattering states at finite times with bounded energy are 
contained in the domain of any K(a")(t) [cf. (6.3)-(6.9)]. 

Proof. 7JR=~lxd<=gFId3xjf(x~ . . . .  ~xt)A~(xi) . . .A*(xl) f2 is a state which is 
created from the vacuum by an almost local operator. Therefore ~a  S ~(K~")(t)) 
for all R, t. To establish the strong convergence of lim K~")(t)gJR, it is sufficient 
to show that R-*o~ 

~ [I ,  d3 x, [ I f l 3  x)t f (. . ., x, . . . .  )Ill(..-, x),...)t 

• I(Q, I-[jAj(x))Ktf)(t)*K(f)(t)l-[iA*(xi)f2)[ < oo. 

Because If(... xl . . . )f( . . ,  x)...)l _-< 1/2[f(... xi...)[2 + 1/2If(... x)...)[2 the expression 
is bounded by 

~l-Ld3xi]f(...  xi...)]2 sup ~l~fl3x)l(o, HA(x , )K ,Kf lA , (x ) (21  
x i  

= < [l f f[~ supIHd3x)Hd3zkl]d3z'm 
Jci 

1 t # 1((2, HAj(x j )H Cm (z~, t)H Ck(Zk, t)IIAi (xi)O)j . 

In the decomposition of the vacuum expectation values (VE Vs) into truncated 
VEVs  (TVEVs)  only those terms appear which contain at least one A* and 
one A, because A and C annihilate the vacuum. So one will never integrate over 
all variables which occur in one TVEV.  The T V E V s  are continuous and rapidly 
decreasing functions of the relative variables, so the integrals and suprema 
exist. [] 

The proof of Lemma 6.2 shows that the existence of the limit is independent 
of the number of counters. So ~P is in the domain of all (K(f)(t)*Ktan)(t))k. We need 
a better estimate: 

Lemma 6.3. Let ~ be defined as in Lemma 6.2, but with bounded almost local 
creation operators A*. Then 

tl(K(f)(t)*K(f)(t))ke mnP I12 <= M iI f [I 2( 1 +It --TI) 3(4nk + l )  

M is independent of  f ,  d, t, and z. 

Proof. As in the last proof, one has 

It (K(f)(t)*K(f)(t)) k eim }P II 2 

< 1t f II 2 2 sup ~l~}= ~ d3x)I-I4~l d3z~J( O, IIA~(x))HC;.(z~., t - z)HA*(x~)f2)l. 
Xt  

The integrand can be decomposed into T V E V s ,  which one estimates as usual 
[1], approximating the almost local operators by local ones which lie spacelike 
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to each other. All T V E V s  are majorized by a bounded function which decreases 
rapidly as soon as the relative coordinates are bigger than i t -  vl. So any integration 
gives at most a factor c ( l + I t - r l )  3. [] 

Lemma 6.4. Let ~/iout be a non-overlapping scattering state of bounded energy. 
Then ~out E ~(K~n)(t)) for all d, n, t; and itK~")(tX~ °~t- ~(t))IttN< MN for all N, t > 0  
(and analogously for ~i,). 

Proof. ~(~) is of the form eim~ as in Lemma 6.3. So K~")(t)~(~) and 
K~")(t)*K~n)(t)4)(z) are strongly continuous in z, and for ~2 >-'q one gets: 

[[K~)(t)(q~(z2)- ~(z ,))[[ = ]1S~ dzK~")(t)q)(z)1[ 

<= ~ dz [I K~')(t)~(~) II < S~ dm II ~(~)[I 1/211K(~)(t)*K~")(t)4)(~) [f 1/2. 

The first factor in the integrand decreases faster than any inverse power of z, the 
second is polynomially bounded in ~ for fixed t, according to Lemma 6.3. The 
integral vanishes in the limit zl--* co, and s-lim K~)(t)q~(z) exists 

,¢--r O0 

H g(a~)(t)(~ °ut- ~(t))ll < i ?  d~: II~(~)l[ 1/2 [[K(dn)(t),K(d~)(t)~(~)l[ 1/2. 

It-'c] ___ r if z >_ t _  0, so the integrand is, for all t, bounded by a function h(~) which 
decreases faster than any inverse power of ~. Thus ~F h(z)d-c decreases faster than 
any inverse power of t. [] 

VH. Sensitivity of Counters 

In the sequel, we will meet functions F(p) which can be interpreted as the sensitivity 
of counters. First we will state some of their mathematical properties. 

Let C be a counter operator (6.10) and [p) an improper one-particle vector 
of momentum p (6.5). Then 

r(p) = (2rc)a(2o~p)- 1 (pl Cip) (7.1) 

is a well-defined differentiabte function of p: The functional (2ogp)-l/2C1/2Ip) is 
defined by 

S d3p(2ogp) - 1/2C1/21p) f (p)= C1/2l f ) . 

If the states I f )  have bounded energy E, one can represent this functional by a 
vector-valued function of p. To show this, let A* be an almost local one-particle 
creation operator (6.3) and (6.4); then 

I f )  = ~ d3x f (x)A*(x) (2 , 

C ~/2If > = S d 3 x(2~)-3/= 5 d a peiX,,f (p)C 1/2 A *(x)f2 

= ~. dapf~(p) ~ d 3 x(2x)-3f2 efp, C I/2 A*(x)Q. 

The order of the x- and p-integration may be interchanged because 
(.~.<~d3plf(p)l<m and the x-integrand is norm-integrable. The vector-valued 
function 

(270 - 312 S d3 x e ip~' C 1/2 A*(x)f2 = (2a~p) - 1/2 C 1/2lp ) (7.2) 
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is infinitely often strongly differentiable because yd3xlx[r¢[[ [C 1/2, A*(x)] t[ < oo VN. 
So F(p) ~ C~(1R3), and 

F(p)<M~ on {plc%<E}. (7.3) 

In the free theory, F(p) is uniformly bounded because one can construct a 
sequence of operators 

A* with (2~z)3/2(Zcop)-I/2(p]A*(2> = 1 and yd3xlIC~/2A*(x)f2H < M  

uniformly in p. 
One expects that for large times, ( f]C(x,  t)lf> describes the probability of 

the particle to be at x multiplied by the sensitivity of the counter. Araki and 
Haag showed in [4, Theorem 4] that 

}irn <f]t3C(vt, t) l f>=lf(p)lZr(p) where v=p/a)p. (7.4) 

(The differentiability assumptions are always fulfilled.) Furthermore, it is easy 
to see that for all t 

~dax<flC(x, t)lf> = ~dZplf(p)12F(p). (7.5) 

According to (7.4) and (7.5), F(p) is the probability that the detector C counts 
a particle whose momentum is concentrated around p. 

VIII. Coincidence Measurements at Large Times 

In this section we investigate the expectation values of coincidence operators at 
large times. The results are collected in the following theorem, and their physical 
interpretation will be given in the next section. 

Theorem 8.1. Let ~P be an outgoing non-overlapping scattering state of  bounded 
energy. For all K~d")(t), there are operators K~d ") + and K (")+ with H K~ ") + PEtl < 0O and 
ItK(")+ PeI[ < 0o such that 

lim (~, K<f)(t)~) = (~P, K<f ) + 7~) , (8.1) 

lira d ~ [] (K~ ") + - K <") +)P~, ]l = 0 V N.  (8.2) 
d--> oo 

I f  all counters leave the one-particle space invariant, 

[G, P1] =0,  (8.3) 

one has 

s-lira K~')(t)~ = K~ ") + ~'. (8.4) 

K ~')+ commutes with the outgoing particle number. I f  ~Pt(Pl,..., Pz) is the outgoing 
wave function of  the l-particle component of  the scattering state ~, 

I t! . 
[Fi t  =1 r~(p~)~,(pl ,  . . . ,  p,)] 

(K<")+TJ)I(Pl . . . . .  Pl)= v-,,J:O for n > l .  symmetrized for n<=l, 
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Fi(pl ) is the sensitivity o f  the counter C i [cf  (7.1)]. The same results are valid for  
incoming scattering states with t ~  - ~ and for  all states of  bounded energy of  the 
free massive field for  ttl-~ ~ .  

Proof• The states ~ can be represented by almost local operators at time t, 
according to (6.6). For the free field, this is exactly true, and for a non-overlapping 
scattering state we know from Lemma 6.4 that the error is rapidly decreasing. Thus 
the wave functions ft(t; x a . . . .  , xg) [cf. (6•8)] are the only time dependent quantities 
in the expectation values. 

"n) 1 - - f i n i t e  " - - I  3 ~ l '  

- - t  . f 1 /1 [ 
" fl(t; x l , . . . ,  x , ) f  t(t, x~ . . . .  , x',X [2,1~:=1A(xj)l~k=l Ck(Zk) H ' : *  A*(xi)f2) (8.6) 

+O(t -°° ) .  

The V E V  are decomposed into T V E V s  which decrease rapidly in the relative 
coordinates. Using Ruelle's estimates of the smooth solutions of the Klein-Gordon 
equation (e.g. [2, Chapter VIAl) one immediately sees that asymptotically all 
terms in which more than one A and one A* are contained within one T V E V  
vanish. 

l imW, K(a")(t)~) 
t ---~ oO 

7 . ! n = lim ~,l [l~l =1 (daxid3x'i)ft(t; ... xi . - . ) f l (  t . . . .  xj...)~lz~-=,1 :a ]-Ik=l d3Zk (8.7) 
t - *  oO - -  

! m 1 • A(x',) I-I L: C,(z3A*(x,)O). 

The last sum extends over all possibilities of placing the n counters at l locations. 
The limit of (8.7) is obtained by changing the region of zi-integration. In a given 
term, if the operators Cz(zz) and Cu(z,) are both in one VEV,  the integration 
region of z z - z  ~ remains unchanged: ]zz-zu]__>d; but if they are in different 
VEVs ,  there are no restrictions on the range of z a -  zu. We will show in a typical 
example that the error caused by this change vanishes asymptotically: 

2 3 3 [I i=,  (daxiJi(t; xi)dax~ J~'(t; x~)) {J'l=,- =~1 >=a - ~I=~- =~1 >__a} l~j=l d zj 
(8.8) 

• (~, A(x'I)CI(zl)C2(z2)A*(xa)~2)if2, A(x'2)C3(z3)A*(x2)O ) . 

The region of z-integration is contained in the following set: 

G= {(z:, z> z3)l IZl -- z31 <=d}vo{(zl, z2, z3)[ Iz2 - z3l =<d} CIR 9 . 

Substituting, in its first part, Zl = z3 +z',, we can estimate (8.8) by 

fd3x21f2(t; x2)Isuiplfl(t; x01 ~ L i  s~plf'~(t; x'~)l 

• 5d3xld3x':daz21(t2, A(x ' l )C,(z  3 + z',)C2(z2)A*(x,)(2)[ 

' * 3 p • ~dax'#3Zal(O, A(x2)Ca(z3)A (x2)O)[ ~t=il~dd Zl 

(and analogously for the other part of G). Therefore (8.8) is bounded by M(1 + Itl)- a. 
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The resulting expression is time-translation invariant, as is seen most easily 
in its momentum space representation: 

lim (~, K~')(t)7")= (~, K~ ")+ 7 j) 
[ ~ O 0  

= Zz  ~ I-If =1 dZP,[f~(Pl, . . . ,  P~)[z(2n) 3" (8.9) 

• EHJSI:j  i>__a d3z~2 ... d3zj,,(2c%) - x<pjlCjlCjE(ZJ2 )''' CJm(ZJm)IPJ)" 
Izj,- zj~l >=d 

To prove the norm convergence (8.2), we show first that the terms which are 
independent ofd  are bounded. In these terms there is only one counter in a cluster 
(if l >= n). The norm of each of these terms is bounded by 

I~'=,  sup ((2n)a/(2cop))(plC~lp>=I~7=l sup Fi(p) .  
p, Ogp < E p,cop < E 

By (7.3) this is finite. 
If the matrix elements in the expansion (8.9) contain more than one counter, 

their contribution to K~ ")+ decreases in norm faster than any inverse power of d: 
The norm is bounded by sums and products of expressions of the form 

(2~op) -1 <plCjlS[Zi,[>=d d3zj2...d3zj,,Cj2(zj2)...Cjm(zjm)tp>l. (8.10) 
p, ogp=ESUp z. j t-zj~ >:d I 

Using the representation (7.2) for C[p>, the rapid decrease of (8.10) in d follows 
from the decrease of T V E V s  of almost local operators. This completes the proof 
of (8.2) and (8.5). 

We will only sketch the proof of (8.4). The methods used above yield, for non- 
overlapping scattering states of bounded energy ~, ~ (~, 7t ~ Pe~uf in the free- 
field case) 

l im(fb, K~")(t)Tt)=(~b,K~")+7") and Ilg~")(t)~ll<m for t > 0  
t - - * ~  

which gives w- lim K~")(t) ~ = K~ ") + 7'. 
t - --r  oo  

Using condition (8.3), one shows lim llK~)(t) 7" II = IIK~ "~+7" I I and therefore 
t ---~ cX3 

s-limK~")(t)~U= K~")+ 7 ~ . [] 

IX. Particle Number as a Limit  of  Local  Observables 

Now we will examine the physical content of Theorem 8.1. The operators 
K~ n)+ and K (n)+ differ even for large d because the counter operators are not 
exactly local, but overlaP even if their separation is large. But this difference is 
physically irrelevant. Because of the norm convergence (8.2), for a given measure- 
ment accuracy e, one can find a separation do such that 

tl(K~ ")+ -K(")+)PEt] < e V d > _ d  o . (9.1) 

The relation (8.1) shows that the results of coincidence measurements become 
asymptotically time-independent and independent of d > do within a given pre- 
cision e. This means that the particles become arbitrarily widely separated from 
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each other for sufficiently large times because the coincidence operators annihilate 
those parts of the states in which the particles have a separation less than d. 

The increasing separation of the particles is due to their spreading and does 
not require non-overlapping support of their wave functions: even for two free 
particles with identical wave functions, f(Pl, Pz)=g(Pt)g(Pa), the expectation of 
K~")(t) indicates an arbitrarily large separation for sufficiently large times. 

If the particle number l is smaller than the number n of counters, the 
coincidence measurements will give zero because a particle can hit at most one 
counter. If 1 > n, the factor l!/(l- n)! in (8.5) stems from the number of possibilities 
that n counters are triggered by 1 particles, whereas ~iFi(pi) takes account of 
the sensitivity of the counters. A coincidence arrangement measures asymptotically 
individual, widely separated particles. 

One can use special counters C with the property F(p)=y=cons t  for o)pNE 
[an example is C =  IIA*AII-IA*A, A as in (6.3), (6.4)]. With these counters K ~+ 
becomes very simple (P~ is the projection on the /-particle space): 

K ( . )  + p _ ~-~finite ( l  I/(1 ~--/..,t >__, t° '/t '-- n) !)y"PtP~. (9.2) 

This gives for Pz: 

pzpE = (7~l !)- t v fi,ite t _ 1)k(7)- k(k [)- aK(l + k)+ PE (9.3) / ,k=0  ~, 

For n = 1 (one counter only) 

1/yK (1~ + P~. = ~ 1P1Pe 

is the particle number operator. The spectral resolution of K (1)+ alone would 
also give P~, but the representation (9.3) has the advantage that the physical 
interpretation is simpler. The coincidence operators annihilate those components 
in the state with less than l particles, the coefficient in front of the sum gives the 
normalization 1 of the 1 th coincidence operator (k--0) on the /-particle states, 
and the alternating coefficients in the sum ensure that the contributions of the 
coincidence operators cancel on states with particle number larger than I. 

As a result of Theorem 8.1, one can obtain the asymptotic particle number of 
incoming or outgoing scattering states as a limit of local measurements at large 
times in large space regions. The particle number coincides with the asymptotic 
number of widely separated localization centres. As a special case, we recover our 
"geometrical particle definition": a one-particle state is always singly localized. 
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