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Abstract. Hawking's analysis of particle creation by black holes is extended 
by explicitly obtaining the expression for the quantum mechanical state 
vector 7' which results from particle creation starting from the vacuum during 
gravitational collapse. (Hawking calculated only the expected number of 
particles in each mode for this state.) We first discuss the quantum field theory 
of a Hermitian scalar field in an external potential or in a curved but asymp- 
totically flat spacetime with no horizon present. In agreement with previously 
known results, we find that we are led to a unique quantum scattering theory 
which is completely well behaved mathematically provided a certain condition 
is satisfied by the operators which describe the scattering of classical positive 
frequency solutions. In terms of these operators we derive the expression for 
the state vector describing particle creation from the vacuum, and we prove 
that S-matrix is unitary. Making the necessary modification for the case 
when a horizon is present, we apply this theory for a massless Hermitian 
scalar field to get the state vector describing the steady state emission at late 
times for particle creation during gravitational collapse to a Schwarzschild 
black hole. There is some ambiguity in the theory in this case arising from 
freedom involved in defining what one means by "positive frequency" at the 
future event horizon. However, it is proven that the expression for the density 
matrix formed from ~u describing the emission of particles to infinity is in- 
dependent of this choice, and thus unambiguous predictions for the results 
of all possible measurements at infinity are obtained. We find that the state 
vector describing particle creation from the vacuum decomposes into a simple 
product of state vectors for each individual mode. The density matrix describing 
emission of particles to infinity by this particle creation process is found to be 
identical to that of black body emission. Thus, black hole emission agrees in 
complete detail (i.e., not only in expected number of particles) with black body 
emission. 

I. Introduction 

In a recent paper, Hawking [1] analyzed the problem of particle creation caused 
by the gravitational collapse of a body to form a black hole. In this theory the 
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gravitational field is treated classically, i.e. the spacetime geometry is taken to be 
that of a body undergoing complete gravitational collapse in general relativity. 
In this background geometry one quantizes the field under consideration (e.g. a 
scalar or Dirac field) in the same manner as in quantum field theory with an 
external potential present (see Ref. [2]). Thus, the analysis is semiclassical and is 
closely analogous to semiclassical radiation theory in ordinaryquantum mechanics 
where one treats the electrons in an atom quantum mechanically but treats the 
perturbing electric field classically. The justification for making this semiclassical 
approximation here is that one believes that the quantum effects of the gravita- 
tional field are not likely to play an important role in the particle creation process. 
Of course, the question of whether or not this is indeed the case cannot be answered 
until one has a satisfactory quantum theory of the gravitational field. However, 
it seems very reasonable that the semiclassical analysis of particle creation by 
gravitational collapse should at the very least give a good indication of the type 
of effects which will occur in an exact quantum treatment. 

Using this semiclassical treatment, Hawking calculated the expected number 
of particles ( N )  emitted in each mode at late times following the gravitational 
collapse of a body, assuming that at early times the quantized field was in the 
vacuum state. In the case of spherical gravitational collapse he obtained the truly 
remarkable result that there is a steady rate of emission of particles in each mode 
at late times, with ( N )  given by precisely the black body formula with temperature 
kT = h~/2zc, where ~ is the surface gravity of the black hole formed by the collapse. 

However, there are many more properties of the final state of the quantized 
field than simply the expected number of emitted particles (N) .  The full informa- 
tion is contained in the state vector, or - if we are interested only in making 
measurements of particles which escape to infinity and not particles which go 
down the black hole - the density matrix formed from this state vector. The 
purpose of this paper is to obtain the complete description of the quantum 
mechanical particle creation effects by obtaining the explicit expression for this 
state vector. 

The main result of the analysis is the following: the density matrix for emission 
of particles tO infinity at late times by spontaneous particle creation resulting from 
spherical gravitational collapse to a black hole is identical in all aspects to that of 
black body thermal emission at temperature kT  = h~/2r~ The particles emitted to 
infinity at late times are completely uncorrelated with each other (although they 
are correlated with particles that enter the black hole at early times). The prob- 
ability distribution for observing N particles in a given mode at infinity is identical 
to what one would obtain by starting with the black body Bottzmann distribution 
exp(-Nhco/kT) for emission of particles from the black hole and assuming that 
each particle has a probability of Itt 2 of reaching infinity, where t is the classical 
transmission amplitude (and thus Itt 2 is the absorption cross section of the black 
hole). Thus, if a black hole were placed in a thermal cavity at exactly the same 
temperature, there would be no way of determining where the black hole is by 
observing particle emission, since the black hole would emit exactly as much 
thermal radiation by spontaneous quantum particle creation as it would absorb 
by classical processes. 

The state vector describing spontaneous particle creation from the vacuum 
is found to decompose into a simple product of state vectors for each individual 
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mode. Each of these individual state vectors describes multiple pair creation in 
which one of the particles in each pair enters the black hole near the formation 
of the event horizon, while the other particle is emitted to infinity or gets scattered 
back into the black hole at late times. Thus, our expression for the state vector 
supports the intuitive picture of the particle creation process given by Hawking 
[1, 3]. 

In Section II we briefly review the quantum theory of free fields in order to 
define the basic quantities and introduce our notation. In Section III we discuss 
the quantum field theory of the Hermitian scalar field in an external potential or in 
curved, asymptotically flat spacetime with no horizon present. Most of the results 
of Section III are re-derivations of results which have previously appeared in the 
literature. In Section IV we discuss the modifications of the theory appropriate 
to the case where a horizon is present, and we apply the theory to particle creation 
resulting from spherical gravitational collapse. We obtain the explicit expression 
for the quantum mechanical state vector of the created particles and discuss its 
properties. The modifications to the emission which occur if the black hole is 
rotating and some further remaining issues are discussed in Section V. 

II. Free Field Theory 

In this section we shall briefly review the standard quantum theory of the free, 
real scalar field ~b in order to establish the notation and framework of ideas for 
the following sections. The notation used here follows closely that used by Geroch 
[-4]. 

One wants the Hilbert space of states in the quantum theory of the real scalar 
field to have particle interpretations. One would also like the quantized scalar 
field qS(x) to be a self-adjoint operator on this Hilbert space satisfying 

(C] + m2)~p(x) = 0. (2.1) 

As is well known, however, the attempt to define q~ for each point x in Minkowski 
space runs into serious mathematical difficulties. These difficulties are overcome 
by "smearing" ~ with test functions f thus making ~b an operator valued distribu- 
tion ~b(f). In place of Eq. (2.1) we require 

~b(g)=0 (2.2) 

for all 9 of the form 

g = ( D  +mZ)f  (2.3) 

where f is a test function. [Equation (2.2) is just the integration by parts version 
of the smeared Eq. (2.1).] We now proceed to present the standard quantum 
theory of the real scalar field which, as is easily seen, satisfies the above minimal 
requirements. 

The Hilbert space of one particles states ~ is taken to be L2(M+) where M+ 
is the positive mass shell [i.e. M+ is the submanifold of (Fourier transformed) 
Minkowski space defined by kUk~, + m 2 =0 with k u future directed]. The Hilbert 
space of states is taken to be the symmetric Fock space ~ ( ~ )  defined by, 

g(~ )  =~: ® ~  ®(~ ® ~)~ ¢,(~ ® ~ ® ~)~ ®... 
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where the subscript s denotes the symmetric tensor product. Vectors in Fock 
space will be denoted by capital Greek letters. We shall use the following tensor- 
like notation: elements of the symmetrized tensor product of n copies of oug wilt 
be denoted by lower case Greek letters with n latin upper indices. Elements of the 
dual (complex conjugate) Hilbert space o@ and its tensor products will be denoted 
by barred Greek letters with the corresponding number of lower latin indices. 
( ~  and ~ are, of course, naturally isomorphic but this isomorphism is antilinear. 
We shall explicitly deal with ~ throughout this paper so that all the maps we 
consider will be linear.) Thus, for example, an element ~ ~ W(~)  will be written 

=(c, ~a, ~b, ~,bc, ...) (2.4) 

while an element of o@ will be written ~ .  A contraction of indices, e.g. ~a~,, will 
denote the complex number obtained by applying ~, to ~. (~"~, is, of course, the 
same as the scalar product of o-" and ~", where o-" is the element fo ~ corresponding 
to the element ~ of ~ under the natural isomorphism.) When no confusion will 
arise, the upper or lower index will be omitted when writing elements of ~ or 
respectively, e.g. ~ denotes an element of J : ,  while ~ denotes an element of ~ .  

For every element ~ezgP we define the annihilation oprator a(~):~'(5¢:)~ ~(5¢g) 
as follows: for 4~ e ~ ( ~ )  given by Eq. (2.4) we define, 

a(~)~ = (~"~,, ]/-~,b~,, ] / /~ ,b~, . . . ) .  (2.5) 

Similarly, for every o- e ~ we define the creation operator a * ( ~ ) : ~ ( ~ ) ~ ( ~ )  by 

a"f ( ff ) e  -~. (0, cl7 a, ]//217(a ~ b), ]// 317(a ~ bc) . . . .  ) (2.6) 

where the round brackets around the indices denotes the symmetrized tensor 
product. Then at(a) is indeed the adjoint of a(3). Of course, a(~ and at(o -) are 
unbounded operators, defined only on a dense domain. 

Before proceeding further, it will be useful to establish some correspondences 
between solutions of the classical Klein-Gordon equation, states in J : ,  and test 
functions. Let F and G be two solutions of the classical Klein-Gordon equation, 
Eq. (2.1). The Klein-Gordon scalar product of F and G is defined by 

(V, G)KC = i ~ ( f  l7uG - G VuOdNU (2.7) 

where ~ is an asymptotically flat spacelike hypersurface. The value of (F, G)Ka is 
independent of the choice of ~ by virtue of the Klein-Gordon equation. We note 
the following correspondences: 

(I) Every positive frequency solution F of finite Klein-Gordon norm is 
associated in a one-to-one linear manner with an element o> of oct" via, 

F(k '~) = av(k")6(k~k,. + m z) (2.8) 

where * denotes Fourier transform. Furthermore, 

(F, G)K~ = (at, aa) (2.9) 

where the right-hand side of Eq. (2.9) denotes the Hitbert space scalar product. 
(II) Similarly, every negative frequency solution F of finite Klein-Gordon 

norm is associated in a one-to-one linear manner with an element 8v of ~ .  
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Furthermore, 

(F, G)KO = --(av, a~)= --(a~, rrv) (2.10) 

where the middle term of Eq. (2.10) denotes the scalar product in ~ and the right- 
hand side is the scalar product of the corresponding elements of acg. 

(III) To every test function f we can linearly associate an element a s of J{' by 
Fourier transforming f and restricting f' to the positive mass shell to get an 
element of L2(M+). 

We are now in a position to complete our discussion of the free field by defining 
the field operator ~(f) acting on ~(Yt~). For every test function f we define, 

q~(f) = a(Ss) + a*(ay) (2.11) 

where o'y is the state associated with f by correspondence (III) above. Note that 
Eq. (2.2) is trivially satisfied because o'0=0 for any of the form 9 = ( D  +rn2)f 
since 0 clearly vanishes on the mass shell. Finally, we observe that we can write 
Eq. (2.11) in a more familiar (though less elegant) form as follows: let {ai} be an 
orthonormal basis of acg and let {Fi} be the corresponding positive frequency 
solutions of the Klein-Gordon equation. Write ai= a(~i) and a/* =a*(a¢), Then, 

d/) = Zi(Fiai + friar) (2.12) 

where the meaning of Eq. (2.12) is to be understood as follows: for every test 
function f ,  

~b(f) = a ( ~  ~ ~ F~ f )  + a t (2  ~r, l F, f )  (2.13) 

where the integrals are taken over Minkowski space. It is not difficult to show 
that Eqs. (2.11) and (2.13) are identical. 

IH. Quantum Field Theory in an External Potential or Curved, 
Asymptotically Flat Spacetime (No Horizon) 

In this section we shall consider the quantum field theory associated with the real 
scalar field 4) satisfying, 

( -  VuV*' + m z + V(x))~a =0 (3.1) 

where Vu denotes the covariant derivative. In this theory both the spacetime 
curvature and external potential V(x) are treated classically. For simplicity and 
definiteness we shall assume that both V(x) and the spacetime curvature have 
compact support. We shall find that very minimal assumptions suffice to lead 
us to a unique quantum scattering theory. Furthermore, provided that a certain 
condition is satisfied, the theory is completely well behaved mathematically. 
Much of the material of this section is a re-working of results for the external 
potential case reported by Seller [2]. (See also Fulling [5] and DeWitt [61.) 

We proceed to construct this quantum field theory. By analogy with the free 
field case, we want a theory where q~ is an operator valued distribution ~b(f) acting 
on some Hilbert space of states, ~ .  However, we now want ~b to satisfy Eq. (3.1) 
rather than Eq. (2.1) in the sense that now ~(9)= 0 for all 9 of the form 9 = ( -  V~ 17" + 
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Fig. 1. The relationships between the Hilbert space of states 
and the "in" and "out" Hilbert spaces ~-i~(~), ~o.t(~,~f) 

rn2-t - V ) f .  Furthermore, in the distant past, prior to the interactions (i.e. more 
precisely, outside the future of the union of the supports of V and the curvature) 
we want the states of f f  to "look like" the states of the free field ff(2,f) and we 
want 4) to look like the free field operator. This is a minimal assumption if we are 
to have an interpretation of the theory in terms of scattering. We can state this 
assumption more precisely as follows: we require there to be an isomorphism 
(i.e. a unitary map) U : ~ i n ( J f  ) (where ~ i , ( ~ )  is a copy of the free field 
Hilbert space described in Section II above) such that for every test function f 
with support in the distant past, we have 

U(a(f)U- a = qSin(f ) = a(~y) + at(ol) (3.2) 

where ~bin is the free field operator on ~ ' in(~)  and we have denoted the annihilation 
and creation operators on ~in(##) by a and a t. Similarly, we require there to be 
another isomorphism W from ~ into another copy .~'out(~'¢) of the free field 
Hilbert space such that for any test function f with support in the distant future 

W~(f) W -  1 = ~bout(f)= b(~y) + bt(ay) (3.3) 

where we have denoted the annihilation and creation operators on ~o,t(~() by 
b and b*. The states of ~in(J(f) and ~o,t(J/f) are interpreted, respectively, as the 
incoming and outgoing particle states. The S-matrix, S = W U -  1, relates ~i,(J/f)  
to ~out(J#) and thus gives all the relevant information concerning scattering 
experiments. The relations between ~ ,  ~i,(~¢f), and Yo,  t(~f) are summarized in 
Fig. 1. 

We shall now show that the above, very minimal, assumptions already suffice 
to determine the S-matrix. The assumptions that ¢ satisfies Eq. (3.1) and agrees 
with ~b~, in the past implies that ~b takes the form, 

Uc~ U-1 = ~i (G#i + G,a*i ) (3.4) 

where the meaning of Eq. (3.4) is to be understood in the same manner as Eq. (2.12) 
above and where G~ is the solution of Eq. (3.1) which agrees in the past with the 
free field solution F~ appearing in Eq. (2.12). [The function G~ may be constructed 
by choosing a spacelike hypersurface which lies entirely outside the future of the 
support of the curvature and V and assigning the value and time derivative of F~ 
on that slice as initial data for a solution of Eq. (3.1).] 

In a similar manner, we also must have, 

W~) W-1 = 2 j (n  jb j _{_ ~#~) (3.5) 
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where H i is the solution of Eq. (3.1) which agrees with F i in the future. Combining 
Eqs. (3.4) and (3.5) we find, 

S[~i ( Gia, + d ~a~) ]S-1 = ~j{ H ~b_~ + I~ ~b ~ ) . (3.6) 

Equation (3.6) implies, 

SaiS-1 = ~ j  {(G, H~)KGbj + (G~,/Tj)K~bJ } (3.7) 

where (,)X~ denotes the Klein-Gordon scalar product defined by Eq. (2.7). [The 
Klein-Gordon scalar product is easily seen to be independent of choice ofspacelike 
hypersurface for two solutions of Eq. (3.1).] 

We shall now define several operators on the Hilbert space ~ of single particle 
free field states which will enable us to re-write Eq. (3.7) in a much cleaner form 
[thus manifestly demonstrating that Eq. (3.7) is indeed both meaningful and basis 
independent]. Let F be a positive frequency solution of the free Klein-Gordon 
Eq. (2.1). Let H be the solution of Eq. (3.1) which agrees with F in the future. In 
the past, H will again agree with some solution of the free field Eq. (2.1). De- 
composing this classical free field solution into its positive and negative frequency 
components, we find that we may uniquely write, 

N = G ' + G "  (3.8) 

where G' and G" are solutions of Eq. (3.1) which agree in the past with positive 
frequency free field solutions, denoted F' and F', respectively. We define the 
operators A : ~ J f  and B : ~ / f ~  by 

A a e = a r  (3.9) 

Bar = 5r,, (3.10) 

where we have made use of the correspondences between positive frequency 
classical free field solutions F and elements of ~ described in Section II above. 
In a similar manner, we define the operators C : ~ J 4  ~ and D : ; ¢ g ~  by inter- 
changing the roles of past and future in the definitions of A and B, respectively. 

We shall assume that A, B, C, and D are everywhere defined bounded operators 
on )f', though we will not use this assumption in an essential way below (i.e. there 
does not appear to be any essential reason why the analysis could not be carried 
out even if these operators are only densely defined unbounded operators; the 
boundedness assumption is basically used only to ensure the existence of cornposi- 
tions of these operators). We now establish the properties of these operators which 
play a key role in the subsequent discussions. 

In the notation of Eq. (3.8) we have, 

(H1, H2)Kc=(G1 -,, , -,, ' +G1, G2 +G2)K6. (3.11) 

Using the independence of (,)KG on the choice of slice and the fact that the scalar 
product of a positive frequency and a negative frequency free field solution 
vanishes, we obtain 

(el, e2)Ka = (el, el)Ka + (e'~, e~)xa. (3.12) 

Thus, we obtain, 

(ae,, at:)= (Aae,, Aar2)-  (Bar,, BaF~) (3.13) 
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i.e. we have 

A t A - B * B = I .  

Similarly, the equation, 

( /-I1,  HZ)KO = (8] + G';, Gi + 81) 

implies, 

(3.14) 

(3.15) 

B*A=A*B (3.16) 

where the operator A : ~ - ~  is defined by ~ = ( T z )  for all ~ .  In a similar 
manner, we obtain, 

C* C -  DiD = I (3.17) 

and, 

D*C=C*fi . (3.18) 

Finally, writing the decomposition analogous to Eq. (3.8) for a past positive 
frequency solution G, 

G=H'  + IQ" (3.19) 

we have, 

(G, ' -" ' -" G + G )KG = (H + H , H)K G (3.20) 

which implies that for all states a, z, 

(a, Az)= (Ca, z) (3.21) 

i.e. 

A = C*. (3.22) 

Note that Eqs. (3.14), (3.17), and (3.22) then imply that A -1 and C -1 exist as 
everywhere defined, bounded operators (see Ref. [7]). In a similar manner, we 
obtain, 

B=  - / ) * .  (3.23) 

Returning now to Eq. (3.7), it may be verified that Eq. (3.7) is just the basis 
expanded version of the following statement: for all states a e J r ,  we have, 

Sa(8)S- 1 = b(C-8) - b*(D--~). (3.24) 

We are now in a position to solve for the image, T = STo, of the "in"-vacuum 
state To e ~ i . ( ~ ) .  Physically, T gives us the complete information on particle 
creation from the vacuum. Setting z=  Ca and defining the operator E : ~ ] g  by 

E = / )C-1  (3.25) 

we have for all z ~ Jr ,  

Sa(C- ~z)T0 = 0 = {b(~)-b*(E~)}ST o . (3.26) 
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Writing, 

~g¢ = (C, t] a, tl ab, t] abe, tl abcd . . . .  ) (3.27) 

and explicitly writing out Eq. (3.26) component by component, we find for the 
first four terms, 

tla~a = 0 ,  (3.28a) 

]/~rlab~,  = c( E~)  b , (3.28b) 

] / - J r l a b ~  = ]//2( E~)(br f  ) , (3.28C) 

]/~tl"b~a~,, = ]//-J( E~)(btl c'O . (3.28d) 

But, the only way Eq. (3.28a) can be satisfied for all "c is to have t/"= 0. Equation 
(3.28c) then implies t/"b~= 0. By induction, the amplitude for being in a state with 
an odd numtJer of particles vanishes. In other words, particles are created in pairs. 
Equation (3.28b) states that E and q,b, viewed as operators from 3~ into ~/f, must 
be proportional. However, this is possible only if the following conditions are 
satisfied: (1) since every two-particle state I/"b is symmetric, E must be a symmetric 
operator, E* = E; (2) since, t/"b must have finite Hilbert space norm, we must have 
t r (UE)< 0% i.e. E must be a Hilbert-Schmidt operator. If these conditions are 
not satisfied, there is no solution of Eq: (3.28b) (except for the trivial solution 
t/"b= 0 and c = 0 which will imply 71 = 0; but this is unacceptable since S must be 
unitary). If the above conditions are satisfied, we may view E as an element of 
(W®~,ef),. We shall denote this two-particle state associated with E as ~ab. 
Equation (3.28b) yields, 

tl ab = ( c / ~ ) e  ~b . (3.29) 

Equation (3.28d) then gives, 

r/"b~d = C((3. 1)/(4.2))~e(abe cd) (3.30) 

and by induction, we obtain for the n-particle amplitude (n even), 

t/~bcd''yz = c((2n) !~/(2" • n !))e("bec~... e y~) . (3.31) 

Assuming the above conditions on E are valid, one can show that the norm of 
is finite, so we may chose c to make ]I ~I} = 1. 

Thus, we have found the following: if the operator E - which is constructed 
entirely from the behavior of the classical solutions of Eq. (3.1) - does not satisfy 
either condition (1) or (2) above, no quantum field theory satisfying our minimal 
requirements exists. If E satisfies conditions (1) and (2), we have explicitly solved 
for the image 7J=S~o of the in-vacuum state. This solution is unique up to a 
phase factor. As will be seen below, the remainder of the S-matrix is also uniquely 
determined and a consistent theory exists. 

Are conditions (1) and (2) satisfied? It is an immediate consequence of Eq. (3.18) 
and the definition o r e  that condition (1) (namely, E* = E) must always be satisfied. 
Note that it is rather remarkable that this works out so well. If we had used a 
quantum field theory for spin zero with the "wrong" statistics - i.e. if we had used 
the free field theory of Section II but with the antisymmetric rather than the 
symmetric Fock space - the analysis could be carried through as before but 
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when Eq. (3.28b) is reached we would have found that we needed E to be anti- 
symmetric. Thus, there exists no reasonable quantum theory of spin zero particles 
with the "wrong" statistics in an external potential. This is independent of the 
much more subtle arguments which are ordinarily invoked to rule out theories 
with the "wrong" statistics. 

Condition (2) has been proven to hold when one has only a potential (of 
compact support) by Seiler [2]. While we shall not investigate here whether 
condition (2) must also hold when spacetime curvature is present, we shall show 
below that condition (2) is equivalent to the condition of finiteness of the expecta- 
tion value for the total number of particles created from the vacuum as computed 
by the algorithm used by Hawking. 

Assuming now that condition (2) is satisfied, we demonstrate that the entire 
S-matrix is uniquely determined. Taking the adjoint of Eq. (3.24) we have, 

Sat (a)S - ~ = b t ( Ca) - b( Da) . (3.32) 

Applying both sides of this equation to the state T = S T  0, we obtain, 

S(at(a)To) = {bt(Co -) - b(Da)} T (3.33) 

and thus knowing T, we find that the image under S of an arbitrary one-particle 
state ¢ is uniquely determined and explicitly given by the right-hand side of 
Eq. (3.33). By induction, the image of a simple n-particle state is also uniquely 
determined and since the various simple n-particle states are dense in ~in(fff), S is 
uniquely determined. 

Now that S has been defined, we can ask the crucial question necessary for 
the consistency of the theory: is S unitary? Since the scalar product of two states 
in Nin(ffg) having the form of a product of creation operators acting on To can 
be expressed in terms of the commutators of a and a*, it is easily seen that scalar 
products of these states - and, hence, scalar products of all states since these 
states are dense - will be preserved under S if and only if the commutators of the 
right-hand sides of Eqs. (3.24) and (3.32) are the same as those of the corresponding 
a and a t. But, we have 

[aft?), at(o)] = (o', 0)I (3.34) 

whereas, 

[ b ( ~ a ) -  bt(b-~), b t ( C o ) -  b(D~)] 

= {(Ca, C e ) -  (D--d, D-a)}I 

= {(Co-, CO)-  (Da, DQ)}I 

= (or, 0)I (3.35) 

where we have used Eq. (3.17) in the last step. In a similar manner, using Eq. (3.18) 
we find that the commutators corresponding to [a(~), a(~)] and [at(a), a*(-c)] both 
vanish, as they should. This, together with the fact that the range of S is dense in 
Yout(o'¢'), proves that S is indeed unitary. The unitarity of S completes the proof 
of the existence of a theory satisfying the requirements stated at the beginning 
of this section. 



On Particle Creation by Black Holes 19 

As a final remark, we note that the expected number of particles created from 
the vacuum (as well as everything else about this state) can be computed directly 
from our explicit solution for 7 j = STJo given above. However, there is an alternative 
procedure for computing this quantity which is the one used by Hawking [1]. 
It follows from Eq. (3.24) and its adjoint Eq. (3.32) that the "time reversed" equation 

S-  lb(~)S = a(A~) - at(fig) (3.36) 

must also hold. Applying both sides to the state 7Jo and taking norms, one obtains 
(using S-  1 = St), 

(SgJo, b t (a)b(8)S7~o)=( fig, B--a)= (o-, Bt Ba) . (3.37) 

But the left-hand side of Eq. (3.37) is expectation value of the number of particles 
in the state a which are created from the vacuum. This is the formula used by 
Hawking [1]. To get the expected total number of particles X ,  we sum over an 
orthonormal basis and obtain, 

(~Ar) =tr(BtB). (3.38) 

But notice that B = - / )*  and C-  1 is a bounded operator, so if tr(BtB) < ~ then 
tr(EtE) < oo, i.e. our condition (2) above is satisfied. Thus, if ( ~ )  as computed 
by Eq. (3.38) is finite we are assured that our theory is free of all mathematical 
difficulties. Conversely, if C is bounded, the condition tr(EtE)< oo implies that 
( ~ )  is finite. 

In summary, we have found that the very minimal requirements stated at the 
beginning of this section for a quantum field theory in an external potential or 
in curved spacetime are sufficient to uniquely determine what the S-matrix must 
be. Furthermore, a consistent theory satisfying these requirements does indeed 
exist provided a certain condition [namely, tr(EtE)<oo] is satisfied by the 
operator E which is constructed from the behavior of the classical solutions. In 
the next section we shall apply this theory - making the necessary modifications 
to allow for the presence of a horizon - to the problem of particle creation oc- 
curring when a spherical body undergoes complete gravitational collapse and 
forms a black hole. 

IV. Particle Creation by Gravitational Collapse 

In this section we wish to extend the theory described in the previous section to 
the case treated by Hawking [1]. The spacetime we wish to consider is that of a 
body (e.g. a star) which undergoes complete gravitational collapse and forms a 
black hole. For simplicity, we shall assume that the collapse is spherically sym- 
metric; in particular, this implies that the black hole formed by the collapse is a 
non-rotating Schwarzschild black hole. The modifications which occur when 
one drops the assumption of spherical symmetry are briefly discussed in Section V. 
In this curved spacetime geometry, we wish to consider the quantum field theory 
of a real scalar field 4. We shall consider only the massless case, 

GV"~=O (4.1) 
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Fig. 2. A conformal diagram of a spacetime in which a body 
collapses and forms a black hole 

since this will allow us to speak in precise terms of the asymptotic behavior of 
the field. [Solutions of the classical Eq. (4.1) in the spacetime we consider are 
presumably determined by their data at past null infinity J -  or by their data at 
future null infinity J +  and the future event horizon. This is not true of massive 
fields.] A spacetime diagram depicting gravitational collapse is given in Fig. 2. 

As discussed in the previous section, the quantum theory should be such that 
the states of the quantum system are represented by vectors in a Hilbert space 
and the field ~b is represented by an operator-valued distribution acting on this 
Hilbert space and satisfying Eq. (4.1). Furthermore, in the distant past the states 
of. the system should asymptotically "look like" states in the free field Hilbert 
space ~ i n ( ~ )  and the field operator ~b should approach the free field operator 
qSin. As in the previous section, these assumptions lead to [-see Eq. (3.4)], 

U ~ U  -1  = Zi(Giai-}- Gia~)  (4.2) 

where G i is the solution of Eq. (4.1) with the same data at past null infinity as the 
free field solution F i (where a i = a(ae , ) ) .  

However, in the asymptotic future the situation is different from that of the 
previous section. When no horizon is present all classical wave solutions of 
Eq. (4.1) propagate out to future null infinity and in the quantum theory it is 
natural to assume - as we did in Section I I I -  that in the asymptotic future all 
states can be interpreted as free particles propagating out to infinity. However, 
when a horizon is present part of the classical waves can propagate into the black 
hole and never reach future null infinity. Hence, in this case it seems most natural 
to assume that states of the system have interpretations in terms of free particles 
at infinity and particles which have gone into the black hole. This suggests that 
the "out" Hilbert space in this case should be ~out(~(¢" O ~ ' )  where ~ is the 
usual single particle free field Hilbert space ("particles at infinity") and ~ '  is the 
single particle Hilbert space of particles which have entered the black hole; i.e. 
the "out" Hilbert space should be the symmetric Fock space of the Hilbert space 
of all possible one-particle states. 

Since vectors in 9ff can be put into one-to-one correspondence with positive 
frequency data for classical solutions of Eq. (4.1) at future null infinity, it is natural 
to associate ~4 ~' with positive frequency data for classical solutions of Eq. (4.1) at 
the horizon. The term "positive frequency" is well defined at future null infinity 
J + ,  since one has an asymptotic time translation parameter u defined there, with 
respect to which one can take Fourier transforms. [Note that time translations 
are well defined at J + although there is considerable (supertranslation) ambiguity 
in defining asymptotic rotations and boosts.] In the case of a static, vacuum 
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Schwarzschild black hole (i.e. one not created by gravitational collapse) there is 
also a time translation parameter (i.e. Killing parameter) v running along the 
future horizon, thus enabling one to unambiguously define positive frequency 
on the horizon in that case. However, in the case of a black hole formed by gravita- 
tional collapse, the horizon is the static Schwarzschild horizon only outside of the 
collapsing matter in the case of exact spherical symmetry and it is only asymp- 
totically stationary in a generic collapse. Thus, one does not have a time transla- 
tion vector defined everywhere on the future horizon and this results in ambiguity 
in the definition of positive frequency. One can still define "positive frequency" 
as follows: choose a set of solutions K i of Eq. (4.1) which vanish at J + ,  which are 
orthonormal (with positive norm) in the Klein-Gordon scalar product, and are 
such that the {Ki} and their complex conjugates {/(i} span all solutions which 
vanish at J + .  A solution of Eq. (4.1) will be called "positive frequency at the 
horizon" if it can be expressed as a sum of the {Ki} (without using their complex 
conjugates). There is, of course, considerable ambiguity in the choice of the {Ki}. 
However, we shall show below that the predictions of the theory with regard to 
all measurements made at infinity will be independent of the choice of definition 
of positive frequency at the future event horizon. 

If we accept the above arguments, it is natural to postulate that the field 
operator q~, when brought to the "out" Hilbert space by the isomorphism W, 
will take the form, 

W e  W - 1  = ~i(H~b i + Hib~ + Kic ~ + I(ic~) (4.3) 

where H i is the solution of Eq. (4.1) with the same data at J +  as F i and vanishing 
data on the horizon, and where c~ and c~ are the annihilation and creation operators 
for the state in o~' associated with the "positive frequency" solution K~. It should 
be noted that the arguments leading to Eq. (4.3) are not as compelling as those 
leading to Eq. (4.2). Equations (4.2) and (4.3) are precisely Hawking's [1] Eqs. (2.3) 
and (2.4). 

It is not clear what, if any, physical interpretation should be placed on the 
"horizon particle states". One might be tempted to say that if the quantum 
mechanical state is described by the vector a' in iF' ,  then an "observer at the 
horizon" making the appropriate measurements would detect a single particle 
in the state a'. However, there is no such thing as "an observer at the horizon" 
since the horizon is a null surface whereas all observers move on timelike world- 
lines. Furthermore, it is not at all clear what the "appropriate measurements" 
would be. In any case, one is primarily interested in the results of measurements 
made at infinity. To describe the results of all possible measurements at infinity, 
one constructs a density matrix in the following manner. 

The "out" Hilbert space Your(Jig O ~ ' )  is naturally isomorphic to the Hilbert 
space ~-(~gf) ® ~(J(f ')  as follows: let ~o ab .... ~ ( @ ~ ) ~  and let a 'a'y''' ~' e (@,,~')~, 
i.e. ~ ..... is an n-particle "infinity state" and o -" '~"  is an m-particle "horizon 
state". The isomorphism associates each vector in ~ ( ~  ® ~ ' )  of the form 

Q( ..... a'"'"'~') (4.4) 

with the vector 

(n !m ! /(n + m) ! )~  ..... ® a"'"" ~" (4.5) 
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in ~(ou:) ® ~(Jt°'). This map is easily seen to be norm preserving on these vectors, 
and since states of the form (4.4) are dense in J ( ~  ® ~ ' )  whereas states of the 
form (4.5) are dense in ~ ( ~ )  @ ~(4f ' ) ,  we have indeed defined an isomorphism. 
Let ~ e ~(2/ :  O ~ ' ) .  To get the density matrix in ~(~/t ~) associated with • we 
consider the state q i ® ~ c  J~(J4,: G ~ ' ) ® ~ ( J / f  (@~') and use the above iso- 
morphism to view it as an element of ( N ( ~ )  ® .~(4:')) ® (~ ( J : ' )  ® ~ ( ~ ' ) ) .  One 
then takes the trace of this element with respect to a basis of ~-(J¢~') to get a vector 
in ~ ( ~ ) ®  o~(J:), which one views as an operator ~ :o~(~4:)--->~(~), called the 
density matrix. If d :o~(~"4:)~(~4:) is any observable on Y(~4:), its expectation 
value is given by, 

{s4) = t r ( d ~ )  (4.6) 

so the density matrix ~ gives one the complete information concerning the results 
of measurements at infinity. 

As noted above, there is ambiguity and arbitrariness in the choice of definition 
of positive frequency on the future event horizon. It would be very disturbing if 
any predictions of the theory with regard to measurements made at infinity were 
to depend upon this choice. However, the following argument establishes that 
the density matrix @ for measurements at infinity is indeed independent of the 
definition of positive frequency on the horizon: 

If we change the definition of positive frequency on the horizon, the annihila- 
tion and creation operators for the horizon states will undergo a transformation 
of precisely the same form as Eq. (3.24). This induces a linear transformation S 
on the "out" Hilbert space J ~ ( ~ ) ®  ~ ( ~ ' ) .  By the same arguments as given at 
the end of Section III, 5: is unitary. Furthermore, since only the annihilation and 
creation operators for ~ '  were transformed, 5" will act only on ~ ( ~ ' ) ,  i.e. 5: 
takes a vector in Y(2/:) ® ~(J/g') of the form F ® F' with F ~ ~(~#), U e ~- (~ ' )  
into the vector F ® 5~F '. But from these facts and from the definition given above 
of the density matrix ~ for o~(2/:), it is clear that N remains unchanged when the 
"out" Hilbert space undergoes the transformation 5: resulting from a redefining 
of positive frequency at the horizon 1. 

Thus, all predictions of the theory with regard to measurements made at 
infinity must be independent of the definition of positive frequency on the horizon. 
As a consequence, if we are concerned only with the results of measurements made 
at infinity, we can pick any convenient choice of {Ki} for performing our calcula- 
tions. 

Our aim now is to calculate explicitly the state 7 / e ~-out(~t ~ G ~ ' )  which 
results when the complete gravitational collapse of a body occurs with no particles 
initially present (i.e. starting with the vacuum "in" state). The mathematical 
structure of the theory described above is the same as that of the previous section 
and we may directly take over the results of the analysis given there. Hence, we 
obtain, 

7/= kg(e"b)= c(1, 0, 2-~e ab, 0, ((3.1)/(4.2))~e(a% c~), 0 . . . .  ) (4.7) 

1 We should point out that for the strict validity of the above arguments the operators which describe 
the change in definition of positive frequency at the horizon must satisfy the analog of condition (2) 
of Section III (i.e. t r ( U E ) <  oo). If this condition is not satisfied, the argument given above is only a 
formal one. 
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where e ~b is the 2-particle state associated with the operator E = D-C-1, where the 
operators A : ( ~  O~gt~')--.gf ~, B:(~dt ~ ® ~ ' ) - ~ ,  C:~f~--*(J4 ° OJ(¢'), and D : ~  
(W O.X(") are defined in the same manner as previously except that "in the past" 
now means "at J - "  and "in the future" now means "at J +  and the future horizon". 
In order to explicitly determine e,b we must determine the action of these operators. 
Fortunately, the bulk of the analysis required for this purpose has already been 
carried out by Hawking [1]. 

Following Ref. [1], our first step is to introduce an orthonormal basis for 
and an orthonormal basis for ~gt ~' as follows: for each o), l, m, let P~,,  denote the 
solution generated by the data co-~exp(i~ou)Y~,,(O, ~o) at future null infinity. Fix a 
real number E with 0 < E ~  1 and define 

Pj,~,n = E-  ~ S){ + 1)E exp( -- 2~zine)/k-)P~ot,,de). (4.8) 

Then the {Pj, l,.} with j > 0  yield an orthonormal basis of 0;~ (i.e. they yield basis 
for all solutions generated from positive frequency data on J +  and they are 
orthonormal in the Klein-Gordon scalar product). The wave packets Pj, z,, are 
made up of frequencies within E of co =jE. They are peaked around the retarded 
time u=  2rm/E and have a time spread ~ 2rc/E. Hence, the following physical 
apparatus should give a good approximation to a measurement of the projection 
operator onto the state Pj,,,,: a particle detector sensitive only to frequencies 
within £ of o ) = j g  and angular dependence Yz,, which is turned on for a time 
interval 2~/E at time u = 27m/E. Thus, the use of the basis Pj,z,, not only simplifies 
calculations but also allows one to get a direct physical interpretation of the 
state T in terms of the outcomes of particle detection experiments. To conform 
to our previously established notation, we will use the symbol i~ ~ to denote a 
typical element of this basis. Here the index i stands for jntm and the role of this 
index - which enumerates the members of the basis - should not be confused 
with that of the index a which tells us that ~Q~ is an element of W. 

For the vacuum Schwarzschild solution one can construct a similar basis 
{Qj,z,,} for the "horizon states" sug ' by precisely the same procedure starting from 
the solutions Q~,, generated by the data co-~exp(ieov)Yt,, at the future horizon. 
In the case of a black hole formed by spherical gravitational collapse, we can also 
perform this construction after we define a time coordinate v on the horizon 
which agrees with the Killing parameter outside the collapsing matter. For large n 
(i.e. late times) the ambiguity in defining Qj, z,~ resulting from the ambiguity in 
defining v will be negligible. We will use our freedom in choosing the elements 
of the positive frequency basis {Ki} at the horizon so that the {Q~,~,.} for large n 
form part of this basis. We will use the symbol ~o ~ to denote such a basis element 
corresponding to Qj,~,,. 

Next we construct new late times basis elements of W O~¢t °' as follows: 
consider the vacuum Schwarzschild solution and prescribe data for the solution 
Xj,,,,, at the past horizon in the same manner as we prescribed data for Pj,~,, and 
Qj,z,, at J +  and the future horizon. Assuming that the transmission and reflection 
amplitudes t =  t~,~(co) and r =  r~,,(~o) vary negligibly over the frequency interval E, 
we have 

X j.l~ = tP j, l,, + rQ j, l,. . (4.9) 
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Defining gi,z,, in a similar manner at J - ,  we have 

Y3,,,~ = TQ~.I,. + RP3.~m. (4.10) 

We define the new basis elements, i2" and i7" by, 

i/~ a = t i iO a "31- r i i ffa , (4.11) 

i7 a = Ti ia a + RiiQ ~ • (4. t 2) 

Our aim now is to find the action of the operator D C -  1 on these basis vectors. 
First, at late times (i.e. for large n), if we propagate the wave packet (TQj ,~m+ 
RPj,~m) corresponding to the state i~ backward in time, it will be almost entirely 
scattered back to J -  by the static Schwarzschild geometry. Hence, it cannot 
pick up any negative frequency part and the resulting wave packet at J -  will be 
the purely positive frequency wave packet Y~,~,,. This implies, 

D C -  1 ~Ta = 0. (4.13) 

On the other hand, at late times, the wave packet (tPi,~m + rQj,~m) corresponding 
to ~2 a will be almost entirely scattered through the dynamically collapsing body 
and thence back to J - .  The major effect which occurs is that the wave will suffer 
a very large blueshift upon entering the collapsing body (near the formation of 
the horizon). This blueshift will not be compensated by a correspondingly large 
redshift when the wave leaves the body since the body is in a less collapsed state 
at earlier times. Since the effective frequency of the wave is very high when it 
enters the collapsing body and propagates to J - ,  the geometrical optics ap- 
proximation will be valid in this regime. Almost all of this wave packet will reach 
J -  just prior to the advanced time v0 corresponding to the formation of the event 
horizon. In fact, in the geometrical optics approximation, it follows immediately 
from forming wave packets using Eq. (2.18) of Ref. [1], that the v dependence of 
the wave at ~¢- is given by 

Zjntm(V)~{Oex v>v°  (4.14) 
p ( -  icoL/k-)sin(L/2)/L v < Vo 

where co=(j+½)E is the effective frequency of the original wave packet at J +  
and the future horizon, and 

L = 2rcn + (E/~)ln(v o - v) (4.15) 

where K is the surface gravity of the black hole. (For a Schwarzschild black hole, 
= 1/(4M) in geometrized units G = c = 1, where M is the mass of the black hole.) 

For convenience, we shall now set Vo =0. As shown in Appendix A, the Fourier 
transform, ~ Zj.z,.(co ), of Zj.~.,(v) satisfies the following relation for co' > 0 (assuming 
E ~  1), 

Z~,,l,. ( -  co ) = - exp(-  rcco/~c)Zi.l,.(co ) .  (4.16) 

Consider now the "time reflected" wave packet Zj.~m at J -  given by 

23.tin(V)- ~exp(- icoL/k")sin(L/2)/L v > v o = 0 (4.1 7) 
[o VKVo=O 
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Fig. 3. The relationships between ~2 ~, iz", Z j , lm,  and Z,j,zm. When the wave ~ , ~ , Z r ~  
packet corresponding to the state ~2" is propagated backward into the past, 
it gets scattered through the collapsing body and produces the data Zj.~, .  r 
at ..¢-. The data Zj.z~, at . f -  is the time reflection of Zj.t,. about the advanced 
time v o corresponding to the formation of the event horizon. The wave 
packet definedby Zj.l,. propagates into the black hole and defines the early 
time state ~z" as described in the text 

Z 

where 

L = 2rcn + (E/tc)ln v. (4.18) 

Since the {Zj ,  t,,} are orthonormal in the Klein-Gordon scalar product, it is clear 
that the {Zj,~,,} are also orthonormal, but with negative unit norm since the time 
reflection changes the sign of the Klein-Gordon scalar product. Furthermore, 
the scalar product of any Zj,~m with any Zj,z,, clearly vanishes. Also, the Fourier 
transform Zj,l,.(co') clearly satisfies, 

' ' co ) = Zj,Zm(co ) (4.19) 

for all co', since Eq. (4.19) holds for the time reflection of any function. Suppose 
now we propagate the wave packet 2j,~,, into the future. The geometrical optics 
approximation will be valid as this wave packet propagates toward the collapsing 
body, since the effective frequency of 2 j ,  l,, is as high as Zj,~,,. The original wave 
packet Zj,~,, arrives at the center of the collapsing body just prior to the formation 
of the event horizon; it just barely escapes being captured by the newly formed 
black hole. However, the wave packet Zj, z,, arrives just after the formation of the 
horizon and in the geometrical optics approximation it propagates entirely into 
the black hole. Let Jj,~m denote the data for this wave packet at the future event 
horizon. We shall use our freedom in defining positive frequency at the horizon 
to take the {Yj,lm} as part of our positive frequency basis {Ki}. We shall denote 
by iz" the horizon state associated with the wave packet ~n~m. The relationships 
between i2", iz a, Zj,~m, and 2j,~,, are illustrated in Fig. 3. 

It follows from Eqs. (4.16) and (4.19) that if we propagate the wave packet 
associated with the state (i2 a + exp(-rcco~/~:)i~a) backward into the past, we obtain 
a purely positive frequency wave packet at J - .  This implies, 

D C -  I i2~ = exp ( -  zco)i/t¢)i~ ~ . (4.20) 

Similarly, if we propagate the wave packet corresponding to (i,~, + exp( + rcco]~)~z a) 
backward into the past we also get a purely positive frequency wave packet at J - .  
This implies 

D C -  l (exp(Tccoi/lC)i'ca) = i~a  . (4.21) 

From Eqs. (4.13), (4.20), and (4.21) it follows that 

e~ = ~i  e x p ( -  rcco]rc)2i 2("i zb) + eg b (4.22) 

where eg b is orthogonaI to all the late time basis vectors {~)0"} and {~7 "} as well as 
the early time horizon states {~z"}. (Physically ~gb gives the pair creation part of ~/' 
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which reaches infinity at early times while the summed term gives the final steady 
state emission.) 

Equation (4.22), together with Eq. (4.7), gives the solution for the state vector 
which results from particle creation starting from the vacuum during gravitational 
collapse. The task that remains is to interpret our solution and derive its properties. 
However, we first should comment that, as noted in the previous section, E = ~ -  1 
must be a Hilbert-Schmidt operator in order that ~ab and 7*(e "b) be normalized 
states and hence that the theory make rigorous mathematical sense. But it is clear 
from Eq. (4.22) that in this case eab does not have finite norm since (recalling that 
the index i stands for jntm) even for fixed j and m one has terms of finite norm 
(bounded away from zero) for infinitely many n and 1. This infinity we get in the 
norm of e ~b results from the steady rate of emission in all modes over all time. 
However, as we shall see very shortly below, if we restrict attention to measure- 
ments of a single or finite number of modes, then in a well defined sense the infinite 
norm factor (due to the infinity of other modes) factors out and we can obtain 
well defined predictions. Thus, the mathematical difficulties one encounters here 
are very minor compared with the difficulties one ordinarly encounters in the 
quantum theory of fields. 

The fact which permits us to reduce the state vector 7*(e "b) to a form where 
it can be easily interpreted is the following: 

Lemma. Let Af 1 and 2/f 2 be Hilbert spaces and let l])ab ~(d~f~l @ ~ l ) s ,  l~ab E 
(J~2 @ ~a2)s" Consider the state ~(#.b)~ ~(,Xp1 (~)~2) defined by 

I~)(1~ ab) = (1, 0, 2-½l~l ab, O, ((3' 1)/(4.2))~p(abp ca), 0 . . . .  ) 

where #"b=~fb+~lab. Then under the natural isomorphism (discussed above) 
between ~(a(f 1 @J~'2) and ~'(Jg~1)®~7(~2) the state ~(t ~b) is mapped into the 
simple product state cb l (~p ~b) ® ~2(tf b) where 

~b l (~b)= (1, O, 2-~-,f b, O, ((3- 1)/(4.2))qp("b~ cd), 0 , . . . ) ,  

t~2(r/ab) = (1, 0, 2-}t/~b, 0, ((3.1)/(4.2))½r](abrl ca), 0 . . . .  ). 

The proof of this lemma is straightforward, but since it plays a key role in our 
analysis we give an explicit proof in Appendix B. 

We now apply this lemma to our state vector ~(e "b) setting Jt~, equal to the 
two-dimensional Hilbert space generated by the vectors ~,~g and (c" and setting 
Jr2  = ( a f 0  ±. We obtain, 

tI'(e~b) = 7/i(exp(- ~O)i/l¢)2i)~(aiZ b)) @ !/-*(~ ab) (4.23) 

where 

~'i = (1, 0, 2-~exp(-  lrooi/~c)2i2("i zb), O, 
(4.24) 

((3.1)/(4.2))~exp( - 2rc~oi/~)4i2("iz b ~2 ~ i¢ ) . . . .  ) 

and where {.b is defined by the same Eq. (4.22) as e "b except that the single term 
exp(-rc~oj~)2~2("~¢ ) is omitted in the sum. Suppose now that we are interested 
only in measuring emission in the i-th mode. Since the state vector 7J(e "b) is of the 
form of a simple product of a state vector 7'~ for the i-th mode and a state vector 
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for modes orthogonal to the i-th mode, the density matrix for emission in the i-th 
mode is the same as that of the pure state vector ~i- In other words, emission in 
the various modes is independent, i.e. there are no correlations between measurements 
of particles emitted in different modes. Each mode has its own state vector ~Pi, defined 
by Eq. (4.24). 

Continuing the reduction process on 7~({"b), we may symbolically express 
gqe ab) as, 

7s(e ab) = (@, ~,) ® (@k(7~0)k) ® ~(e~ b) (4.25) 

where (7~O)k is the vacuum state of the Fock space generated by the one-dimensional 
Hilbert space spanned by k)"- Thus, the state vector describing particle creation 
during gravitational collapse decomposes into a product of a state vector 7~(eo ~) 
describing the early time emission multiplied by a product of state vectors describ- 
ing emission in the various modes at late times. The natural physical interpretation 
of each state vector 7~i is that it describes multiple pair creation in which one of 
the particles (namely ~z") in each pair enters the black hole just after its formation 
while the other particle in the pair (namely, y=tii¢~+r~icr ") reaches infinity 
(with amplitude t~) or gets scattered back into the black hole (with amplitude r~) 
at late times. Of course, it should be kept in mind that we do not claim any physical 
interpretation of "particles which go down the black hole" in terms of measure- 
ments which observers near the black hole can make. Indeed, the concept of 
"particles which go down the black hole" depends on the quite arbitrary choice 
of definition of positive frequency at the future event horizon. 

As discussed above, our main interest is in describing the emission of particles 
that reach infinity. We have a physical interpretation of "particles at infinity" 
and we have already shown that the density matrix describing emission to infinity 
is independent of the choice of definition of positive frequency on the future 
horizon. To find the density matrix for particles in the i-th mode which reach 
infinity, we view 7~i ® (~0)i as an element of ~(Z,~i) ® Y(~I )  where ~ i  is the one- 
dimensional Hilbert space spanned by ~ and ~f'~ is the two-dimensional Hilbert 
space spanned by y and ~z". We then find the density matrix by "tracing out" the 
degrees of freedom corresponding to ~'~ in the manner described above. 

Let us first calculate the probability PN for observing N particles at infinity 
for the simple case of a mode whose transmission amplitude t~ is unity, so that 
~2 ~ = ~". In this case, PN is simply proportional to the squared norm of the vector 
appearing in the 2N-particle entry in the expression for ~ ,  Eq. (4.24), since 
exactly half of the particles are emitted to infinity in this case. We obtain, 

PN oc ((2N- 1)(2N- 3)... 1)/((2N)(2N - 2)... 2) 

• exp(-  N2:rcco/tc)22u IliQ (~i zb... i~Y(c~) 112 

= ((2N- 1)(2N- 3)... 1)/((2N)(2N- 2)... 2) 

• exp(-  N2rm)/K)22U(N !)(N !)/(2N) ! 

=exp(--  NZrwg/K) . (4.26) 

Thus, the probability of observing N particles at infinity in a mode with t~ = 1 is 
given by precisely the Boltzmann factor corresponding to the temperature T 
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given by 

k T = htc/2zc . (4.27) 

A further simple calculation reveals that the density matrix for emission to 
infinity in a mode with t~ = 1 is given by, 

~i = ~N exp( - Nhe)/kr)~p N ® t ~  (4.28) 

where 

~PN = @N~0"" (4.29) 

Equation (4.28) is precisely the density matrix for black body thermal radiation in 
the i-th mode. 

To find the density matrix (and probability distribution P~) for emission to 
infinity in an arbitrary mode (t~ 4= 1), one must replace ~¢a in the above formula 
by y = t ~ a +  r~o ~ and "trace out" the degrees of freedom corresponding to y .  
The result one obtains is precisely what one would get by starting with the previous 
probability distribution and density matrix for the case of unit transmission 
amplitude and assuming that each emitted particle has a probability of Its[ 2 of 
reaching infinity. Since Its] 2 is the classical absorption cross section of the black 
hole for the given mode, this means that a black hole placed in a thermal cavity 
at temperature k T =  htc/2rc would absorb precisely as much thermal black body 
radiation from the cavity as it would emit via quantum particle creation effects. 
Thus, a black hole placed in a thermal cavity at the same temperature would be 
in exact (though, perhaps, unstable) equilibrium; by measuring only particle 
emission, it would be impossible to tell where in the cavity the black hole is 
located. Thus, a black hole is a true black body emitter. 

We should perhaps emphasize how remarkable it is that our calculation 
yields exactly the thermal black body density matrix. The quantum spontaneous 
particle creation process always produces particles in a pure state; it is only 
because some of these particles go down the black hole that one gets a mixed 
state for emission to infinity. Even so, it is quite remarkable that one gets a steady 
rate of uncorretated emission at late times. Perhaps even more remarkable is the 
cancellation of the numerical factors in Eq. (4.26) to yield precisely the black body 
Boltzmann factor for the probability distribution PN. (There are, of course, many 
other probability distributions whose first moment ( N )  agrees with black body 
emission.) It seems difficult to believe that the exact agreement of black hole 
emission with black body emission can be merely a chance coincidence; the 
possibility that there may be a deep reason why black holes are black body 
radiators appears worthy of future investigation. 

V. Discussion 

In this paper we have obtained the explicit solution for the quantum mechanical 
state vector which describes the massless scalar particle creation from the vacuum 
occurring when a spherical body undergoes complete gravitational collapse and 
forms a black hole. The results of all possible measurements on these particles at 
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late times at infinity can be obtained from our solution. We found that the 
spontaneous quantum particle emission by a black hole agrees in complete detail 
with thermal emission by a black body at temperature k T =  hx/2n.  In this final 
section we shall discuss some remaining issues. 

In the analysis of Section IV above, we considered only the case of spherical 
gravitational collapse to a Schwarzschild black hole. However, by the same 
arguments as given in Ref. [1], our results for the final steady state emission do 
not depend on the details of the collapse process but only on the final black hole 
produced by the collapse. Hence, the final steady state emission for any gravita- 
tional collapse which results in Schwarzschild black hole will be described by 
the state vector ~g derived above. For the case when the collapse results in the 
formation of a Kerr black hole, the state vector is modified as follows: for non- 
superradiant modes co>mQH (where e) is the frequency, m is the azimuthal 
quantum number and f2n is the angular velocity of the horizon) we may define 
our basis of H O H '  as before. The arguments given in Ref. [1] show that the 
results of Section IV still hold, with the modification that the frequency ~o/of the 
i-th mode is replaced by (co/-m~?n). Hence, for the non-superradiant modes all 
the discussion and formulae of Section IV apply, provided one makes the sub- 
stitution o ) ~ ( ~ o - m f 2 n )  in the exponential factor occurring in these formulae. 
In the superradiant regime 0 < co < mf2n, the solutions Q~,/m have negative Klein- 
Gordon norm, so one must use the complex conjugates of these solutions rather 
than the solutions themselves to construct the late time positive frequency basis 
~o -a for the horizon states. (This is equivalent to defining positive frequency at the 
horizon at late times via the Killing vector which points along the generators of 
the horizon rather than the Killing vector which is timelike at infinity.) Sim~iarly, 
the wave packets Jjntm now have positive Klein-Gordon norm, so one must use 
them (rather than their complex conjugates) to define the early time horizon 
states ~z a. In place of Eq. (4.13) one obtains, 

D C -  a(R/~p~) = T~/ff~. (5.1) 

In place of Eqs. (4.20) and (4.21), we now obtain, 

D C -  l(t  i iQ ~ + exp (n (mO H - O))/l( ,)iT, a) = r iiff a , (5.2) 

O C  -- 1(~/  i ~ a )  = "{/i~a -4- exp( - n(mf2 n - c0)/K)/~a. (5.3) 

Note that in the superradiant regime we have I R/I2 _ I T~I 2 = 1 = l r~l 2 - I til 2. Equations 
(5.1), (5.2), and (5.3) yield, 

ab __ (a ~uperradiant - -  2 i ( 1 / r / ) 2  ia [ti i~ + exp( - n(mO n - co)/x)/z] b) + e~ b (5.4) 

where e~ b is orthogonal to the late time superradiant modes as well as the early 
time horizon states {/z"} associated with superradiant modes. One may analyze 
7J(e ~b) by decomposing it into a product of individual state vectors for each mode 
as in Section IV. The particle emission to infinity is again uncorrelated but now 
it is not thermal. The expected emission to infinity in each mode is given by, 

( N i )  = l til 2/(1 - exp( -  2n(mf2 n - co)/x)) (5.5) 



30 R . M .  Wald 

in agreement with Hawking's [1] result. In the limit ~ 0  corresponding to 
purely superradiant emission we have 

gsuperradiantab - ~  ~ i ( t J r i ) 2  ia  (a iO b) + e~ b . (5.6) 

The natural physical interpretation of the state vector ~ for the i-th mode in this 
case is that pairs of particles are being created at late times, with one of the particles 
going into the black hole and the other escaping to infinity. The probability of 
observing N particles in a superradiant mode at infinity in the limit x-~0 is given by 

PN°cltileN/lril2N. (5.7) 

We considered only the case of a massless scalar field in Section IV. However, 
Hawking [1] has argued that his results are also valid in the massive case, the only 
modification being that the frequency co now includes a rest mass contribution. 
These arguments apply with equal validity to our analysis, so the expression 
for 5 v given in Section IV applies to the massive scalar case as well. One can also 
analyze the emission of charged scalar particles by a charged black hole after one 
obtains the analog of our solution for S~g0, Eq. (3.31), for the case of a charged 
scalar field (see Ref. [2]). Presumably, a similar analysis could be carried out for 
the case of spin ½ and spin 1 fields. However, for higher spin fields many difficulties 
arise when one attempts to construct a quantum field theory of these fields in 
an external potential or in curved spacetime (see Ref. [2] and the other articles 
in that book). 

As described in the introduction, in the theory we have used here one presup- 
poses a fixed spacetime geometry corresponding to a body undergoing gravita- 
tional collapse and calculates the particle emission in that spacetime. However, 
one certainly expects that the particle emission itself will affect the spacetime 
geometry. The calculation of the magnitude and nature of this back-reaction 
effect of particle creation on the spacetime metric is of considerable importance 
and interest. An understanding of this effect in the case of gravitational collapse 
would yield considerable insight into the similar effects which one expects to 
occur from particle creation in the early universe. Furthermore, it is important 
that the magnitude of the back-reaction effect be calculated in order to check the 
consistency of the theory we have used, for if particle creation causes large local 
changes in the metric we cannot expect our approach of calculating the particle 
creation in a fixed background geometry to be valid. 

The simplest approach [1] to the back-reaction problem is to assume that 
the major back-reaction effect of particle creation is to cause the mass of the 
black hole to decrease at precisely the rate necessary to compensate for the 
expected energy flux at infinity of the created particles. Since the expected energy 
flux at infinity is proportional to (area) x T 4 ~ M 2 ~ c  ~ ~ 1 / M  2 where M is the mass 
of the black hole, this is a runaway process, i.e. a mass decrease of the black hole 
causes an increased energy flux at infinity and hence an increased mass loss rate. 
Putting in the correct factors, one finds [1] that any black hole created in the 
early universe with mass <t015 grams would have completely evaporated by 
now, with perhaps 103°-1035 ergs of its mass energy being emitted in a final 
flash of less than one second. 
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A more sophisticated approach to the back-reaction problem involves the 
calculation of the expectation value (Tu~) of the stress energy tensor of the 
created matter. One substitutes (T,~) in Einstein's equations, 

(where T,~ denotes the stress energy tensor of the ordinary matter undergoing 
gravitational collapse) and seeks a self-consistent solution for (T,~) and the 
spacetime metric, analogous to self-consistent approaches for finding the electron 
wave functions and the electromagnetic field of atoms with many electrons. 
Unfortunately, the formal expression for (T,~) is infinite and must be regularized. 
Procedures for regularizing (T,~) are discussed in Refs. [6] and [8]. Perhaps 
the approach and resulls of Section IV above will yield some insight into the 
regularization problem, since from the state vector ~ one can unambiguously 
calculate finite values of (T,v) at late times at infinity. Furthermore, one may be 
able to determine the energy density and energy flux at the future horizon from 
if one can obtain a valid physical interpretation of the horizon states. 

One of the most intriguing issues concerning particle creation by black holes 
is the possibility of a deep connection between entropy and black hole surface 
area. In ordinary thermodynamics, the total entropy of the universe must increase 
with time. However, when black holes are present there are difficulties with this 
law because there is no way of determining the entropy of matter which has 
fallen into a black hole. One can define the total entropy of matter outside of 
black holes, but this quantity need not always increase, since it decreases everytime 
some matter falls into a black hole. On the other hand, in classical general relativity 
one has the law that the total surface area of all black holes must increase with 
time [9]. Indeed, the laws of classical black hole mechanics can be formulated in 
complete analogy with the laws of thermodynamics, with black hole area playing 
the role of entropy, and surface gravity ~c playing the rote of temperature [10]. 
However, on account of the quantum particle creation process, this classical 
law of black hole area increase will be violated according to the simple back- 
reaction estimate described above. But notice that black hole area will decrease 
only at the expense of particle creation and thus an increase in the entropy of 
matter outside of black holes. Furthermore, a decrease in the entropy of matter 
outside black holes due to matter falling into a black hole occurs at the expense 
of an increase in black hole area. This suggests a new law of physics (first proposed 
by Bekenstein I l l ]  prior to the particle creation analysis): the total generalized 
entropy of the universe always increases with time, where the generalized entropy 
is the sum of the ordinary entropy of all matter outside of black holes plus an 
appropriate numerical factor times the surface area of all black holes. The fact 
proven in Section IV that quantum black hole emission agrees in complete detail 
with black body thermal emission greatly strenghtens the possibility that there 
may be deep significance in this generalized second law of thermodynamics. 

Many fundamental questions remain for future investigations: is there indeed 
a deep connection between entropy and black hole area, or is the above analogy 
merely an accidental quirk? Is conservation of baryons and leptons violated in 
the collapse and particle creation process? It appears that it is since we can form 
a black hole purely out of baryons; but when this black hole evaporates by particle 
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creat ion effects, it apparen t ly  produces  equal  numbers  of baryons  and  anti- 
baryons.  W h a t  happens  when a black hole evapora tes  completely? Does  it leave 
behind empty  space or a singularity or pe rhaps  even a more  exotic object? 
It  is possible tha t  we may  have  to wait  until we have a comple te  q u a n t u m  theory 
of  gravi ta t ion coupled to other  fields before we can obta in  sat isfactory answers 
to these questions. 
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Appendix A: Fourier Transform of Zj.lm (v) 

Consider  the function [see Eq. (4.14)], 

Z(v)  = {0 v > 0 (A. t) 
e x p ( -  i03L/E)s in(L/2) /L v < 0 

where 

L = 2rm + (E /x ) ln ( -  v) (A.2) 

and E ~  1. We show here that  for co '>0  the Four ier  t ransform,  2 ,  of  Z satisfies 

2(  - co') = - exp( - nco/tc)Z(co') (A.3) 

Let  co '> 0. We have, 

Z(co') = S ~_ ~ exp( - i03'v)Z(v)dv 

= S ° 0o e x p ( -  ico'v - icoL/k-)s in(L/2) /Ldv.  (A.4) 

Substi tute x = ico'v. Then  the integral  is taken over  the negative imaginary  axis 
in the complex  x-plane. If  we define the logar i thm function to be analytic in the 
first quad ran t  (i.e. if we choose the b ranch  cut to lie outside the first quadrant) ,  
the in tegrand will be analytic in the four th  quadran t  of  the x-plane. We may  
close the con tour  in this quad ran t  to express 2(03') as a con tour  integral a long 
the positive real axis, 

2(03) = S~°exp( - x)exp( - i03Lx/E)sin(Lx/2)/(ico'Lx)dx (A.5) 

where 

L x = 2nn + (E/~)ln(ix/03') 

= 2nn + (E/tc)(in/2 + lnx - ln03'). (A.6) 

Thus,  

Z(co') = (i03')- % x p ( -  io)2nn/E + i(03/~:)1n03') 

• exp(nco/2~c)S~ e x p ( -  x -  i(03/tc)lnx)sin(Lx/2)/Lxdx.  (A.7) 
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On the other hand, 

2( - co') = ~o_ ~exp( + ico'v - icoL/E)sin(L/2)/Ldv. (1.8) 

Substituting y = -  ico'v and proceeding in an exactly similar manner, we obtain, 

Z ( -  co') = --(ico')- %xp( - io~2nn/E+ i(co/x)lnco') 

• exp( - rcco/2~c)~ exp( - y -  i(co/~c)lny)sin(Lj2)/Lrdy (A.9) 
where 

Ly = 2rcn + E/t~( - ire~2 + lny - lnco'). (A. 10) 

For E ~  1 the difference in the integrals appearing in Eqs. (A.7) and (A.9) is neg- 
ligible, and we obtain the desired result, 

2 ( -  co') = - exp( - TCco/~:)2(co'). (A. 11) 

Appendix B: Decomposition of the State ~p(~.b) 

We give here the proof of the lemma used in the analysis of Section IV. 

Lemma. Let  ~ 1  and ~ 2  be Hilbert spaces and let ~)ab ~_(.~ 1 (~)~l)s, ~]ab ~_ 
( ~ 2  ® ~2)s. Define ~(#ob)~ ~ ( ~ a  0 ~ f 2 )  by, 

~(#ob) __ (1, O, 2-~p "b, O, ((3. 1)/(4- 2))~p(~b# ca), 0 .. . .  ) 

where [.Aab=~])ab ~-~] ab. Then the natural isomorphism between W(~/f l 0 ~ 2 )  and 
~(~t t~1)®2(~2)  takes the state ~(pab) into the simple product state ~l(~pab)® 
~2(t/°b), where 

lop ~b) = (1, O, 2-~p~b O, ((3" 1)/(4" 2))~p(ab~ cd), 0, . . .) ,  

~b2(q ~b) = (1, 0, 2-~tff b, 0, ((3- 1)/(4.2))~*l(~bq cd), 0 , . . . ) .  

Proof. We can write ~(#,b) as a sum of terms containing k factors of ,pÜb and 
l factors of ~1 ab, i.e. terms of the form 

Ckt~p(,b ~cd. . . ~pr, zq,'b'qc' ~" . . . @ ~') . (B. 1) 
..... ¢ 

k factors 1 factors 

The coefficient cu is simply the coefficient of the n-particle term in the expression 
for #(p~b) [where n=2(k+l)] ,  times the appropriate binomial coefficient, Le., 

cu = [([2(I + k ) -  1][2(t+ k ) -  3]... 1)/([2(l + k)] [2(l + k ) -  2]...2)] ~ 

• (k + l)!/(k !t !). (B.2) 
Under the natural isomorphism of ~(Y{~I ®Y¢'2) with Y(Xt~I)®Y(Yt~2) the 
vector (B.1) gets mapped into the vector 

Cu~p(ab... 1#y=) ® q(a'b'.., tly'~') (B.3) 

where [see Fqs. (4.4) and (4.5)], 

cgt = [(2l)!(2k) !/(2I+ 2k) !]~ cu 

= [ ( (k-  1)(k- 3)... 1)/(k(k-  2)... 2)] } [ ( ( l -  1)(l- 3)... 1)/(1(l- 2)... 2)] ~ . (B.4) 
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Thus, the state ~(#.b) get mapped into the state 

= ~1(~ "b) ® ~2(~"b) 

where ~1 and ~2 are defined above. 

R. M. Wald 

(8.5) 
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