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Abstract. The space of maps $3~ G has components which give the topological 
quantum number of Yang-Mills theory for the group G. Each component of 
the space has further topological invariants. When G= SU(2) we show that 
these invariants (the homology groups) are "captured" by the space of 
instantons. Using these invariants we show that potentials must exist for which 
the massless Dirac equation (in Euclidean 4-space) has arbitrarily many 
independent solutions (for fixed instanton number). 

§ 1. Introduction 

In non-abelian 4-dimensional gauge theories it is by now well-known that certain 
topological aspects play an important role. More specifically the fact that, for a 
simple non-abelian compact Lie group G, the third homotopy group 7r3(G ) is 
isomorphic to the integers leads to a "topological quantum number" k. The 
purpose of this paper is to draw attention to further topological features and to 
show how these are related to analytical aspects of the gauge theory. 

Our basic observation is that the Euclidean Yang-Mills Lagrangian is defined 
on a function space with many components (labelled by the integers) and that each 
component has further internal topological invariants. Homotopically the func- 
tion space is determined by the asymptotic data and so it can be identified with the 
space Oa(G) of maps S 3--, G (normalized to preserve base points). The components 
of this space give 7z3(G ) and are labelled by integers k, and each component f23(G) 
is a space with much internal structure extensively studied by topotogists. 

As usual in order to deal with the asymptotic conditions in R 4 we shall work 
on the 4-sphere S4=R~woe which is the conformal compactification. In this 
version the relevant function space is the space of connections (potentials) modulo 
gauge transformations. The space of connections is a linear space, with no 
topological invariants, but after factoring out by gauge transformations we get a 
space Cg(G) which is homotopicaUy g23(G). These basic facts are described in §2. 
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One of the first consequences of the non-triviality of the space ~3(G) or Cg(G) is 
the impossibility of fixing a gauge, i.e. there are topological obstructions to 
choosing continuously a potential in each gauge-equivalence class. This aspect is 
briefly discussed in §2 but for a fuller treatment we refer to the paper of Singer 
[18]. 

In §3 we make a particular study of SU(2)-instantons, the minimum action 
solutions of the Euclidean Yang-Mills equations. We show that, for large k, the 
homology of Ea~(SU(2)) is "contained in" the homology of the space of instantons 
of degree k [see Theorem (3.1) for a more precise statement]. Thus the complicated 
homology of the function space is faithfully reflected in the global nature of the 
instanton space. One noteworthy feature of the homology is that it is all generated 
by configurations of k single instantons in the manner of Segal [17]. At this point 
we should perhaps point out that a complete construction for all instantons is now 
known in terms of linear algebra [6]. However this description, although in 
principle very explicit, does not immediately give information on the topology of 
the instanton space. An interesting problem for further investigation will be to 
connect up our results [Theorem (3.1)] with those of [6]. 

In §4 we consider the (massless) Dirac equation coupled to instantons (of any 
degree k >0). It is well-known that this equation has a k-dimensional space of 
solutions [7]. As we move over the instanton space M k this gives a vector bundle 
with fibre C k. We investigate the global topological properties of this bundle and in 
particular derive results on its Chern classes [Propositions (4.4) and (4.5)]. We 
then use these results to prove topologically the existence of connections (not 
solutions of the Yang-Mills equations) for which the coupled Dirac equation has 
arbitrary large solution space [Theorem (4.6)]. 

These results for SU(2) can be extended to other groups G and set in a larger 
context by considering the family of all Dirac operators parametrized by the space 
(g(G) of connection classes. This has a generalized index in the sense of [10], 
namely the homotopy class of the map Cg(G)-+~ given by the Dirac operators 
(where ~- is the space of Fredholm operators). This generalized index can be 
identified, using results of [3], and leads to Theorem (4.12). This theorem has 
cohomological consequences and as a particular application we show [Theorem 
(4.14)] how to extend Theorem (4.6) to deal with all representations of SU(2). 

In order to preserve the flow of the argument in §4 we defer till §5 the proofs of 
a number of technical results, particularly those involving cohomological 
calculations. 

Finally in §6 we make some brief comparisons with 2-dimensional Yang-Mills 
and with the 2-dimensional non-linear a-model. There are some very interesting 
analogies on the topological level. 

Since we shall be dealing with infinite-dimensional function spaces care has to 
be taken over the topological details. However all our results essentially concern 
finite-dimensional subspaces of the function-space. For example statements about 
homology are always of this kind. For this reason we shall not be over-pedantic on 
this question. In particular we shall use "homotopy equivalence" where it might be 
technically more accurate to use the weaker notion of homotopy equivalence on 
compact subsets. 



Topological Aspects of Yang-Mills Theory 99 

§ 2. The Space of Connections 

We begin by recalling the way in which the "topological quantum number" k 
arises for a Yang-Mitls theory in Euclidean 4-space. We start with a given gauge 
group G which is assumed to be a compact simple Lie group [e.g. SU(2)]. The 
gauge potential A(x) is a Lie-algebra valued 1-form on R 4. To get a finite Yang- 
Mills action we assume that as x-~ ~ ,  A(x) becomes a pure gauge. This means that 
asymptotically A(x) takes the form 

A(x),,,g(x)- ldg(x) (2.1) 

where g:S3~G is defined on the "sphere at oo". If we normalize g by requiring 
g(So) = 1, where so~S 3 is some fixed point, then g is uniquely determined by A. The 
homotopy classes of such maps g form the third homotopy group rc3(G ) and this is 
known to be isomorphic to the integers for all G [if G = SU(2) the integer is given 
by the degree of the map]. 

Suppose now that we consider not just a single potential A(x) but a continuous 
family A(x,y) in which y runs over some compact parameter space Y. Then 
asymptotically, putting a parameter y into (2.1) we have 

A(x, y)~ g(x, y)- I dg(x, y) (2.2) 

(where d = d x differentiates only the x-variables). In (2.2) g is a map S 3 x Y ~  G or 
equivalently a map Y~O3(G), where g23(G) is the function space of maps S3--~G 
taking s o to 1. The homotopy classes of such maps form an abelian group denoted 
by [Y, Q3(G)]. If Y reduces to a one-point space then we are in our previous 
situation and the above group gives just the components of O3(G), in other words 
rc3(G ). If the individual components f2~(G) were themselves contractible then no 
further topological invariants would arise from any choice of Y. However it is well 
known in algebraic topology that each component f23(G) is far from being 
contractible and hence for suitable Y the groups [Y, f23(G)] will give non-trivial 
information going beyond the classification by components. For example if Y = S ~ 
then 

[ Y, f23(G)] _--- rcn + 3(G). 

For G = SU(m) we have 

~4(SU(2))~Tzs(SU(2))=~Z2 (integers modulo 2) 

7zs(SU(m))~Z (integers) for m > 3 .  

Thus we see that the space of potentials, subject to the asymptotic condition 
(2.1), has a rich topological structure. 

In order to deal rigorously with this asymptotic condition it is convenient to 
pass to the 4-sphere $4= R4w oe. This is a sensible procedure for the Yang-Mills 
equations since they are conformatly invariant and S 4 is conformally flat. We shall 
therefore reformulate our discussion in terms of S% and it is now convenient to use 
differential-geometric language in which the potential is regarded as defining a 
connection A in a principle fibre bundle P with group G. The integer k now 
appears as labelling the isomorphism class of P over S 4. The asymptotic behaviour 
of the Euclidean potential has gone into constructing P. 
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To get further than the integer invariant k we now consider isomorphism 
classes of bundles P With connection A. For technical reasons, related to the 
normalization of g imposed alter (2.1), we shall actually pick a base point ogeS 4 
and each P will be assumed to have a base point p~ over oo. Moreover 
isomorphisms will be required to take base point to base point. With this 
convention the set of isomorphism classes of all (P, A) will be denoted by qf(G). The 
topology of A induces a topology on ~g(G), so that ~f(G) becomes a topological 
space. This space can also be described more explicitly as follows. First of all ~f(G) 
has a component Uk(G), for each integer k, corresponding to the class of P. For a 
given Pk let ~k denote the space of all connections A on Pk, and let Nk denote the 
group of all (base-point preserving) automorphisms of Pk" An element of Nk is thus 
a gauge transformation which is the identity at the base point of S 4, i.e. at oe. 
Clearly Nk acts on s~ k and Cgk(G ) = dk /N  k. The topology on ~'k(G) is inherited from 
that of d k and is quite well-behaved in view of the following facts : 

i) d k is a linear space, 
ii) ~k acts freely on c4 k [i.e. g ( A ) = A ~ g =  1], 

iii) local slices exist for the action of Nk on d k (i.e. subspaces of sd k meeting 
Nk-orbits in one point). 

i) is clear. To prove ii) assume g(A)=A for some g~Nk and A~cd  k. Then g 
preserves the parallel transport defined by A and, since g is the identity at 0% 
parallel transport makes it the identity everywhere. The local slices in iii) are 
essentially given by the transverse gauge. More precisely for A ~ d  k the orbit of ~qk 
through A is given infinitesimally by all dA(qb ), where q~ is a section of the adjoint 
bundle of Pk (with fibre the Lie algebra of G) vanishing at oo, and d A is the 
covariant derivative defined by the connection A. An infinitesimal slice is therefore 
given by solutions of the adjoint equation d*(tp)= 0. Standard analytic arguments 
involving Sobolev spaces then show that this infinitesimal slice generates a local 
slice. For further detail on this point we refer to [18]. 

Properties ii) and iii) imply that Sdk~alk/N k =Uk(G ) is a principal fibre bundle 
with group Nk. 

The relation of the space ~g(G), constructed on S 4, to our earlier discussion in 
R 4, is clarified by the following: 

Proposition (2.3). The space ~(G) is homotopicalIy equivalent to f23(G). 

The proof of (2.3) is quite routine. We first deform C~(G) into the subspace 
C6(G)~ o of connection classes which are fiat near oo ~ S ~. For any such connection A 
we pick a flat section c~ of P with c~(oo)=p~ and any section fl of P over R 4 which 
agrees with e on the fixed radial direction s o (such fl exist because R 4 retracts onto 
the radial line). On a small 3-sphere around oo~ e and fl now differ by a map 
g : S 3 ~ G  with g(So)= 1. By assigning g to A we get a map C~(G)oo---*~3(G ) and it is 
easy to check that this is a homotopy equivalence. 

Further insight into (2.3) can be gained if we use "classifying spaces". We recall 
that if K is any topological group, it has associated to it a space BK, called its 
classifying space, which is well-defined up to homotopy. It can be constructed as 
the base space of any principal K-bundle (called the universal bundle) with 
contractible total space. It is inverse to ,tlie loop space construction in the sense 
that B[f2(K)] ~ K o and f2(BK) ~ K. Here Y2(K), the function space of based maps 
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S 1--*K is itself a topological group using multiplication of values, and K o is the 
identity component of K. 

As a first instance of these ideas consider the fibre bundle sJk-*rdk(G) with 
group Nk. Since d k is a linear space it is contractible and hence ~k(G)~BNk. For 
k = 0, Po = S4 x G, hence ~o = ~4(G) ~ f2(~23(G)) and so B~ o ~ BY2(f23(G)) ,,~ f2~(G). 
This gives the equivalence No~f2~(G) for the k = 0  components in (2.3). The 
equivalence for other k is an automatic consequence because the homotopy type of 
both C~k(G ) and ~2~(G) is actually independent of k. For Y23(G) this follows at once 
from the fact that it is a topological group. For Cd(G) we can define a composition 
law which plays the same role for homotopy. This is the "connected sum" 
operation defined most conveniently on Cd(G)~ by cutting out small balls at oo and 
glueing the complements together. 

If we use the classifying space BG of G we can also describe explicitly the 
inverse map f23(G)~Cd(G). Using the equivalence f2BG~G and the induced 
equivalence Y24(BG)~Y23(G) it is sufficient to describe a map f24(BG)~C~(G). For 
this we pick, once and for all, a standard connection ~ for the universal G-bundle 
QG over BG and a point of QG over the base-point of BG. Then for any (based) 
map f : S4-~BG we form the pull-back connection f*(~) for the induced G-bundle 
f*(QG) over S 4. Assigning to f the class of f*(O defines the required map 
O4(BG)~Cd(G). 

This map can be thought of in more concrete terms if we introduce a compact 
parameter space Y and consider the induced homomorphism 

[ Y, O4(BG)] ~ [ Y, ~(G)J, 

where [Y, J denotes the homotopy classes of maps, which here form abelian 
groups. 

By the "universal" property of BG the group [Y, Y24(BG)] classifies, up to 
isomorphism, G-bundles Q over S 4 x Y with a section q over oo x I7. If we choose 
any partial connection A (using only the S4-directions) for such a Q we get a family 
(Qy, Ay) of bundles with connection over S 4, parametrized by yE Y. The class of this 
family is the corresponding element of [ Y, C~(G)]. 

Since the Yang-Mills Lagrangian ~ depends only on the isomorphism class of 
the pair (P, A) it is really a function on the space Cd(G). In fact the base points we 
have used so far do not affect ~ and so Lf, as a function on cd(G) has a further 
group invariance. Since the base point p can be altered by operating with G we see 
that G acts on Cd(G) and ~Lf is invariant under this action. The reason why we do 
not proceed to form the quotient space ~(G)/G is that the action of G is not free. 
First of all the (finite) centre C of G gives an automorphism (not preserving base- 
points) of any (P, A). Hence C acts trivially on Cd(G) and so the action of G on Cd(G) 
factors through the adjoint group ad(G) = G/C = G. More generally if gE G leaves 
fixed the class of (P, A) in C6(G) then g centralizes the holonomy group of A 
at ~ .  Thus G acts freely on the subspace of ~(G) representing irreducible 
connections, i.e. connections for which the holonomy group is the whole of G. In 
particular when G = SU(2) the reducible connections occur only for k = 0, hence 
acts freely on ~k(G) for all k ~ 0. The quotient space cdk(G)/G can then be identified 
with the classifying space of the group ~ of all automorphisms of Pg. Note that N~ 
contains (~k as a normal subgroup with ad(G) as quotient group. Certainly (~ is 
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not contractible and hence the fibration SCk--,S~'k/~f' k can have no section. In other 
words we cannot continuously "fix the gauge". This observation is due to Singer 
[18] who has extended it to cover k = 0  and other G. The non-triviality of the 
earlier fibration "~¢k ~ SCk/aJk = (gk(G) can be interpreted as saying that we cannot fix 
the gauge even up to an ambiguity in G. 

§3. SU(2)-Instantons 

In §2 we saw that the Yang-Mills Lagrangian Y is essentially a function on the 
space ~(G) which is in addition G-invariant, and that Cd(G)~ O3(G) is an interesting 
topological space. By analogy with other examples in the calculus of variations 
and with finite-dimensional Morse theory we might expect an intimate relation 
between the homology of the function space Cd(G) and that of the critical point set 
of ~ ,  i.e. the space of solutions of the Yang-Mills equations. In particular we 
might expect the absolute minimum of A ° to carry a substantial part of the 
homology of Cd(G). The purpose of this section is to prove a precise theorem of this 
type for the case when G = SU(2). 

We recall that the absolute minimum of A¢ is given by the self-dual solutions of 
Yang-Mills equations if k > 0, and by the anti-self-dual solutions if k < 0 (see [ 15] 
or [8]). We will concentrate on the case k > 0. Let J t  k C dk  denote the space of self- 
dual connections (instantons) for G = SU(2). Then as shown in [8] the quotient 

t 6 t  space M k -J/[k/~k is a manifold of dimension 8 k - 3 :  this is the "moduli space of 
instantons" of degree k. If we divide ~ k  by the smaller group ~k we get a larger 
manifold M k which has dimension 8k and is fibered over M~ with fibre ad(G) 
= SU(2)/{ ± 1 } ~ SO(3). A point of M k represents, up to isomorphism, a bundle Pk 
with self-dual connection and a given point p~ over ~ .  In terms of the 
corresponding vector bundle, with fibre C 2, the point p~ gives a preferred basis at 
00. 

Our main result is then: 

Theorem (3.1). For G=SU(2) the inclusion Mk C~  k induces a map in homology 

Hq(Mk)-~Hq(~dk) 

which, for k >~ q, is a projection onto a direct summand. 

In simple terms this theorem asserts that, as k increases, more and more of the 
homology of the function space ~k is contained in the space of instantons M k. 
Note that Hq(~k) is independent of k (since ~ k ~ O )  whereas d i m M k =  8k so that 
M k is a space which is growing with k and the same is true of Hq(Mk), 

Before proceeding to the proof of (3.1) we shall make a number of comments 
and conjectures. First of all, as mentioned in § 1, a complete construction for M k 
(for all G) is now known in terms of linear algebra [6]. However this explicit 
construction does not immediately give geometric or topological information 
about M k. For example it is not yet known whether M k is always connected. 
Theorem (3.1), which uses an earlier incomplete but easier construction, should be 
regarded as a partial and provisional result. One might conjecture that a similar 
result should hold for all G and that Hq(Mk)-~Hq(~k) might actually become an 
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isomorphism for k >> q. One would also hope for explicit bounds for k as a function 
of q to replace the asymptotic statement. Finally one might hope for the 
corresponding (stronger) statements with homotopy replacing homology. 

As just indicated the proof of (3.1) uses a construction for SU(2)-instantons 
due to 't Hooft and others (see [15] or [8]). This construction starts from a 
configuration of k distinct points in R 4 each with an assigned positive weight. For 
our purposes the weights play no role and so we shall set them all equal to unity. 
Then the 't Hooft construction defines a map 

O k : C k ( R 4 ) ~ M k ,  

where Ck(R 4) is the configuration space. By definition Ck(R 4) is the quotient of 
Ck(R4), the space of ordered k-tuples of distinct points, by the action of the 
symmetric group Z k. Clearly Ck(R 4) CR 4k and this defines its topology. The action 
of Z k is free and Ck(R 4) has the quotient topology. Before proceeding further it is 
perhaps useful to point out that the 't Hooff construction in R ¢, as extended by 
Jackiw et al. [153 to the conformal compactification S 4, associates to (k+ l )  
distinct points of S 4 a self-dual connection on S 4 up to isomorphism. However this 
construction has no base point at oe and so yields only a map 

Ct + l(S4)+M'k.  

When one of the (k + 1) points is fixed at oo we then get a preferred base point and 
so recover the 't Hooft construction. In other words the diagram 

Q ( R  '~) , M k 

$ 

Ok+ 1(3'*) 

commutes. 
There are various ways to describe the 't Hooft construction (and its conformal 

extension). It can be described explicitly by giving the Yang-Mills potential in R 4 
as a function of k points al, . . . ,  a k. This description starts from the auxiliary 
function (or "super-potential") 

k 1 
~b(x)= 1 + i=* ~ ]x -a i t  2 

(see [15]). In th e algebraic geometric translation of [11] the construction uses k + 1 
lines of complex projective 3-space. Finally in differential-geometric terms it can be 
described as follows [8, §6]. We take the SU(2)-connection on R 4 which is the pull- 
back of the standard SU(2)-connection {k on quaternionic projective k-space Pk(H) 
by the map 

w-+(1, (u - a , ) -  *,...,  (u - a k) - *). (3.2) 

Here u ,a , , . . .  ,a  k are all viewed as quaternions. Note that when u = a  i we can 
eliminate the apparent infinity by multiplying by the quaternionic scalar ( u -  ai), a 
process which is admissible for projective coordinates. The point u = oo goes into 
the standard point (1, 0 . . . .  ,0) and the differential of 3.2 at u = oo is independent of 
the a~, which is why we get our base point at oo. 
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The configuration spaces Cg(R 4) and more generally C,(R n) play an interesting 
and important role in algebraic topology and are intimately related to the function 
spaces Y2~(S n) of (based) mappings S " ~ S  ~ of degree k. More specifically there is a 
map 

4~ : C~(R ~) --, ~?~(s") 

which can be defined (up to homotopy) in a variety of ways. The simplest 
definition is to view k points in R n as k "electrically charged" particles and to 
associate to them the corresponding "electric field" E which is a function on R ~ 
taking values in R~u co. Since E ~ 0  at ~ it extends to a map/7 of S n = Rnu ~ to S ". 
tt takes the base-point oo of the argument S ~ into the base-point 0 of the domain 
S", and it is easily checked to have degree k. In this construction it is immaterial 
(up to homotopy) what law of force or potential one takes as long as it is linear and 
the field of a single charge has the properties: 

i) E ~ 0  at oo, 
ii) E ~ o o  at the source, 

iii) E is spherically symmetric. 
1 1 

Thus we could take the potential to be logr, - or (if n_>_3). More 
r 

drastically we could take a field which has one of these potentials for r < e/2 and is 
identically zero for r > e, where e is some specified constant. For  k charged particles 
(al . . . . .  ak) we could even allow e to depend continuously on the configuration and 
be so chosen that the regions of the k fields are disjoint, i.e. taking 2e < supla i -  @. 

If n = 1, 2 or 4 so that R ~ can be identified with one of the basic fields R, C or/-/, 
the Segal map can be defined by the function 

k 1 
2 , 

i=1 u--ai 

where (u - al)- 1 is the inverse in the appropriate field. This corresponds to the logr 
potential, combined with conjugation. 

The topological significance of the maps ~b2 is made clear by the following 
striking theorem of Segal [17]. 

Theorem (3.3). The map ~, : Q(Rn)-~O~,(S ") induces isomorphisms in q-dimensional 
homology provided k >) q. 

In order to apply this theorem we need to relate the Segal map ¢k 4 to the 
't Hooft  map O k. First of all we introduce a map 

2: f2"(S') ~ c# (3.4) 

by assigning to any based map f :S4-- ,S  4 the pull-back f*(~l)  of the standard 
SU(2)-connection ~1 over S 4 (the k = 1 instanton). This map can also be described 
as a composition 

Q4 (S 4) ~ o 4 ( n  S U(2)) ~ ~ .  (3.5) 
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The second map is the one explained in § 2 (and is a homotopy equivalence) while 
the first is induced by the m a p j  : S*~BSU(2) which classifies the standard bundle 
on S 4. More explicitly, using the fact that SU(2) is the group of quaternions of unit 
norm, we can take BSU(2)=P~(H) and j as the natural inclusion PI(H)~P~,(H). 
Since the standard SU(2)-connection ~ on Po~(H) restricts precisely to give ~1 on 
PI(H), we have (]f)*(~)=f*(~0 showing that the maps (3.4) and (3.5) do indeed 
coincide. 

Letting 2 k denote the restricting of the map 2 to the k-th components, we have 
the following connection between the Segal and 't Hooft maps: 

Lemma (3.6). We have a homotopy commutative diagram 

a~(s ~) 

4" Ok C~(R )---~mk----/gk 
where i k is the inclusion map. 

Proof In more concrete terms we have to show the following. If 
= (a 1 ... . .  ak)~ Ck(R4), let ~b~ :$4-~S 4 be the Segal map and let L :S*~Pk(H) be the 

map (3.2) used in the 't Hooft construction. Then we have to show that, up to a 
* ~ and f*(~k) naturally isomorphic. standard homotopy, the connections ~b~ (1)  are 

But this follows at once from the commutative diagram 

4 f~ 
S ----+ Pk(H) -- Pk - 2(H) C Pk(H) 

k 

where Pk_2(H) is the subspace given by w 0 - ~ wi=0, e is the homotopy 
equivalence given by i= 1 

~(1, wl, w2 . . . . .  w~) = ~ w~ 

and we take ~b~ in the form 
k 

~(u)= 2 (u- a,)-l. 
i = l  

Lemma (3.6), combined with the Segal Theorem (3.3), already shows that for 
k >> q, that part of Hq(Cgk) which is in the image of 2 k comes from Hq(Mk). In order to 
refine this to get Theorem (3.1) we need a well-known result connecting (23(S 3) 
with O4($4), namely 

Lelnma (3.7). ~3($3) is homotopicalIy a direct summand of Y24($4). More precisely 
the suspension map ~3($3)-~O4($4) is homotopieally a right inverse to the map 
f2¢(S*)~E24(BSU(2)),.~f23(S3) of (3.5). 

Proof For any G there is a natural map of its suspension SG into BG and the 
composition 

G-~(SG)~(B6) 
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gives the natural homotopy equivalence G ~ f2BG. Taking G = SU(2)= S 3 gives 

S 3.-+O(S4)--.Y2(BSU(2)). 

Now apply £2 3, i.e. take maps of S 3 into the sequence, and the Lemma follows. 

Remark. As the proof shows this Lemma uses the accidental fact that the sphere S 3 
coincides with the Lie group SU(2). It is therefore closely tied to the particular 
dimensionality of our spaces, and the fact that R4= H is the field of quaternions. 

As we have already noted the homotopy equivalence 

Y2*(BG) ~ Y23(G)~(G) 

of (2.3) coincides with the second map in (3.5). Hence (3.7) tells us that 
f23($3)~£24($4) is a right homotopy inverse to 2:£24($4)~c~. Now it is an easy 
property of the Segal maps ~b~ that they commute with suspension, i.e. that we 
have homotopy commutative diagrams 

Ck(R ~) ~ , £2~(S") 

Ck(R"+ I) "~k  1(S'+1) 

where o- is suspension and i is induced by the inclusion R"C R ~÷ ~. Combining this 
diagram for n = 3 with that of (3.6) and the result of(3.7) we get finally a homotopy 
commutative diagram : 

Q(R 3) ~O~(S ~) 

Ck(R 4 ) ....... , f2~($4). 

In particular, the top part of the diagram shows that the map ~3;Ck(R3)--~3(S3 ) 
factors homotopically through M k. By Segal's theorem (3.3), qS~ induces isomor- 
phisms in Hq provided k>> q. It follows that 

Hq(M~)-~Hq(~(S3)) ~ H J k )  

is projection onto a direct summand, which proves Theorem (3.1). 
Segal's theorem (3.3) asserts that we have isomorphisms in Hq for k>_ ko(q). The 

same lower bound ko(q) then works in Theorem(3.1). For q = l ,  H I is the 
abelianized fundamental group rc 1 and 

rq(Ck(R3)) ~ L~ 

since the covering space Ck(R 3) of ordered k-tuples is easily seen to be simply- 
connected. Hence, for k>=2, H 1 is of order 2 and so ko(1)=2, i.e. 

H I ( M k ) ~ H I ( W k ) ~ Z 2  
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is projection onto a direct summand for k>  2. Similar explicit results for Hq (q > 1) 
depend on calculating the homology of the configuration space Ck(R3). Some 
results in this direction will be given in the next section. 

A significant feature of Segal's theorem (3.3) is that we cannot replace 
homology by homotopy. This is clear by looking at fundamental groups, since (for 
n>3)  

In fact the whole point of theorems of this type is precisely that the fund~tmental 
group is essentially killed but that homology is preserved. Now we have shown 
that M k lies between Ck(R 3) and 3 3 t? k (S),  but at present we do not know which 
space it resembles most. It seems more likely that M k has a small fundamental 
group and resembles t23($3). This is compatible with the slight evidence so far 
available since dimension counts show that the 't Hooft  solutions fail to fill up M k 
for k>3 ,  whereas Hartshorne [14] has shown that they give all of M k for k=<_2. 
Note that k = 3 is precisely the value at which Ek becomes larger then Z 2. 

§ 4. The Dirac Operator 

In this section we shall study the (massless) Dirac operator on S ~, coupled to a 
gauge field, and we shall show that the analysis of this operator is intimately 
related to the topology of the space C~(G) of (classes of) connections studied in § 2. 
We shall deal in detail with the case when G = SU(2), using the results of § 3, but the 
general discussion will apply to any G. 

We recall first that the Dirac operator on S 4 acts on spinor fields interchanging 
positive and negative (helicity). We denote by D the Dirac operator on positive 
spinors: its adjoint D* is then the Dirac operator on negative spinors. More 
generally, if P is a principal G-bundle on S 4 with connection A and if 0 : G ~  U(n) is 
a unitary representation of G, we can extend D to an operator D A acting on 
positive V-valued spinors, where Vis the C"-bundle associated to P by 0. This is D 
"coupled to A". 

We shall be particularly interested in the null space Ar a = ~r(Da), i.e. the space 
of solutions of the equation DAu = 0. Since D A is elliptic and S 4 is compact the 
space ~/'A has a finite dimension say r A. Replacing D A by its adjoint D* gives 
similarly a space At(D*) with finite dimension say s a. We now recall that by 
definition, the index of the elliptic operator D A is given by 

index Da = dim Y(DA)-- dim ~Ar(U*) = r A - s A . (4.1) 

The significance of the index is that it is invariant under perturbation. Thus 
index D A depends only on the isomorphism class of the bundle P and hence on the 
integer k, which classifies P as in § 2. In fact the index theorem of [9] shows that 

index D A ----- if(k), (4.2) 

where O(k) is a certain multiple of k depending on the homomorphism 0: for details 
see [8]. 
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If A is a Yang-Mills minimum, i.e. A~Jgg(G) in the notation of §2, then as 
shown in [8] we have a "vanishing theorem", namely for k > 0. 

Y ( D ] ) = 0 .  (4.3) 

Thus s A =0  and so r a =Q(k) is constant for all A~Ifk(G ). Dividing by the group fqk 
of gauge equivalences we then get a vector bundle N over the quotient space 
Mk(G), with fibre C ~(~). As we shall see shortly, for G = SU(2), this vector bundle N 
is topologically non-trivial. In other words, not only does the topological invariant 
k describe the number of independent solutions of the Dirac equation coupled to 
instantons, but the global variation of these solutions over the space of instantons 
is related to other topological invariants of the space Cgk(G ). 

We now take G = SU(2) and Q : SU(2)~ U(2) the inclusion. In this case ~o(k)= k 
in (4.2) (see [8]). Moreover if we use only the 't Hooft connections defined by 
configurations of k points a 1,... , a k of R 4 one can show explicitly that the solutions 
of the corresponding Dirac equation have a natural basis e 1 ... . .  % each e i being 
correlated with a point a i (a proof will be given in § 5). In terms of the bundle N this 
can be reformulated as follows: 

Proposition (4.4). Let Ck(R3)--~Mk be the map given by the 't Hooft construction as 
in §2. Then the pull-back of N to Ck(R 3) is isomorphic to the vector bundle 
associated to the standard k-dimensional representation a k of ~rt(Ck(Ra))~--Zk . 

Note. In (4.4) N is naturally (the complexification of) a real vector bundle and the 
isomorphism is over the reals. The real structure of N arises because spinors with 
values in C 2 have a real structure, corresponding to the fact that the representation 
C2®C 2 of SU(2) x SU(2) comes from the real representation 
SU(2) x SU(2)--+SO(4) on R ¢. 

The standard topological invariants of a vector bundle are its characteristic 
classes, namely the Chern classes ci~ HZi( , Z) in integral cohomology and (for real 
bundles) the Stiefel-Whitney classes w ~ H i ( , Z z )  in mod 2 cohomology. Using 
(4.4) the characteristic classes of N can be calculated algebraically from the 
cohomology of the symmetric group. The simplest to calculate is w r Since a class 
in H~( , Zz) is given by a homomorphism rc 1 - ; Z  2 it follows that wl(ak) is given by 
the sign homomorphism Sk-+ { _+ 1 } (or Z2). It follows from (4.4) that wl(N), pulled 
back to Ck(R 3) gives the generator of HI(Ck(R3),Z2) for k>2.  For higher- 
dimensional classes we find in particular the following results which wilt be proved 
in §5: 

Proposition (4.5). Let p be an odd prime, then the bundle on Ck(R 3) associated to o k 
has the followin 9 non-zero classes mod p: 

i) c v_ 1 @0 modp in Cp(R 3), and more generally, 
ii) %p_ 1)@0 modp in C,v(R a) for all n> 1, 

iii) c v_ 1 @0 modp in C,p(R 3) 1 <n<p.  
On the other hand if t < p -  1 we have 
iv) ct-O modp in C,p(R 3) for 1 <n<p.  

Propositions (4.4) and (4.5) show that the bundle N of null-spaces of the Dirac 
operator is highly non-trivial as asserted earlier. 
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So far we have only used instanton connections, since for these we have the 
vanishing theorem (4.3). In fact (4.3) does not hold for all connections. More 
precisely we shall prove 

Theorem (4.6). In each component Cgk(SU(2)) there exist connections A for which the 
space of solutions of the Dirac equation Dau=O (and its adjoint) has arbitrarily 
large dimension. 

It may well be possible, given sufficient ingenuity, to exhibit explicit con- 
nections for which the Dirac equation has many solutions. Our proof will be quite 
different in that topological considerations alone force the existence of such 
connections. Rather surprisingly we shall use the topological non-tri,Aality of the 
bundles N (over Mk) to prove Theorem (4.6). Thus the global behaviour of the 
solutions of the Dirac equation coupled to instantons will force the existence of 
other connections A which are very far removed from being instantons in that the 
null-spaces X(D])  are large instead of being zero. The explanation of this 
apparent paradox is that to prove (4.6) for a given integer k we make use of the 
bundles N over M~CC¢~ for larger values 1. Since cg k,,~cg~ we can homotopically 
transport M~ to ~k, where it will not be related to M k. Essentially the connections 
A of (4.6) will be found on this transported copy M* of M~. If we carry out the 
transportation carefully then the Yang-Mills action on M~' will be approximately 
21 - k (when normalized so that the action of a basic instanton is equal to 1). Thus to 
obtain the connections A of (4.6) we have to consider arbitrarily large values of the 
action. 

As an example if k = 0, so that M o is one point, we can take l = 2. Transporting 
to cg 0 the closed path on M 2 which arises from interchanging the two points in a 
configuration of C2(R 3) we can use the non-vanishing of w 1 to deduce that (4.3) 
must fail for some A on our path. 

In dealing with the family of all D A we have therefore to face the fact that the 
null-spaces Y(DA) have dimensions which jump. We cannot therefore make these 
null-spaces into a vector bundle to obtain cohomological invariants. There is 
however a standard way to get round this problem which we now digress to 
explain. 

First of all in dealing with differential operators (which are unbounded 
operators on the Hilbert space L 2) it is standard to turn them into bounded 
operators by altering the norms (i.e. using Sobolev spaces). In this way elliptic 
differential operators become bounded FredhoIm operators T on a Hilbert space 
H, i.e. they satisfy 

i) dim iF(T) < oo, 
ii) dim Y(T*)  < o% 

iii) T(H) is closed in H. 
The space of all Fredholm operators, denoted by ~ ,  has a metric topology 

given by the operator norm. For any T~ Y its index is [by i) and ii)] well-defined 
and one can show that ~ has one component ~ for each value of the index. More 
generally the homotopy type of ~ is completely known. There is a natural 
equivalence 

~ Z x BU , (4.7) 
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where B U = l i m B U ( n )  is the limit of the classifying spaces of the unitary groups 

U(n). This result is (in a slightly different version) proved in the Appendix to  [2]. 
As a consequence of (4.7) the cohomology of each component of ~- can be 
identified with the polynomial ring in the universal Chern classes Cl, c 2 . . . . .  Hence 
if Ty is a continuous family of elliptic differential operators parametrized by ye  Y, 
we get a map Y--,Y and hence we can define Chern classes in the cohomology of 
Y. If we have Jg'(Ty*)= 0 for all yE Y then these Chern classes coincide with those of 
the vector bundle formed by the null spaces JV'(Ty). Similar results hold for real 
operators, O(n) replacing U(n) and the mod 2 classes w i replace the % 

In our case after factoring out by the gauge equivalences we have the Dirac 
family parametrized by U, hence a map U ~  and classes wi, cl in the cohomology 
of each component U k. Moreover on restricting to M k (cg k we recover the classes 
arising earlier from the bundle N. The classes are essentially independent of k in 
view of the following easy Lemma (proved in § 5). 

Lemma (4.8). The map ( ~ k ' - ~  k given by the fami ly  o f  Dirac operators is (up to 
homotopy) independent o f  k, when we identify U k ~ U o and ~ ~ ~o.  

Having extended our characteristic classes from M k to the whole of Cg we shall 
now use them to prove Theorem (4.6). As a simple illustration of the method we 
shall first prove the partial result indicated earlier, namely the existence of 
connections in Uo for which the Dirac equation has non-zero solutions. Assume 
the contrary then J / (DA)=0 for all A~U o. Hence the (real) Dirac family cgo~,~ 
has the characteristic classes of the 0-dimensional vector bundle and so in 
particular w1=0. But in M 2 C U  2 we have already seen that w14=0, giving the 
required contradiction. The proof moreover shows that any circle of connections 
in Uo, on which the generator of HI(Uo, Z2) is non-zero, must contain a connection 
A for which the Dirac equation has non-trivial solutions. 

For the more general case we need to consider the closed subspace ~ , s  of 
consisting of operators T with dim ~ ( T )  > r (and hence dim j~r(T*) > s = r -  k. We 
suppose k__> 0, then a result of Koschorke [16] asserts that ~r ,  ~ has codimension 
2rs and represents the cohomology class X ~'~ given by the determinant 

C r Cr+ I . . . C r + s -  1 . 

Xr,~= cr-1 Cr " . . i 

Cr-s+ 1 Cr 

If now Ty is a family of elliptic operators of index k with dim JV(T~,)< r for all ye  Y, 
the image of the map Y ~  does not meet ~ , , s  and so the class X ~'~ goes to zero 
in the cohomology of Y. If on the other hand we can compute the Chern classes for 
this family and show that X ~' ~4 0 we can then argue that the image of Y must meet 
~ " ,  i.e. dim J / (Ty)>r  for some yE Y. 

The strategy of proof of Theorem (4.6) is now clear. We shall use 
Propositions (4.4) and (4.5) to prove that X~'~+O for suitable values of r, s. Given 
any k > 0  and any r > k  we pick a prime p > r  and consider the class X v -  1,p- 1 -k  for 
the family of Dirac operators. By Lemma (4.8) it is immaterial whether we consider 
this in the cohomology of U k or in the cohomology of any other component cg t. We 



Topological Aspects of Yang-Mills Theory 111 

take l = np with n = p -  1 - k, so that 1 < n < p. We now calculate the pull-back of 
y-p-1.p-1-k to C,p(R 3) using (4.4) and (4.5). Reducing modulo p and using iv) we 
get 

oWp- 1,p- 1 -k=(%_ 1)p- 1 -k#g 0 modp by iii). 

This completes the proof of Theorem (4.6) for k>0.  For k < 0  we replace D by D* 
and apply the same argument. 

In view of Theorem (4.6) it is clear that we should consider the stratification of 
the space cg k by the dimension of the null-space of the Dirac operator. Denoting by 
cgr, s the subspace of A of index r -  s = k for which dim ~ / ' ( D A )  > r we have 

(~k =~k'OD(~k+ i'i ~k+ 2'2 D . . . .  

Theorem (4.6) tells us that this descending chain never terminates. Moreover the 
method of proof deafly shows that this stratification has topological significance. 

We return now to the case of a general group G, and a representation 
: G~  U(n). Again the family of Dirac operators gives a map 

Cg(G)--,~ (4.9) 

which gives us Chern classes in the cohomology of (g(G). For G=SU(2) we 
exploited the connection with configuration spaces in order to study the map (4.9) 
and evaluate its Chern classes. In general this elementary approach is not 
available. However, determining the homotopy class of (4.9) is a special case of the 
generalized index theorem of [10]. In fact the case of the Dirac operators is very 
basic and was used in [3] in relation to the Bott periodicity theorems. We recall 
that for the unitary groups Bott's theorem gives a homotopy equivalence 

f2(U)~ Z x BU. (4.10) 

Applying f22 then gives the further equivalence 

f2a(U) ~ Z  x BU. (4.11) 

The main result of [-3] can now be formulated as follows: 

Theorem (4.12). The map C ~ ( G ) ~  9iven by the family of Dirac operators is 
homotopically equivalent to the map f23(G)-,O3(U) induced by the map 
o:G-~ U(n)~ U, where we identify 03(G) with cg(G) as in (2.2) and 03(U) with ~ by 
(4.11) and (4.7). 

If for example G=  U(n) with n large then f23(G) will approximate f23(U) in 
homotopy and homology (up to a suitable dimension) and so the low Chern 
classes of the Dirac family will be non-zero even in the real cohomology of Cg(G). 
They are then comparatively easy to detect as differential forms. The situation of 
SU(2) was more difficult and subtle because there the Chern classes were of finite 
order and had to be computed in the cohomology mod p. 

As an application of Theorem (4.12) let us take G = SU(2) again but now we 
take ¢ :SU(2)~U(m+ 1) to be the m-th symmetric power representation cr". 
Cohomological calculations using (4.12), which will be carried out in § 5, lead to 
the following: 
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Proposition (4.13). Let fm(t ) = 1 + ~ cit i be the formal power series givin9 the Chern 
2=1 

classes of the Dirac family for G = SU(2) and ~ = cr m. For m = 1 put f l ( t )= f(t). 
Then f,, is determined from f by the formula : 

fm(t ) = (f(mt))m(f((m_ 1)t))2(m- 1)(f(( m _  2)t))3(m- z)... (f(t))m. 

If we pull back to the configuration space C,p and work with modp  
cohomology then (4.4) and (4.5) tell us that the first non-vanishing coefficient in 
f ( t )  (excluding the constant term 1) is %_ 1- From (4.t3) it then follows that the first 
possible non-vanishing coefficient in fro(t) occurs in the same dimension and is 2,, 
times the corresponding coefficient of f ( t )  where 

2,, = m p + 2 (m-  1) p + 3(m-  2F + ... + m p 

- m + 2 ( m -  1)+ 3(m-2)  + ... + m  modp  

. 0  modp, if p>>m. 

It follows that, for p>>m, the Dirac family for ~o=a m gives rise to Chern classes 
which satisfy i) and iv) of (4.5). As will be shown in § 5 these then imply ii) and iii) of 
4.5. The same argument as before then proves: 

Theorem (4.14). Theorem (4.6) also holds for G=SU(2)  and all representations 
Q=~m. 

Finally we should point out that the results in [2] also enable us to refine (4.12) 
by its real analogue. For this we need Q:G-~Sp(n) to be symplectic [e.g. if 
G = SU(2), e = o-" with m odd] and we use the real version of (4.1t), namely 

O3(Sp) ~ Z x BO, 

where Sp and O denote the unions of the finite-dimensional symplectic and 
orthogonal groups under inclusion. 

§ 5. Deferred Proofs 

In this section we give the technical proofs of results stated and used in the 
previous section. We begin by discussing the solutions of the Dirac equation for 
the SU(2)-connection associated to a configuration of k points a 1 . . . .  , a k of R 4. We 
have to show that there is a natural basis el, . . . ,e k of the solutions with e~ 
corresponding to a~. This can be verified explicitly in a variety of ways. In the 
atgebro-geometric interpretation given in [11], instantons correspond to certain 
algebraic vector bundles E over complex projective 3-space P3. The instantons 
associated to points at , . . . ,  a k (and ak+ 1 = co) give a bundle E, such that the twist 
E(1) has a section s vanishing on the lines A t . . . .  , Ak+ 1 defined by the a i. Moreover 
the solutions of the Dirac equation correspond to the sheaf cohomology group 
Hi(P3, E ( -  1)). This cohomology group can be computed from the exact sequences 

0-*(9(-  2)&E( - 1)-. J r - + 0  

O ~ J r ~ g ~ 6 r ~ O ,  
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where (9 is the sheaf of holomorphic functions, F = A 1 k)A2 u . . ,  W A k + 1 is the curve 
made up of the projective lines A~, J r  is its ideal sheaf and s is defined by  the 
section s. Taking cohomology and using the fact that all the sheaves (9(k) on P3 
have zero H 1 and/_/2, we find 

Hi(P3,  E ( -  1)) ~ Hi(P3,  J r )  ~- Coker {H°(P3, (9)-*H°(F, (gr) } . 

This shows that H~(P3, E(-1))  is naturally the quotient of the (k + 1)-dimensional 
vector space having one basis vector e~ for each line A~ by the one-dimensional 
space spanned by Ze~. If we fix Ak+ 1 (corresponding to ak+ t = oo) this shows that 
e 1 . . . .  , e k give a natural basis. In the first instance all vector spaces are complex but 
E has a real structure which makes all the above isomorphisms compatible with 
complex conjugation. Thus e I .. . . .  e k also give a basis for the real solutions of the 
Dirac equation. 

Note that in these calculations we have for simplicity (and in conformity with 
§ 3) normalized out the "weights" 21 .. . . .  2 k attached to the points a 1 . . . .  , a k. 

We come next to the proof of Proposition 4.5, which involves the cohomology 
of the configuration space C k = Ck(R3). Since this space is the quotient of the space 
Ck= Ck(R a) of ordered configurations by the symmetric group Z k we first need 
information about the integral cohomology of Ck as a module over Z k. Results 
along these lines can be found in [12] but we shall give direct proofs. 

Lemma (5.1). i) H*C k is torsion free. 
ii) The PoincarO polynomial o f  H*C k is (1 + t2)(1 + 2t2)... (1 + (k-1)t2). 

(Recall the Poincar~ polynomial o f  a graded abetian group A is ~ air i where 
a i = rank Ai. ) ix o 

Proof. Following Arnol'd [1] consider the map Ck~Ck_l defined by taking the 
first k -  1 points of the ordered configuration. This is a fibration, where the fibre 
over the point (x~ ...... Xk-1) is R a -  {x I ..... xk-1}" This fibre, F, has the homotopy 
type of a bouquet of k - 1  two-dimensional spheres. It follows by induction that 
H2i - lCk_  1 =0  and so the spectral sequence of this fibration is concentrated in 
even dimensions and therefore collapses. We deduce that H*C k is isomorphic as a 
group to H * F Q H * C  k_ 1. By induction it follows that H*C k is torsion free. If we 
write pr(t) and pi(t) for the Poincar6 polynomials of H*F and H*C l it also follows 
that pk(t)=PF(t)Pk_ 1(0" NOW pF(t)= (1 + ( k - t ) t  2) and the proof of ii) is completed 
by induction. 

We will describe the structure of H*C k as a Zk-mOdule in terms of a basic (k- 
module M k. By definition M k is the highest cohomology group of C k, 
M k = H2(  k -  1)~k" 

Let c~ be a partition of the integer k, that is ~=(k~,...,kr) where the k i are 
integers such that k~ + ... +kr=k .  Then define M~ to be Mk~® ... ®Mk~, Z~ to be 
2:k, X ... X Zk~ and i ~ : Z ~ Z  k to be the inclusion. Then M~ is a Z~-module and we 
may form the induced Zk-module i~,M~. 

Lemma (5.2). As a Zk-module H * C  k ~ @ i~,M~ where ~ runs through all partitions 

(k 1 . . . .  ,kr) o f  k. The grading H of  the term i~,M~ is 2(k-r) .  
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Proof Let K denote the set { 1, 2 .. . . .  k} and, for any subset S of K, let E(S) denote 
the space of embeddings S ~ R  3. Then E(K) = Ck. For  any partition o- of K into 
disjoint subsets (K 1 .... ,K~) put E(a)=lTE(Ki). Then there is an obvious map 
2~:E(K)-+E(a). If we pick an ordering of the K~ we can define a map 
#~ :E(a)-~E(K) by identifying the i-th copy of R 3, occurring in E(a), with the strip 
i -  1 < y l  < iin the R 3 occurring in E(K) (ya, Y2, Y3 being the standard coordinates). 
The composition 2~po is homotopic to the identity and so the cohomology of E(a) 
appears as a direct summand of that of E(K). If z = (J1 ..... J~) is another partition 
of K the non-empty intersections K/~Jj define a partition az. There is a map 
2~, ~: E(o-)~ E(o-z) defined on each factor E(Ki) using the partition of Ki given by the 
non-empty intersections K~J j .  Similarly, if we pick an ordering of the K~ there is 
a map #o,~ :E(az)~E(z) whose component in the factor EUj) is defined using the 
partition of Ji given by the non-empty intersections Ki~Jj, with the induced 
ordering. The commutative diagram 

E(a) u~ ,E(K) 

shows that 2~#~ factors through E(az). Consider now the case r = s. Then by 5.1 the 
top-dimensional cohomology of E(o-) and E(z) is in dimension [cr[ = 2(k- r ) ,  while 
that of E(az) is in dimension [az[. If a # z then az is a strict refinement of o- and so 
]o-r[ < ja]. Hence 2~#~ induces the zero homomorphism on H I~1. It follows that 

2* : @HI~I(E(a))~ H*( E(K)) (5.3) 

is an embedding onto direct a summand. But from (5.1), we can compute the ranks 
of these groups : 

rank H*(E(K)) = k ! 

rank HI~I(E(a))= (k 1 - 1)!(k 2 - 1)! ... (k r - 1)!. 

The fact that every permutation has a unique expression as a product of cycles 
leads to the identity: 

k! = ~ ( k  1 - 1 ) ! ( k  2 - 1 ) ! . . . ( k , - 1 ) !  
G 

from which we deduce that (5.3) is an isomorphism. Finally we consider the action 
of the symmetric group Z k on the terms in (5.3). S k acts on the partitions a of K 
with orbits corresponding to the partitions a of the integer k, and isotropy groups 
Z~. Thus the left-hand side of (5.3) is just @i~,(M~) and so the proof of our 
Lemma is complete. 

Lemma (5.2) enables us to compute the cohomology of X k with H*(Ck) as 
coefficient module. Recall first that 

H~(Zk, i~,(M~))_~ H~(S~, M~) 
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and hence, for s > 0, it is annihilated by a power of the order of Z~. In particular if 
k -- p is an odd prime, and if e is not the trivial partition k, the order of N~ is prime 
to p and so 

HS(Sk, i~.(M~))v = 0 (5.4) 

where ( )v denotes localization at p. From (5.2) we see that only the top- 
dimensional cohomology group H 2(v- 1)(~p) corresponds to the trivial partition 
and hence 

Hs(S,p, Ht(Cp))p=O for O<t < 2 p -  2, s>O. (5.5) 

For s = 0 the groups HS(Zp, Ht(Cp)) vanish for odd t and are torsion-free for 
even t. The Hochschild-Serre spectral sequence for the covering Cp~C v then 
shows that we have an exact sequence 

0-~H2p- 2(~p) -~H2p- 2(C,,)p--,H2P- 2(dp)p 
and hence 

H 2p- 2(Zp)p maps isomorphically to the torsion subgroup of H 2p- 2(Cp)p. 
(5.6) 

Now Zp is the p-Sylow subgroup of Sp and hence detects its p-primary 
cohomology. In fact H*(Zp) is generated freely by a class u of order p in H 2 and 
H*(Sv) v can be identified with the subring generated by U p-1. Moreover the total 
Chern class of the standard representation av, restricted to Zp, becomes 

c(ap) = (1 + u)(1 + 2u)... (1 + ( p -  1)u) 

=(p--  1)! u p-1 = _uV-1 

Combined with (5.6) this shows 

ct(ap)=0 in (H2t(Sp))p for t < p - 1 ,  (5.7) 

cv_l(ap) gives a generator of the torsion subgroup (Zp) of HzP-2(Cp(R3))p. 
(5.8) 

Passing from integral to modp cohomology (5.7) and (5.8) give the n = 1 case of 
(4.5). To deal with larger values of n we use the map 

(C y-~C.  v 
corresponding to the map 2, (for ordered sets) where a is the partition of { 1,..., np} 
given by n blocks of p integers. On fundamental groups this induces the inclusion 

(Sp)"--, S.p. 
Since the standard representation a,p restricts to apO ... Oap its total Chern class 
c(O-,e ) restricts to c(av)®... ®c(a v) in H*((Sv)" ). For the corresponding bundles 
V,p, Vp on C,v, C v the same formula holds. Hence c,(p_ 1)(V,,p) restricted to (Cp)" 
contains the class cp_ l(Vp)® ... ®cp_ I(W). 

Reducing modulo p this shows that i) implies ii) in (4.5). Similarly c" v_ ~(V,v ) 
restricted to (Cv)" contains the term n!cv_l(Vp)® ... ®Cp_l(V v) and so for n<p 
this is non-zero modp, proving iii). 
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It remains to prove iv) for 1 < n < p .  But for n < p , Z ;  is a p-Sylow subgroup of 
S~p and hence the p-primary part of c(a~p) is determined by its restriction to Z~, 
namely by c(%)® ... ®c(o-p) in H*((Zp)"). Since C(ap) = 1 - u p-  1 the first non-zero 
class in the tensor product is cp_ 1 and so iv) is established. 

Next we come to the proof of Lemma (4.8). Since both ~ and ~- have 
homotopy composition laws it is enough to prove that the map G°-*~ - given by the 
Dirac family is compatible with these compositions. Actually it is convenient to 
use the direct sum operation which clearly gives a commutative diagram 

cg(SU(2)) x cg(SU(2))--* °~ - x @ 

l" l 
cd(SU(4)) + ~  

In addition we have a homotopy commutative diagram 

~(SU(2)) × ~(SU(2)) 

~(s u(2))--w-.~f(s u(4)) 

where c~ is again the direct sum, fl is composition and 7 is induced by the inclusion 
SU(2)~SU(4). If we replace ~(G) by its homotopy equivalent f23(G) the homotopy 
c~ ~ 7fi arises from the well-known (rotation) homotopy between A @B and A B O  1 
as maps from SU(2) x SU(2) into SU(4). 

Putting together our two diagrams we conclude that ~(SU(2))~ff  is com- 
patible with composition. 

Finally we come to the proof of Proposition (4.13). Using Theorem (4.12) we 
see that we have to compare the two maps 

f23(SU(2))~f23(U),-~Z x B U  

given by a m and o -a. Taking Y to be any compact subspace of f23(SU(2)) it is 
convenient first to relate the two elements u m and u in K(Y) given by the maps 
Y ~ Z  x BU.  The element u is related to the 2-dimensional bundle ~ on S4x Y 
[defined by Y--*g23(SU(2))~24(BSU(2))] by 

fiZ(u) = ~ -  2, 

where f12 is the (iterated) Bott periodicity isomorphism 

K ( Y ) - + K ( S  ¢ x Y, oo x Y) .  

Similarly u m is given by 

fi2(u,~) = ~rm({)-- (m + 1). 

Using these two formulae we propose now to express u,, directly in terms of u. For 
this we introduce the Adams operations tp" (see [2]) which are expressible in terms 
of the er" by a polynomial formula: 

,4>,, = mare + composite terms. 
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Since composite terms vanish on a suspension this gives 

wm/~ = mGm/~. 

But tpmfi = mflq/" and since the algebra of operations in K-theory is torsion-free [2] 
we can cancel by m and deduce 

Iterating this once gives 

ffrnfl2=mfl21pm o r  ~-zG'~Z=mw". 

Returning now to our formula for u m we put t /=~-2=f lZ(u)  and expand 

a'(¢) = am(r/+ 2) = am(r/) + 2o- m- : (r/) + 3a"-  201) + . . .  + (m + t). 

Thus 

u,, = fi- 2 {am(r/) + 2am- l(r/) + . . .  + rnal(~/)} 

= mtpm(u) + 2(rn- 1)Ip"- * (u) + . . .  + mtp: (u). 

Taking Chern classes now gives the required formula for fm(t) in terms of f(t) in 
(4.13) : we need only recall that the effect of q?" is to replace t by mt and that the 
Chern polynomial takes sums into products. 

§6. Comments and Comparisons 

The main theme of this paper has been to demonstrate the intimate relation 
between the analysis of the Yang-Mills theory (in 4 dimensions) and the topology 
of the associated function space. It may be helpful, therefore, to compare our 
situation with that in some other Lagrangian theories. 

The best understood case is that of YanglMills theory in 2 dimensions. This 
has been studied in detail, for all closed surfaces, from the point of view of Morse 
theory [5]. In particular when the base manifold is the 2-sphere we get (see [4]) a 
Morse picture which is quite analogous to the classical case of geodesics on G. 
Moreover the Dirac operator can now be interpreted in terms of the Cauchy- 
Riemann operator 3 and the stratification by the dimension of its null-space is 
closely related to the picture of the Morse flow. The analogy with geodesics is tied 
to the fact that both function spaces have here the same homotopy type, namely 
~(G). In both cases the function space is therefore connected (for simple G), unlike 
Yang-Mills over S 4. Also critical points of arbitrary Morse index exist, i.e. the 
Euler equations have solutions which are not minima of the Lagrangian. 

Another case which has been extensively studied is the "non-linear a model" in 
which the Lagrangian is the "Energy" of a map f : $2-~S z. Solutions of the Euler 
equations are called harmonic maps and it is known [13] that the only solutions 
are absolute minima of the Lagrangian and are given by holomorphic maps f (if 
degree f is positive) or anti-holomorphic maps (if degree f is negative). The 
function space [if we normalize f ( ~ ) =  0 say] is ~a(s2) and has components given 
by the integer degree as in 4-dimensional Yang-Mills. Moreover we have the Segal 
map 

Ck(R 2)-~ Mk 
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which assigns to a configuration of points a 1 . . . . .  a k S R 2 =  C the rational function 

1 
f ( z )  = 2 z - -  a i " 

Here M k denotes the space of all rational functions f which satisfy f (oe )=0  and 
have precisely k poles (counting multiplicities). Arguing precisely as in §3 we 

2 2 deduce that, for k>>q, M k ~ f 2 k ( S  ) induces epimorphism in q-dimensional ho- 
mology. Note that, even though M k is a very simple space to describe, its actual 
homology groups do not appear to be known. The analogy with our topological 
discussion of Yang-Mills over S 4 is quite striking. This analogy has also suggested 
that higher critical points of the Yang-Mills functional on S 4 may not exist, i.e. 
that all solutions of the Yang-Mills equations are either self-dual (if k > 0) or anti- 
self-dual (if k N0). As yet this question remains open. 

For this non-linear o- model the only analogue of the Dirac operator is 
associated to a U(1)-gauge theory and has no topological features analogous to §4. 

References 

1. Arnol'd,V.I. : The cohomology ring of the coloured braid group. Math. Notes Acad. Sci. USSR 5, 
138--140 (1969) 

2. Atiyah, M.F.: K-theory. New York: Benjamin 1967 
3. Atiyah, M.F.: Bott periodicity and the index of elliptic operators. Quart. J. Math. (Oxford) 19, 

113--140 (1968) 
4. Atiyah, M.F. : Geometry of Yang-Mills fields. Proc. Intern. Conf. Math. Physics, Rome 1977 
5. Atiyah, M.F., Bott, R.:(to appear) 
6. Atiyah, M.F., Drinfeld,V.G., "Hitchin,N.J., Manin, Yu.I.: Construction of instantons. Phys. Lett. 

65A, 185--187 (1978) 
7. Atiyah, M.F., Hitchin, N,  Singer, I.M.: Deformations of instantons. Proc. Nat. Acad. Sci. 74, 

266~2663 (1977) 
8. Atiyah, M.F., Hitchin, N., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. 

Proc. Roy. Soc. (to appear) 
9. Atiyah, M.F., Singer, LM. : The index of elliptic operators. I. Ann. Math. 87, 484--530 (1968) 

10. Atiyah, M.F., Singer, I.M. : The index of elliptic operators. IV. Ann. Math. 93, 119--138 (1971) 
11, Atiyah, I.M., Ward, R.S. : Instantons and algebraic geometry. Commun. math. Phys. 55, 117--124 

(1977) 
12. Cohen, F.R,  Lada, T.J, May, J.P.: The homology of iterated loop spaces. Lecture notes in 

mathematics, Vol. 533. Berlin-Heidelberg-New York: Springer 1976 
13. Eells, J., Wood, J.C. : Restrictions on harmonic maps of surfaces. Topology 15, 263--266 (1976) 
14. Hartshorne, R.: Stable vector bundles and instantons. Commun. math. Phys. 59, 1--15 (1978) 
15. Jackiw, R., Rebbi, C., Nohl, C. : Conformal properties of pseudo-particle configurations. Phys. Rev. 

D 15, 1642--1646 (1977) 
16. Koschorke, U. : Infinite dimensional K-theory and characteristic classes of Fredholm bundle maps. 

Proc. Symp, Pure Math. 15, 95--133 (1970) 
17. Segal, G. : Configuration spaces and iterated loop spaces. Inventiones math. 21,213--221 (1973) 
18. Singer, I.M. : Some remarks on the Gribov ambiguity. Commun. math. Phys. 60, 7--12 (1978) 

Communicated by A. Jaffe 

Received March 7, 1978 


