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d 2 
Abstract. Examples are presented of potentials V for which - d 7  + V(r) 

in L2(O, Go) has singular continuous spectrum, and the physical interpretation 
is discussed. 

1. Introduction 

Corresponding to the decomposition of a measure # on IR into pure point, 
absolutely continuous (with respect to Lebesgue measure) and singular continuous 
parts, in Quantum Mechanics one has a canonical decomposition of the underly- 
ing Hilbert Space ~ into the direct sum of mutually orthogonal subspaces Mp(H), 
M,.c.(H ) and Ms.c.(H ) [1] defined by the total Hamiltonian operator H. 

In most cases, Mp(H) may be taken to be the subspace spanned by the bound 
states of the system, and M,.o.(H) the subspace of scattering states (i.e. states 
which, in the limit as t ~  -t- oe, are asymptotically far from the scattering centre). 
For a more detailed discussion see [2, 3]. For a potential which is highly singular, 
and which gives rise to absorption at local singularities, M,.c.(H ) may itself be 
decomposed into the subspaces respectively of scattering states and of states which 
are asymptotically absorbed [4]. 

The remaining subspace M~.~.(H) has usually been supposed to admit no 
physical interpretation (see for example [5], p. 23). Indeed, in non-relativistic 
potential scattering theory, considerable attention has been given to the derivation 
of conditions under which Ms.c.(H ) = {0}. From the extensive literature on this 
subject we refer to the work of Weidmann [6] and Lavine [7, 8]. Weidmann has 
proved the absence of singular continuous spectrum for (non-singular) spherical 
potentials V = V 1 + V 2, with V a of bounded variation and V 2 of short range. Lavine 
has proved the same result for potentials satisfying a so called "no bump" 

rdV 
condition ~ ~-r + V< const. (These results apply in greater generality, e.g. to non- 

spherical potentials.) By classical analogy, this condition means that an incoming 
particle will encounter no effective obstacle and will ultimately recede to infinity 
having been scattered by the potential. 

0010-3616/78/0060/0013/$04.80 
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These and other results suggest that one may associate singular continuous 
spectrum with potentials having infinitely many "bumps", provided their height 
does not diminish too rapidly with distance. The present paper is devoted to 
justifying this view by presenting a wide range of potentials giving rise to singular 
continuous spectrum, and, finding a physical interpretation for them. 

It is already known from the inverse method of scattering theory [9] that 
singular continuous spectrum can occur. Aronszajn [10] has constructed an 
example giving rise either to a dense set of eigenvalues or to singular continuous 
spectrum, depending on the boundary conditions. However, in the inverse method 
onearrives at the potential indirectly from the solution of an integral equation. 
One has no control, for example, of the behaviour of the potential for large r, and a 
physical interpretation is lacking. We shall start from the potential and determine 
the spectrum from estimates of the associated spectral function. (For definition 
and properties of the spectral function associated with a second order differential 
operator see [11].) 

Using the Cantor measure [12] as a starting point, Section 2 concerns the 
generation of singular continuous measures from limits of absolutely continuous 
measures; the measures here do not necessarily come from any problem with 
differential operators, though this provides the motivation. The main results are 
Theorem 1 and its Corollary, which are applied in Section 3 to the spectral 
measure corresponding to a potential made up of an infinite sequence of bumps, 
their separation increasing rapidly with distance. The potential is spherically 
symmetric (or one dimensional), bounded, and locally non-singular. It is even 
possible to have lim V(r)= 0, in which case the condition for singular continuous 

r--*  o0 

spectrum is (roughly) ~ 2 oe 9, = , where 9, is the height of the n'th bump. (The 
n =  J, 

shape of individual bumps and the size of "coupling constant" are both arbitrary.) 
This is exactly the condition for the particle, after possibly a large number of 
transmissions and reflections at successive bumps, ultimately with probability 1 to 
be reflected back to a neighbourhood of the origin. Although the particle will 
subsequently be at a large distance from the origin, it will return arbitrarily often. 
(C. F. in the classical theory of stochastic processes [13], the property of 
recurrence.) This semi-classical analogy is justified in Section 4 by an analysis in 
terms of wave-packets. Thus for these potentials giving rise to singular continuous 
spectrum we have the physical interpretation that they are to be regarded as 
presenting to the particle a totally reflectin9 barrier, into which the particle may 
penetrate arbitrarily far but must eventually be reflected. (On a more mathematical 
level, let us note that, for non-singular long range potentials, compactness 
arguments imply [2] that for a state in the continuum subspace to move 
asymptotically, with probability 1, to infinity, one has the necessary and sufficient 
condition w-lime-~mf=O. This asymptotic condition, which follows from the 

t ~ o O  

Riemann-Lebesgue Lemma under the assumption Ms.c.(H ) = {0}, need not apply 
in general. However, for feMc(H), the mean-squared probability of finding the 
particle in any fixed bounded region converges to zero.) 

In Section 5 we present a more general analysis based on the asymptotic 
behaviour of products of transfer matrices. This enables us to construct examples 
of singular continuous spectrum arising from perturbations of both periodic 
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potentials and (highly singular) short range potentials. For example, to any 
Ll(0,oe) potential may be added an arbitrarily small (in the sense of L ~ norm) 
perturbation converting the spectrum from absolutely continuous to singular 
continuous. From the more general point of view of Section 5, singular continuous 
spectrum appears in a wide variety of contexts as a "small" and not particularly 
pathological perturbation of absolutely continuous spectrum. Potentials which 
give rise to this phenomenon are, in some sense, "everywhere dense" in the set of all 
potentials. 

2. Generation of Singular Continuous Measures 

One of the classic examples of a singular continuous measure is the Lebesgue- 
Stieltjes measure generated by the Cantor function [12]. The support of this 
measure is the Cantor set C, consisting of all points x in [0, 1] have a decimal 
expansion to the base 3, 

x : O ' x 1 x 2 x 3 , . . .  , o r  X = 

i = 1  

in which each x i is either 0 or 2. The Cantor Function may be defined on [0, 1] by 
oe Xi  

tp(x)= ~l.= 21+1, xsC, 

and 
1 ~(x)= F~ ~-~+- x¢C, 

1 <=i<n 2n ' 
where n(x) is the smallest integer for which x, = 1 ; ~v is then continuous and non- 
decreasing and generates a singular continuous measure # on the Borel subsets of 
[0, 1]. 

An alternative approach, which we shall adopt, is to define a function f, 
periodic with period 1, such that 

f (x )=  1 0<x_<~ 
--~-0 1 2 g < x < g  

=1 ~_<x_<t. 

Then the characteristic function of the Cantor set is given by 

Z(x) = I~I f(3 k- ix), 
k = l  

and the Cantor function may be expressed in the form 
Jc t/ 

~v(x) = lim S dx H fk(x), 
n~oo O k= l 

where 

fk(X ) = 3f(3k- 1X). 

For any subinterval Z of [0, 1] we have, then, 

#(~) = lim I dx ~ fk(X). (1) 
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There are pitfalls for the unwary ! Note that (1) does not hold in general if Z is an 
arbitrary Boret subset. Moreover, one cannot interchange limit and integral in 
(1), and indeed 

o~ 

I-I fk(x) = co, x ~ C 
k = l  

= 0  x C. 
The idea of generating in this way a singular continuous measure/~ from a 

limiting sequence of absolutely continuous measures may be considerably extend- 
ed. From this more general point of view, the principal properties of the fk which 
we shall retain are 

1 

a) mean (fk)= ~ -  ~fk(x) dx = 1, and 
0 

b) as k ~  oo, the fk oscillate increasingly rapidly. 
(Throughout this paper, means are denoted by bar and complex conjugates by 

star.) 
We shall, however, differ from Cantor measure in that thefk will be taken to be 

continuous (even differentiable) and bounded away from zero, this being more 
appropriate to applications in potential scattering. 

With the above properties in mind we can now state 

Theorem 1. Let the functions f,(k, y) (o: < k < fl, - o0 < y < oo, n = 1, 2,...) be periodic 
in y, with period c, continuously differentiable, and satisfy 

i) f,(k, y) > const > 0, 

1 c 
ii) f-~(k) =- c ! L(k'  y)dy = 1, 

iii) ~ - m,(k) = + Go, ~ ~ k < f l ,  
n = l  

where 

_ _  1 c 

m,(k) = log (f,(k, y)) = c ! logf,,(k, y)dy. (2) 

iv) For N sufficiently large, f,(k, Nk) is an analytic function of  k, a < k < ft. 
Given a sequence {N~}, i=1,2 ,3 , . . . ,  of increasing positive numbers with 

lim N i = oo, define the Lebesgue-Stieltjes measures #, by 
i -~, c o  

n 

#.(x) =5 dk H f (k, N k), (3) 
i = 1  

for every subinterval Z of [~, fl]. 
Then the sequence {Ni} may be chosen such that lira #,(Z)=p(N) exists for 

n--*  c ~  

every subinterval Z of  [a, fi] and defines a singular continuous Lebesgue-StieItjes 
measure on the Boret subsets of [~, ff]. 

The proof is in five stages. 
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Step I. Given any e > 0 ,  3N o (which may depend on n) such that, for every 
subinterval X of [e, fl], 

{f,(k, Nk)dk-#o(X) < ~ (4) 

for N > N o, where go denotes Lebesgue measure. 

Proof. Let g,(k, y) = fn(k, y) - 1, so that  i G( k, y)dy = 0. Choose  N O sufficiently large 
o 

e 
that  x - m a x  IG(k, y)[ <e/2,  and 

0 k,y 

C 
Ikl - k2f _-< No  ~lgn(kl, Y)-  gn(G Y)I < ~ (fl -- ~)--1' 

c 
Now subdivide X into r intervals I i, with #o(Ii)=-N-(i=l,2,...(r-1)) and 

#o(I~) N c/N o. 
(If #o(Z) < c/N, there will be only a single interval.) 
If N > N o, we have 

8 
~ on(k, Nk)dk < 

and 

Ion(k, Nk)-On(k,, Nk)]dk < 2 ( ~ - ~ ) - % ( I )  

provided i < r and k~e I i. 
Moreover ,  

gn(k~, Nk)dk -- gn(k~, y)dy = O, 

so that  summing over all subintervals I~ we obtain 

<_~ 
{ gn(k, Nk)dk = 2 + 2 = ~" 

Step II. Given {N~} (i = 1, 2, .,., n) and e > 0, 3N o such that, for every subinterval X 
of [cqfi], I#n+ l (Z)-#n(Z)l  <~ for nn~ 1 > N  o. 

Proof. 

#n + ~ (Z) - #n(X) = ~ dk gn +1 (k, N~ +1 k) h f~(k, N~k). 
x i=1 

Writing 

d k 
G+ ~(k, Nn+ ~k)= ~ ~ g~+ l(k, N,+ ~k)dk, 
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where i n f r = a l ,  and integrating by parts, the result follows from I, since both 
n d n 

1-[ fi( k, Nik) and ~ y[ fi(k, Nik ) are bounded. 
i = 1  i = 1  

Step 111. The sequence {Ni} may be chosen such that, for every subinterval S of 
[~, fl], #(S)= lira/~,(2) exists and defines a continuous measure. 

t~--+ o9 

Proof From II, we can take each N, +1 sufficiently large (in comparison with the 

Ni for i<n) that the series ~ (#i+~(S)-/h(S)) is absolutely and uniformly 
i = 1  

convergent for subintervals 2;. Hence kt(27) exists, and defines a Lebesgue-Stieltjes 
measure. If we now take n such that [#,(27)-/~(27)1 < e/2, for given e > 0 we can find 
3 > 0 such that #o(27) < 6~p,(27)< e/2 (since #, is absolutely continuous). 

Hence #o(Z)<3~l~(S)<e, and the measure/~ is continuous [i.e. kt([c~, 2)) is a 
continuous function of 2.] 

Step IV Given {Ni} (i=l,2,...,m), and e,c '>0,  3n>m and {Ni} 
(i = m + 1, m + 2, ..., n) such that 

#° {k; ~I fi(k'Nik)>c'} (5) 

Proof Let h.(k,y)=logf.(k,y)=log(l+g.(k,y)), so that from (2) we have 
h.(k) = rn.(k), First observe that from the inequality 

log(1 +x)__<x ( - l < x < o o )  (6) 

we have 

h.(k, y) ~ gn(k, y), (7) 

so that i i )~h.  = m. < O. 

Since the mi(k) are continuous, iii)=~ ~ -mi(k)= + oe uniformly in k, by a 
i = l  

compactness argument. So without less of generality we can assume 

- m i (k  ) > const > 0 .  
i = m + l  

We further take n sufficiently large that 

(c) 
± mi(k ) < log (8) 

/ = m + l  

where 

M = sup I~I f~(k, Nik ) . 
k i = 1  
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N o w  

P°{k ;h f~ (k 'N ik )>c ' }<P°{  i=m+lh f~(k, gik)>c' /M} 

=/~o k; h~(k,N~k)>log--~ <1~o k; h~(k,N~k)>½ m,(k) 
i = m +  1 i = m +  1 i = m +  1 

(hi(k, glk) - mi(k)) fl 
<-- ~ dk l j= - - - - - g - - - - - - q s -  J -I. (9) 

Wri t ing h2(k)= h2(k, y)dy, we have 

h~(k, Nik ) = h{(k) + [h~(k, Nik) - ~(k)]dk, 

and as in I I  above  we m a y  integrate by parts  to show that, for large {Ni} (i = m + 1, 
m + 2 . . . .  , n), and  fixed n, 

/I ~' h~(k'Nik)]l 

a ~ [1 i = m~+ 1 /~i(k)] / 

becomes  arbi t rar i ly  close to 

, /[ i \ 
d ii=m+ 1 J 

~1½ Z m,(k)]/. 
\L ~=,,+1 t /  

[Note  that  the mi(k) are cont inuously  differentiable.] Integrat ing with respect to x 
the inequali ty 

l o g ( l + x )  < x .... 

( l + x )  = ( l ÷ x )  

we have 

[log(l+x)]Z<=2[x-log(l+x)] ( 0 < x <  oo), 

which for x > const > - 1 implies, for some K > 0, 

[log (1 + x)] z < K [ x -  log (1 + x)] .  

Hence  [hi(k, y)]2 < k[gi(k, y) _ hi(k ' y)], which 
becomes 

h~(k)< -Kmi(k  ) . 

on integrat ing with respect  to y 

(10) 
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We take n sufficiently large that 

• dk i= 1 2 

a lIli=~m+lmi(k)] 1 i=m+l ~'~, mi(/g) 

< e/4, 

and the {N~} (i = m + 1, m + 2 . . . .  , n) sufficiently large that 

g 
< ~ + ~ = e/2. 

/ ~ h2(k, Nik)\ 
P U =m+l l - - ~ - ~  

\L ,=m+~ J / 

In the same way we can take each N~ sufficiently large, in comparison with the 
preceding {N j} that 

!dkf  l Eh, k N k, mi k'j 2 

becomes arbitrarily small, and each N~ sufficiently large that 

~ [ -  2m,(k)(hi(k, Nik)- mi(k)) ] 

U 
- ~  

has an arbitrarily small upper bound. Bounding these terms by e/2 we have finally, 
for suitable {N~}, 

#o {k; FI y~(k ,  <~/2+e /2=e .  

Step V. The measure/~ is singular, for suitable {N~}. 

Proof Given e > 0, let 

S~ = k, Nik ) > e , 

I 
and use IV above to choose {N~} (i= 1, 2, ..., n) and n such that #o(S~)<e. 
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n 

Since iv)~  I-[ f~(k, Nik ) is analytic, the equation ( I  f~(k, Nik ) = e/(fl- ~) is either 
i = l  i=1  

an identity or is satisfied at only a finite number of points, so that S~ consists of a 
finite number r of intervals. (This is the only use of analyticity in the proof of the 
theorem.) In choosing {Ni} for i>n, use III above to ensure that, for every 
subinterval Z of [c~, fl], t#,(Z)-#(Z)[ < e/r. It follows that I#,(S~)-#(S~)I < e. 

Again, 

/zn(s~) =/z.([~,/~]) - / z .  k, N~k) < >/z.([~,/~]) - e 

on using (3). 
Hence/Z(S~) >=/Z([a, f l ] ) -  35. 
Continuing in this way, we may choose the {Ni} such as to construct a 

sequence {St} of subsets of [a, fl], with e~0,  for which lira/Zo(S~)=0, whereas 
e- '0  

lim/Z(S~) =/Z([~, fl]). 
e-*0 

It follows that /Z is singular with respect to Lebesgue measure, and this 
concludes the proof of the theorem. 

It will be noticed that the proof of Theorem 1 has somewhat a probabilistic 
flavour. For large Ni, hi(k , Nik ) behaves in many respects like hi(k, u), where u 
represents the value of a random variable uniformly distributed in an interval of 
length c. For large N i and Nj/N i the "independence" of hi(k, Nik) and hj(k, Njk) 
then follows from Riemann-Lebesgue type arguments and Step IV follows the 

standard proof of the weak law of large numbers to show that ~, h, = - oo "with 
n = l  

probability one". The singularity of/Z is a consequence of the fact that, whereas 

(If i(k,  Nik ) converges to zero in Lebesgue measure as n ~  o% the limit vanishes 
i = 1  
only on a set of/z-measure zero. (For convergence in measure and related concepts 
see [14], Chapter 7. Convergence in measure implies the existence of a sub- 
sequence converging almost everywhere.) 

The nature of the measure /Z may also be determined in the case 

~ - m , , ( k )  < Go. We assume the convergence to be uniform, and retain all other 

n = l  in I 
conditions of Theorem 1. In that case fi(k, N i k) is found to converge to a finite 

i = l  
but non-zero limit both in Lebesgue measure and in/z-measure. We omit detailed 

proofs and observe only that (again for suitable {N~}): ~, -m,,(k)<oo=~/z is 
n = l  

absolutely continuous. Thus we have identified a "borderline" between absolute 

continuity and singular continuity. (By taking ~ - m , ( k ) < ~  and 
/ 

\ n = l  

~ - r a n ( k ) =  corespectively for k in disjoint subsets of [a, fi] we can arrive at a 
n = l  
more general class of measures which may include both a singular and an 

absolutely continuous part.) 
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Some of the various possibilities which may occur are illustrated in the 
following example, for which the f~(k, y) are taken not to be explicitly dependent 
o n  k :  

Example. Let 

#~(X)= j" dk [I (1 +gisin(Nik)), 
2 i = 1  

and assume 0<g i<  1, lira g~=O. 

Define #(Z)= lira #,,(X) for subintervals of [0, 1], say. 

Then, provided the N~ increase sufficiently rapidly (in a manner defined more 
precisely by the proof of Theorem 1), it follows that 

i) ~ g2 = oo~p is singular continuous. 
n = l  

ii) ~ g2 < ~ #  is absolutely continuous. Moreover, 
n = l  

iii) ~ g, < ~ #  is absolutely continuous for every sequence {Ni}, the infinite 
n = l  

product 

FI(1 + g~sin (Nik)) 
i = 1  

then being botbabsolutely and uniformly convergent. 
Theorem 1 may be generalised in various ways for example by weakening the 

regularity assumptions on the Jl; however condition iv) is found to hold in most 
applications to potential scattering. A more useful generalisation, which will be 
needed in Section 3 is to allow fi to depend explicitly on {Ni} for j < i. This gives 

Corollary to Theorem 1. Let thefunctionsf,(k; y ;Nj ;N 2 ;... N,_ 1) be periodic in y, 
with period c, and for fixed {Ni} be continuously differentiable in k and y and satisfy 
i)-iv) of Theorem t, where i) holds uniformly in the {Ni} (as well as in k, y) and m,,(k) 
is assumed independent of the {Ni}. Define a sequence of measures #, by 

n 

#~(Z) = J" dk 1] f~(k, Nik; N~, N2,..., X~-1). (3') 
X i = l  

Then the conclusion of Theorem 1 holds. 

Proof Follows closely the proof of the theorem. 

_ d  2 
3. The Spectral Function of ~ + V in L2(0, oo); Examples of Singular 

Continuous Spectrum 

We consider first a potential V(r) vanishing except on an infinite sequence of 
intervals of length a, on each of which Vis given by some prescribed L 1 function W. 
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Let {Ni} ( i=1,2,3, . . . )  be the separation between 
suppose that 

V(r) = O, 0 < r < at, ] 

= W ( r - a i ) ,  a i<r<b i (i= 1, 2, 3, "") l ' 
= 0 ,  bi<r<ai+ ~ ( i=1,2 ,3  ....  ) 

where 
i 

a i = ( i -  1)a + ~ Nj 
j = l  

and 

i 

b~=a+a~=ia+ ~ Nj 
j = l  

consecutive intervals, and 

(11) 

. (12) 

Here Wand a are given and the sequence {N~} is to be chosen. Setting W(x)=_O for 
xe(0,a)  we have, then, 

v(r )= ~ W ( r - a , ) .  
i=1  

d 2 
The spectral function Q(2) of the differential operator - ~gr2 + V(r) in [0, o0), 

with the boundary condition qo(0) = 0, defines a Lebesgue-measure # which may be 
derived from the limit, as n +  0% of the measure v, corresponding to the same 
differential operator in the interval [0, a,+ 1] [with boundary conditions qS(0)=0 
and qS(a,+,)=0 say]. 

Restricting attention to subintervals 2; of (0, oo), in which case/* will be found 
to be continuous, we have 

/,(2;) = lim v.(Z). (13) 
n--+ o0 

For given N1,N2, . . . ,N,, and in the limit N,+l--,oo , v,(2;) itself approaches 
d 2 

#,(2;), the measure derived from the spectral function of - 7Zr2 + V,(r) in [0, 00) 

with boundary condition 4)(0)= 0, where 

V.(r) = V(r), 0 < r < b. 
= 0 ,  b,<r<ooJ" (14) 

Since #, is continuous (on IR+), for given N1, N2,..., N n the convergence ofv,  to 
p, is uniform over subintervals 2; of any fixed finite interval, and by successively 
choosing the N,+ 1 sufficiently large such that 

1 
Iv.(2;)-/*.(z)I  < - 

Yt 

for subintervals of [n-1, n] we can ensure that (13) implies 

/,(2;) = lim/*,(S) (t5) 
n--+ co 

for finite subintervals of IR + not having the origin as endpoint. 
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For k > 0, let q~(r;k) be the solution of 

- 4/'(r; k) + V(r)~(r; k) = k2~(r; k) (16) 

subject to the initial conditions 

~(0; k) = 0  ~ (17) 
4'(o; k)= 1j 

and define R(r; k) and O(r; k) by 

q~ = k-  1Rcos 0 l (18) 
~ = R s i n  0 

with 0 = r~/2 when r = 0. 
More exactly, 0=tan-l(~a'/k~o) is determined by the equation 

dO 
- k+kV4)2 /R  2 

dr 

and we can write 
r 

O(r) = (re/2) - kr + S (kV42/R2)  dr" 
0 

dO 
We shall have occasion to use the result dr  = - k  wherever V(r)=0. R(r) is most 

easily determined from the equation R 2 =(q~,)2 +kaq~2. 
For 2 > 0 we set 2 = k 2 and 

O,(k) = O(b n ;k) ~ (19) 
R~(k) = R(b~ ; k)J" 

The spectral function G(k) associated with the absolutely continuous measure 
/4 is determined by the asymptotic behaviour, as r-+ oo, of solutions ~,(r; k) of the 
equation. 

- ~"(r ; k) + Vn(r)~p(r ; k) = k2(r ; k). (20) 

With the initial conditions tp(0; k)= 0, V,'(0 ; k)= 1, (14) implies 

~p(b.; k) = ~b(b.; k), 

to'(b, i k) = qS'(bn ;k). 

Moreover, (,p,)2 + k2~p2 =const  for r>=b,,, and using (18) and (t9) we have the 
asymptotic behaviour 

R~(k) 
,p(r; k) = T sin (kr + a,(k)) + o(1) 

as r-+ oo, from which may be deduced 

dG(k) 2k2 (21) 
dk =[R.(k)] 2 
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(6n is determined by the equat ion 

kb, + 3, = 0n(mod 2~)). 

Hence,  

2k 2 
/z.(Z) = ! n[R.(k)]  2 dk. 

We shall evaluate the r.h.s, by relating R n to 
solut ion 0 of  (16) and (17). 

dO 
N o w  d:r = - k, (b._ 1 < r < b,,), so that  

O(a.; k) = O(b._~ ; k) - N . .  k = 0._ t(k) - N . k .  

dR 
Again -dr  = 0, (b._ i < r < b.), so that  

R ( a .  ; k) = R ( b . _  i ; k) = R . _  1 (k).  

We have then, 

~b(a. ; k) = k -  1R n_ 1 (k)cos (O n_ l(k) - N~k) 

qb(a.; k) = R._  ~ (k)sin (0 n_ l(k) - Nnk). 

N o w  define the matr ix  M(k) by 

u(a) =M(k)(U!O{t 
u'(a)} ~u tu~/ 

for  solutions of - u"(r) + W(r)u(r) = k2u(r) 
Then,  

qS(b n ;k) /  . . . .  {c/)(a n ;k)~ 
(a'(b n ; k)] = 1vl tK) l ~b,(a n ; k)) 

Using (23) and (24) to evaluate  q5 
Rn(k ) = [(o'(b n ;k)] 2 + k214(b, ;k)] 2 we find 

(O<r<=a). 

and qS' at  r = b .  

25 

(22) 

R ._  1. Consider  further the 

(23) 

(24) 

and  not ing tha t  

R.(k) t 2 
R ._  l(k)j = [(M11(k))2 q-/¢- 2(M21(k))23 ¢os2(0n- l(k) -- Nnk) 

+ [(mz2(k)) z + k2(ml  2(k)) 2] sin2(0.-  1 ( k ) -  N.k) 

+ 2[kM 1 l(k)M 12(k) + k -  1m 2 l(k)mz2(k)] 

• sin (0._ 1 (k) - N.k)  cos (0._ 1 (k) - Nnk). 

We shall denote  by f .(k, N . k ;  0._ l(k)) the inverse of  the r.h.s., so that  

R.(k) ]2 
R,_ l(k)] = (f.(k, N.k, 0._ l(k))) - a  (25) 
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with 

f,(k, y, 0)-1 = A(k) + B(k)cos 2(0 - y) + C(k) sin 2(0 - y), 

where 

A 1 2 2 - 2  2 2 2 - ~ ( M l l + M 2 2 + k  M21+k Mlz) 
1 2 - 2  2 

C =(kM 11M12 - k- 1M21M22 ) . 

These coefficients are not  independent,  since we find 

A 2 - B 2 - C 2 = (det M) 2 = 1. 

Using the formulae 

2~ dz 2~ 
a+bcosz - ~ a/-a-zZ_b 2 

and 

dzlog(a+bcosz)=2Mog a+ 
o 

we find 
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(26) 

(27) 

(28) 

1 ~ 1 
~=- ~!f.(k,y,O)dy= ] / A z - B z - C z  = 1  (29) 

and 

1 2 
m.(k)- -£ ! log£(k,  y, O)dy = log 

Using (22) and (25) we have 

2k 2 . 
~.(z) = ! dk~-,_[]  1 f,(k, Nik, 0,_ ,(k)). (301 

where fi, th rough 0 i_ 1, depends on N1, N 2 . . . .  , Ni-1- 
We first note that  m.(k), which in fact in this case is independent of  n, cannot  

vanish identically. 

Proof 

m(k) - O~A(k) =- 1 ~B(k)= C ( k ) -  1 =~f. - 1. 

We have, then, R.(k)=R._l(k), so that  (22) implies 

~. (k)  = ~ . _  l (k ) ,  (2 = k 2 > 0) .  

By analytical cont inuat ion to 2 =  - k  2__<0, the solution V of  

_ ~ "  + Vnl p = - -  k 2 1 p  
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with initial conditions ~(0)= 0, ~,'(0)= 1, satisfies (/p'(bn)) 2 -  kZOp(b,))2= 1. But for 
d e 

2 =  - k  2 t o b e  an eigenvalue of - )-fire + V, would require 0p'(b,)) 2 -kZ(q~(b,)) 2 =0. 
a -  

Hence - ~ + V, has no eigenvalues 2<0 ,  and dG=d G_ 1 = 0  for 2<0 .  

It follows that G = G _ I .  But the potential is uniquely determined by the 
spectral function, and we must have V , -  V,_ 1, which is only satisfied when V=-0. 

Since re(k) is analytic, it follows that m(k)= 0 at only isolated points which, it 
d 2 

may be verified, do not belong to ther point spectrum of - ~r ~ + V The corollary 

to Theorem 1 may now be applied. /Note that i)" 
L 

(28)~A => l~m(k)=<0~ ~ m(k)= - co 
n = l  

except where m(k)= O. 
1 

ii): Proofs are unaffected by the factor 2kZ/rc on the r.h.s, of (30). / 
J 

We have, then, 

Proposition 1. Let V(r) be defined by (11) and (12). Then, provided the {N/} increase 
d 2 

sufficiently rapidly, the differential operator - c l ~  + V in [0, oo) has singular 

continuous spectrum for 2 > O. 
Equations (11) and (12) define, then, a simple class of potentials with which we are 

able to associate a singular continuous spectrum. The potential consists of an infinite 
sequence of "bumps" of identical (but arbitrary) shape, with separation increasing 
rapidly with distance. This is the basic idea of what in Section 4 we shall set in a more 
general context. Here let us note that a class of potentials for which lim V(r)=0 is 

r---~ oo 

obtained by decreasing the height of bumps with distance. 

Let 

V(r) = 0 0 < r < a 1 

=giW(r-al) ,  ai<r<bi 

= 0 ,  bi<r <ai+ 1, 

(31) 

where the sequences {ai}, {bi} are again given by (12), and assume lim G = 0 .  
n ~ o o  

The treatment of this case is essentially as before, except that the transfer 
matrices M at the n'th bump, and the coefficients A, B, C, now depend on n. From 
the perturbation series for A,, we have 

An = 1 + 2-k~ dxW(x)cos2kx + dxW(x)sin2kx + 0(g~3). 

According to (29), this gives 

mn(k )~-  9~ CdxW(x)cos2kx + dxW(x)sin2kx . (32) 
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From the Corollary to Theorem 1, the nature of the measure # depends now on 

the convergence or divergence of ~ 92, and we have 
t / = l  

Proposition2. Let V(r) be given by (31), with l img ,=0 .  Then for 2 > 0  the 
n--+ oo  

d z 
differential operator -dr--y - + V in [0, oo) has singular continuous spectrum if 

n = i  

4. Interpretation of Singular Continuous Spectrum 

From Equation (29), one finds that m.(k) is exactly the logarithm of the transition 
probability of a particle through a single bump, in the absence of other 

contributions to the potential. The condition ~ - m  n = oo thus corresponds to 
n = l  

the vanishing of the infinite product of successive transition probabilities and 
expresses the certainty that the particle will ultimately be reflected from a bump. 

For the classical probabilistic stochastic process of a particle meeting an 
infinite sequence of barriers, let p, be the probability of transmission and q, of 
reflection (p, + q, = 1). The process is said to be recurrent if the particle returns to 
the origin, with probability 1, on infinitely many occasions, and transient 
otherwise. (In both cases, unless some p ,=0 ,  the particle will ultimately be 
transmitted at least once through each barrier.) The condition for recurrence is 

found to be ~ (qn/P,)= 0% which corresponds exactly, for the potentials defined 
n = l  

by (31), to the condition ~ 92 -- co. That is, one has singular continuous spectrum 
n = l  

if and only if the classical process is recurrent. The physical picture is then of a 
particle performing a kind of (quantum !) random walk, in which however great 
the distance from the origin, the effect on the particle of the potential at finite 
distances cannot be ignored.-(This classical analogy becomes appropriate in the 
limiting case as the {Ni} increase arbitrarily rapidly, since in the limit successive 
transition probabilities are "independent".) 

Let us examine more closely the quantum mechanical aspects of this phenom- 
enon. Let ~.,.(r) be a potential giving rise to purely singular continuous 

d 2 
spectrum for the differential operator - ~ + V~.c.(r ) in L2(0, 00) ; (the argument 

may be generalised to allow a discrete or absolutely continuous component) and 
let 

d 2 
u = - dVx  + Vo(x) 

in LZ(]R), where 

vo(x)= K.c.(x) ,  x > 0  

= 0  x < 0 .  
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d 2 
We may also define the self-adjoint operator H = - dx--- 2 + Vo(x ) acting in L2(IR) 

=L2(IR+)+L2(IR-) with the two regions "decoupled". [I.e. with boundary con- 
ditions f (0  +)  = f ( 0 - )  = 0; here 

L2(IR+)=-{oELZ(IR);g(x)=O for xX0},] 

Then standard arguments based on trace conditions ([4], p. 649) show that 

i) slim ei&e -int exists on M,.~.(H) and has range in ma.e.(/~)~LZ(IR-); 
t---~ ÷ oO 

ii) s-lira elnte -i& exists on M,.o.(/t); 
t---~ -F ~ 

d 2 
iii) s-lira e'mEx< o e-'u°t exists on J r ,  where H o - in LZ(IR) and E~ < o is 

t ~  ± oo dx 2 
the projection onto L2(IR-); moreover 

s-tim ei&E~ < o e-  i~ot = s-lira ei&e- iU°tE_ 
t ~ oo t --~ o9 

and 

s-lira e'mE~ < oe- ,not = s-lira ei&e- m°tE +, 

where E± are the respective projections onto subspaces M± of positive and 
negative momentum. 

Transitivity now implies the existence, on M+ and M respectively, of the 
wave operators f2 +(H, Ho)= s-lim eittte - iu° t  and 

t - ~  - -  oO 

(2_ (H, H0) = s-lim emte-too,. 

These wave operators are complete; i.e. range (f2+)= range (O+)= M~.~.(H). An 
incoming particle from x = - ~ will be reflected with probability 1. Thus V~,~,(r) 
represents a totally reflecting barrier. We can confirm this interpretation in the 

d z 
case H =  - dr--- £ + V(r), acting in L2(0, ~) ,  with V given by (11). 

Using (26) and (30) with the method of Section 2 we find 

lirn~e-'k=,d#,+O (x ,=2N, ) .  (33) 

This uses the fact that a+bcosz +0. 

If the {N,} increases sufficiently rapidly, this implies that 

lim ~ e - ~"d/~ 4= 0.  (34) 
n - - *  oo 

A similar result holds for each of the sequences x, = 2cN, (c = __ 2, _-L- 3,... ), and for 
integer linear combinations, such as x, = 2(N, + N,+ ~). So the spectral measure ~ 

_ d  2 
for the differential operator H = ~ + V in this case does not obey the Riemann- 
Lebesgue Lemma. 

Consider now a normalised wave packet f having a narrow range 6E of total 
energy [for the time intervals in which we are interested we shall suppose 
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(6k)Zt~ 1, where 6E=fi(k2)=2kofik; this ensures that the wave packet does not 
spread too much. But we can allow (fiE), t ~  1]. 

We have, for some p~La(lR+,d#), 

( f ,  e - m ~ f )  = ~ p(k)e-ik2~d#. (35) 

Making the change of variables k = k o + q and neglecting terms of order q2t we find 
that ( f ,  e-mr f )  is appreciably different from zero for the sequence of times t = t ,  
given by k o t , = N  n. Each instant of this sequence corresponds physically to the 
time taken for the wave packet to return to its original position and direction of 
motion after a single reflection at the n'th bump and at r = 0. (Note that we have 
units in which m-a_ - 2, so that with k 0 = my o we have Vot . = 2N,.) Moreover, t = _+ ct, 
corresponds to multiple reflections at the n'th bump, and integer linear com- 
binations relate to the possibility of successive reflections at a number of different 
bumps. This is confirmed by a detailed analysis, using the appropriate generalised 
Fourier transforms, of the development of a wave packet in position space. The 
method of stationary phase exhibits, for example, components of the wave packet 
centred around 

r = r o - 2cNn + 2kot. 

Since it is known ([2]) that the mean squared probability, for f eM~(H) ,  of 
finding the particle in any fixed bounded region, converges to zero, the wave 
packet will ultimately be at a great distance from r = 0 "for most of the time", but 
will always return for a limited interval of time, to a neighbourhood of the origin. 
A similar interpretation holds in the case of the potential V defined by (3t). 

5. General Framework for Singular Continuous Spectrum in Potential Scattering 

The arguments of Section 3, relating the nature of the spectrum of the Hamiltonian 
to asymptotic behaviour of solutions ~b of the time-independent Schr~dinger 
equation, make essential use of the behaviour of ~b only at discrete sets of points. 
Instead of having to discuss the manner in which ~b varies continuously with r, one 
determines ~b at discrete sequences of points {ai} and {bi}, and estimates the 
transfer matrices relating ~b and ~b' at points of these sequences. We now proceed to 
generalise this approach in terms of transfer matrices to deal with a larger class of 
potentials, including in particular singular short range potentials for which the 
Hamiltonian has singular continuous spectrum. 

Let {ai} and {bi} (b i > ai; i = 1, 2, 3 . . . .  ) be two such (increasing) sequences and 
to each value of i associate a further increasing sequence {x} i)} ( j=0,1 ,2 , . . . )  
satisfying 

x(i)_ b and )ira (i) = x~ ,  say. o - -  i - 1  Xj  

Let a i - -x  (i)N,, so that the sequence {x~ )} (j' = 0, 1, 2, . . . ,  Ni) defines a partition of 
(bi- 1, ai) into N i subintervals. [Equation (12) corresponds to the case x}°+ 1 = x} ° + 1 
and b~ = a~ + a, but other sequences may be appropriate, depending on the class of 
potentials. As in Section 3, the N~'s are taken to be rapidly increasing with i.] 
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The potential V(r) is to be given in terms of sequences {V(1)(r)} and {W{i)(r)} 
(i = 1, 2, 3 . . . .  ) of real locally L * functions, defined respectively on the intervals 

and 
ai<r<b ~. 

We take, then, 

v(r) = Vm(r) 
= 

= v(i)(r) 

b ° = 0 < r < a l  } 

a~<r<b i (i= 1,2, 3 . . . .  ) (36) 

x(~>=bi_t<r<ai=xg ), ( i=1,2,3  . . . .  ) 

Each N~ thus determines the distance in position space over which the 
potential is given by V(~)(r). [Equation (I1) corresponds to the case V~°(r)-0, 
W(°(r) = W(r-ai) .  In applications there will be some algorithm for inductively 
specifying V(")(r) and the sequence {x~ ")} once the potential is known in the interval 
0 < r < b , _ > ]  

Let us denote by M,(2) the (2 x 2) transfer matrix satisfying 

M~ {~!a") l = [v2(b~) l (37) 
\v2 (an)/ \tp'(b,)/ 

for solutions lp(r) of - tp" + W%p = 2q2, and by t L.(2) the transfer matrix satisfying 

t [ p(x(°"+ 1))) = (tp(x},+ 1))) (38) 

for solutions vo(r) of 

- tp" + V ~=+ 1)72 = ; t ~ .  (39)  

"Discrete wave operators" may be defined for each n, which describe the 

asymptotic behaviour of (VJlx!i~'+~'l ] in the limit as j ~ o o .  We suppose that there 
\v)% )/ 

exists some real matrix t(2), continuously differentiable with respect to 2 in some 
closed subinterval of IK and having complex eigenvalues exp(_+ ifl(2)) (fl real), for 
which the following uniform limits exist: 

w~")(2) = lim (t("))-Jt:n ] 
j -*  OO J~ 

(40) J 

Let f ,  be eigenvectors of t corresponding to eigenvalues exp(_+ ifl) respectively, 
and chosen to satisfy f_ =(f+)*. Denoting by f+_i (i= 1,2) the i'th component  of 
f±, f + l f - 2 - f + z f - 1  is pure imaginary, so that the f± may be "normalised" to 
satisfy 

.dfl (41) f+ 2 -  f+ 2f, = - aT" 



32 D.B. Pearson 

A priori could write i d~-~, but shall confirm the of 
dR 

w e  only + subsequently sign w e  

the r.h.s.) 

We may now use the discrete wave operators w (") to define, for real solutions ~b 
of - ¢" + V¢ = 2~, discrete analogues of the R and 0 variables of Section 3. 

First write 

w(") (:!g;l)) = P . f ~  + q . f _  (p. =q*),  (42) 

and then define real R, and 0,(mod 2~) by 

p,  = iR ,e  i°~ , q,, = - i R , e -  io,, (43) 

with R. = + VIp.[ 2 + Iq.i 2. 

As in Section 3 we shall assume that the N~ increase sufficiently rapidly that the 
d 2 

spectral measure of - ~rr2 + V (in the interval [0, b), where b = l imb.) may be 
k n--+ °° ] 

derived by a limiting argument as n-~oo from the spectral function ~. of the 
d 2 

differential operator - dr ~ + V. (in the interval [0, x~))) where 

V.(r) = V(r) 0 < r < b.  

= V(n)(r) b, < r < x(~ ) . (44) 

[We take always the boundary condition of ~p(O)-- 0.] For the solution W of - ~" 
+ V.~ = 2~ with initial conditions ~p(O)=0, ~p'(O)= 1, (40) implies 

o(x~")) ~ e~.p q. f_ +o(1) tp,(xt.~))=P, f+  + e-i"P 

as n ~ 0% where p. and q. satisfy (42) with q~(b.)= tp(b.) and ~b'(b.)= tp'(b.). 

db 
Employing the notation [b(2`)J d2 -a~-~,  we have 

x(y ) > ( # ) t  
! Op(r))gdr = [~,(x~)lj (cf. [15], p. 133t. 

Using the estimates for ~ and ~', and for derivatives with respect to 2,, this gives 

! 0p(r))2 dr = 2in -d2 P"q"(f+ 1 f -  2 - f+ 2 f -  1 ) + 0(1) 

=2n R , ~  +o(1), using (41) and (43). 

[This justifies the sign of the r.h,s, of (41).] 
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d z 
We can also estimate the distribution of eigenvalues of - )-fir z + V. acting in 

L2(0, x~ )) and deduce that 

do. [ / d f l \  2 ] -  1 

Using fl to parametrise the points of a subset 2 of IlL this gives for the measure 
it. corresponding to 0. 

#.(2:)= 2~ R. dfl, (46) 

where (21) and (22) correspond to the case fi(2) -- 21/2 =k. Again, we have 

#(2;) = lim #.(2;) (47) 

for subintervals 2;. 
Thus again R. plays the role of determining the measure #., and to complete 

the analogy with Section 3 we need only evaluate R. /R ._  r Now for solutions ~b of 
- 4" +V4 = 2~b we have 

¢ ' ( a . ) /  = l e ' N ° %  + le-' '°ff - ' 

where as N. is taken arbitrarily large, }._ l --'P.- 1 and ~._ 1 --'q. - 1. 
Hence 

1 ¢'(b.)/ = i). - 1 eiu "~M. f+ + gl.- 1 e -  iN.~ M.  f_  . 

Let us write 

w(n)Mnf+  - IT(n) t" J_ TT(n) t" ) 
- ~ l i J +  - ~i2~-~ (48) 

w ( . ) M n f _  - IT(n) f a_ TT(n) t" [" 
- -  ~ 2 1 J +  ~ ~ 2 2 J - )  

Since detw(")M.= 1, this matrix "conserves" f + l f - z - f + 2 f - ~ ,  so that again 
det U (") = i. 

We have, then, 

(.)[4)(b.)'~ =(U?}p. leiN'~'~+ U?~ln le-iN"P)f+ 
w t * ' ( b . ) )  - - 

+ ( U~)2P,- i e~N"t~ + ~22"/n-r[(n)Zt l e -  iU"~) f - 

= p . f + + q . f - .  

Using (43) and writing p._ a = - i R .  le ~0"-', 

gl. - 1 = iR. _ 1 e-  i~._,, 

we find 

( R .  )2=[ f . ( f i ,  N. f l ;O._l (k) )]_l ,  
R n -  1/ 
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where 

[f.(fl, y; 0)] - 1 = A. + B. cos 2(y + 0) + C. sin 2(y + 0) (49) 

and 

A - - ( T  T(n) T[(n) -1_ TT(n) iT(n) "t ] 
n - - k ~ i i ~ 2 2  ~ ~ 2 1  ~ 1 2 !  

B n  = __ ~ TT(n) IT(n) -L. IT(n) IT(n) "~ 
~ - ~ 1 1  ~ 1 2  ~ ~ 2 1  w 2 2 !  

~ ' 2 1  ~'~22 

Since/~._ 1 --,R._ ~, 0._ 1 --+0._ 1 as each N. is taken arbitrarily large (holding N i 
fixed for i<  n), we shall assume that the sequence {N.} has been chosen to increase 
sufficiently rapidly that the infinite products 

[I (R]k~) and I~I f~(fl, N~[3,0,_~l/f~(fl, N~fl, O,_~) 
i = l  i = 1  

converge uniformly to limits which are bounded above and below by strictly 
positive constants. 

In that case, we may define a new family {~.} of measures and a limiting 
measure/~ by 

l~,,(Z)=!dfi 2~\d2] j ,=~i~l J;(fi, N.8,0,_~), 

~ ( S )  = l im  ~,(S) for subintervals S, such that the spectral measure # associated 
tt ---~ oo 

d 2 
with the differential operator ~r 2- + I / is  equivalent to the measure ft. 

In particular,/~ is singular continuous if and only if ~ is singular continuous. 
We are now in a position to apply the Corollary to Theorem t. Noting that A,, 

B,, C, are real, we have 

1 ~ 1 

~n--= ~ !  fn ( f l ' y 'O)dy= V A  2 - Bn 2 __ Cn 2 '  

where 

A 2  _ R 2  c 2  _(iT(n) ll'(n) -L 1[(n) IT(n) "l 2 
n ~ n  ~ n  - - ~ . ~ 1 1  v 2 2  ~ ~ 2 1  ~ 1 2 J  

__ dTT(n) TT(n) TT(n) TT(n) 
~ 1 1 ~ 2 2 v 2 1  ~ 1 2  

= (det U('°) 2 = 1. 

H e n c e  f .  = 1, and we also have 

(2) 
m. = -re oS log f.(fl, y, O)dy = log A. + 1 

so that rn, < 0, 
We now have 
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Proposition 3. Let V(r) be given by (36) and assume that discrete wave operators w (n) 

.exist, satisfying (40). Define m~ as above and suppose that ~ -ran = oo (uniformly 
n = 1  

in fi). Then, provided the {Ni} increase sufficiently rapidly, the differential operator 
d 2 
dr 2 + V has singular continuous spectrum. 

Proposition 3 extends the class of potentials with which we can associate 
singular continuous spectrum. In any particular case it is necessary to obtain 
estimates of transfer matrices in terms of which appropriate discrete wave 
operators can be defined. These estimates can be carried out in the following cases, 

where "sequence of bumps" means a potential given by (tl) and (12) (or more 
/ 

\ 

generally by (31) and (12)in the case ~ g~=oo]. It is always assumed that the 
i = 1  / 

{N,} increase sufficiently rapidly for Theorem 1 and its corollary to be applied. 

Examples. i) Let V(r) be any Ll(o, ~ )  potential plus a sequence of bumps. Then 

dr 2 + V + has singular continuous spectrum for 2 > 0. (I.e. the spectrum 

is singular continuous for each partial wave.) 
ii) Let V(r) be any locally L 1 periodic potential, plus a sequence of bumps (a 

d 2 
periodic lattice with impurities !) Then - ~r ~ + V has singular continuous spec- 

trum (for 2 in the absolutely continuous spectrum of the unperturbed periodic 
differential operator). 

d ~ 
iii) Let V(r)= ~ W ( r - N i )  for WeLl(o, oo). Then - d ~ r  2 +V has singular 

i = l  

continuous spectrum for 2 > 0. 
iv) Add to the short range potential defined in [15] a perturbation 

~ 6 ( r - x N ) .  (For the definition of {Xk} in this case see [15]). (Or the 6's may be 
i = 1  

replaced by appropriate locally bounded 6-approximating functions). Then 
d 2 12 
dr 2 + V acting in L2(O, b) has singular continuous spectrum in 0 < 2 < -~. 

v) Let 

V(r) = V(b - r) - 1 0 < r < b 

=0 r>b ,  

where V is the potential in iv) above. 

d 2 
Then -~r~r 2 + V, acting in L2(O, ~), has singular continuous spectrum for 

- 1 < 2 < 0 .  
Here V is short range, but highly singular and oscillating ar r=0. One may 

show (cf. [4]) that the wave operators ~+(H 0 + ~', Ho) exist and are complete. 
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In each of  the preceeding examples  i)--iv) a Hami t t on i an  giving rise to  
abso lu te ly  con t inuous  spec t rum is pe r tu rbed  by  a sequence of  po ten t ia l  barr iers .  
The  effect of  the pe r tu rba t ion  is to change the na ture  of  the con t inuous  spect rum,  
mak ing  it singular.  The  pe r tu rba t ion ,  which m a y  be relat ively compac t ,  thus has  a 
p ro found  effect on the spectral  p roper t ies  of  the to ta l  Hami l ton ian .  The  s ingular  
na ture  of  the pe r tu rbed  spec t rum may  itself be extremely stable for a wide class of  
"smal l"  var ia t ions  of  the poten t ia l  (e.g. change of coupl ing  constant) .  Pe rhaps  it is 
abso lu te  cont inui ty  tha t  mus t  be regarded  as pathologica l ,  and  s ingular  con t inu i ty  
as the n o r m !  
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