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Abstract. It is shown that the usual axioms of one-particle Quantum 
Mechanics can be implemented with projection operators belonging to the 
exceptional Jordan algebra J3 8 over real octonions. Certain lemmas on these 
projection operators are proved by elementary means. Use is made of the 
Moufang projective plane, tt is shown that this plane can be orthocomplement- 
ed and that there exists a unique probability function. The result of successive, 
compatible experiments is shown not to depend on the order in which they are 
performed, in spite of the non-associativity of octonion multiplication. The 
algebra of observables and the action of the exceptional group F~ is studied, as 
well as a possible relation with the color group SU(3) and quark confinement. 

1. Introduction 

Following Jordan's formulation [11 of Quantum Mechanics in terms of anti- 
commutators, Jordan, yon Neumann and Wigner (JNW) [2 3 showed that all 
realizations of Quantum Mechanics in terms of anti-commutators (Jordan pro- 
duct) are equivalent to realizations in terms of commutators (Lie product) except 
in the case of 3 x 3 Hermitian octonionic matrices which form the exceptional 
Jordan algebra. Since this one possible generalization via the Jordan formulation 
was found too narrow for explaining the then observed nuclear phenomena this 
approach was abandoned. However, Jordan algebras have since been extensively 
studied by the mathematicians who established some deep connections between 
the exceptional Lie groups and the exceptional Jordan algebra [3, 4]. 

After the sixties octonions made their appearance in physics again. Pais, 
Gamba and others tried to relate the octonions to various internal symmetry 
schemes in elementary particle physics [5, 6] Goldstine, Horwitz, and Biedenharn 
studied a Clifford algebra made of octonionic multiplication operators [7 3. 

Giinaydin and Giirsey suggested the extension of the underlying field of 
Quantum Mechanics from complex numbers to the octonion algebra in order to 
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explain the charge space properties of elementary particles on a fundamental level 
[8-13]. They showed that space-time groups like the Poincar~ group can be 
unitarily implemented on an octonionic space with complex scalar products. The 
space-time symmetries and quantum mechanical considerations then select out an 
SU(3) subgroup of the automorphism group G 2 of octonions as an intrinsic exact 
symmetry group of the space, which they identified with the color SU(3) group of 
Gell-Mann and Fritzsch [14]. By taking octonionic quark fields, making the 
ansatz that the non-associative and non-commutative components of the space be 
unobservable, they could give an algebraic explanation of the observability of 
color singlet states only, and the unobservability of quarks and other colored 
states. 

In this paper we answer the following question : is it possible to implement the 
usual axioms of quantum mechanics with objects belonging to a Jordan algebra? 
It turns out that this is not possible with the usual Hilbert space formulation of 
Quantum Mechanics, because the octonion algebra is non associative. So one has 
to go to a more abstract level [15], starting with the concept of proposition (yes-no 
experiment). Propositions correspond in the usual case to projection operators, 
and the structure of the propositional system of Quantum Mechanics is equivalent 
to the structure of an orthocomplemented projective geometry. At this point one 
finds the link with octonions. Ruth Moufang [16] has constructed a projective 
plane coordinated by octonions, and which turns out to be non-Desarguian. 

Our aim in this paper is to study the quantum mechanical properties of this 
non-Desarguian geometry by using Jordan's formulation of it in terms of the 
exceptional Jordan algebra [17, 18]. We show that it can be orthocomplemented 
and that there exists a unique probability function satisfying Gleason's axioms. 
Successive compatible experiments yield a result which is independent of the order 
in which they are performed. Hence, on the one-particle level all the axioms of 
Quantum Mechanics are fullfilled. We further study the action of the automor- 
phism group of the Moufang plane on states and the structure of the algebra of 
observables. 

Physical interpretation of the octonionic Quantum Mechanics poses many 
problems. An important problem has to do with the possible product states, which 
is crucial for the algebraic explanation of the unobservability of colored states. 
Main-difficulty stems from the fact that all irreducible projective geometries of 
dimension greater than two are Desarguian. One possible way out is to have an 
imbedding of Desarguian subgeometries. Another possibility is to imbed this 
projective geometry into a non-irreducible higher geometry. In any case, we hope 
that the study of these problems may shed further light into the problem of 
unobservability of colored states. 

Before we begin our study of the octonion Quantum Mechanics we should 
stress the fact that the mathematics underlying our work has long been thoroughly 
developed by the mathematicians. The lemmas we use or prove may be found in 
the mathematical literature in some form or other. Our purpose is to reformulate 
these results in a physicists' language and lay the ground for future work on the 
subject. 
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2. Octonions and the Exceptional Jordan Algebra 

Real octonion algebra @ is an 8-dimensional division algebra whose elements can 
in general be decomposed as 

7 
O=roeo+ ~, rAeA, (2.1) 

A=I 

where r o and r A are real numbers, e o is the identity element and e A are the seven 
imaginary units which obey the multiplication rule 

7 
eAe, = - -  (~AB + 2 ttABCeC" (2.2) 

C=I 

rlABc are totally anti-symmetric and their non-vanishing components, apart from 
permutations, are [9] 

/1123 =/724-6 =/7435 =/7367 =/'1651 =q572 ~---/]471 = 1. (2.3) 

The octonion algebra is not associative, but it satisfies a weaker property, namely 
alternativity, which implies that the associator (01, 02, 03) of any 3 octonions is an 
alternating function of its arguments: 

(0 D 02, 03)~(0102)03--01(0203)=(03, 01, 02)= - - ( 0 2 , 0 1 , 0 3 ) .  (2.4) 

As a consequence of this property one has 

(O101)02 : 01(0102)  ; (0102)02 ----01(0202) (2.5) 

and the Moufang identity 

(0102)(0301) = 01(0203)01 . (2.6) 

The conjugate octonion is defined by 

7 
O=roe o -  ~ rAe A (2.7) 

A=I 

and the real bilinear product by [19] 

(01, 02) ~ ' l(O 102 -~-0201) (2.8) 

which induces the usual octonionic norm 

n(O) = (0, O) = O0 = O0 (2.9) 

n(O 102) = n(O t)n(O2) 

and has the invariance group 0(8). 
The real exceptional Jordan algebra J3 s is a Jordan algebra whose elements are 

the 3 x 3 hermitian real octonionic matrices 

J =  03 ~2 01 , (2.10) 
02 01 % 
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where ei are real numbers and O~ are real octonions. These matrices form an 
intrinsically non-associative algebra under the Jordan product 

J1 °J2 :~JaJ2  + J2J1), (2.11) 

where J1J2 is the usual matrix product, and satisfy the Jordan identity: 

(Jl °J2) °J2 =J1 °(J2 °J2)" (2.12) 

In the classic work of Jordan et al. [2], it was shown that the algebra J~ is the only 
Jordan algebra which has no realizations in terms of associative matrices. A one- 
dimensional projection operator P is a Jordan matrix which satisfies the 
conditions 

p 2 = p o p = p ;  t r P = l .  (2.13) 

Any one-dimensional projection operator P belonging to J3 s can be brought to the 
following form [17-1 

P= b8 bb b'd , (2.14) 
c8 c/~ cg 

where a, b, c are octonions, one of them being pure real, and satisfy 

a8 + b/~ + cg = tr P = 1. (2.15) 

Following Freudenthal [20] one can define the following X product among the 
Jordan matrices 

J1 x J2 -= J1 °J2 -1J1 tr J2 - 1Jz tr J1 +1I(  tr J~ tr J 2 -  tr J iJ2), (2.16) 

where I is the 3 x 3 identity matrix. 
For Jordan matrices on real octonions one has the property that if J x J = 0 

then J is a scalar multiple of a projection operator i.e. 

J × J = O ~ J Z = 2 J ;  t r J = 2 ,  (2.17) 

where 2 is a non-zero real number if J ~= 0. 
Using the X product one can define a completely symmetric trilinear form: 

[J1, Jz, J3] =- tr (J1 x Jz)oJ3 ~(J1 x J2, J3) (2.18) 

which induces the determinental form i.e. 

det J =-~[J, J, J ]  = ½tr j3 _ ½tr j z  tr J + +(tr j)3. (2.19) 

3. Group Theoretic Properties of J~ 

The exceptional Jordan algebra has, as the automorphism group, the exceptional 
group F 4 [4]. The 52 infinitesimal anti-hermitian generators D of F 4 act as 
derivations of J3 s i.e. they satisfy the property: 

D(J1 °J2) = (DJI)oJ2 + J~ °(D J2) (3.1) 
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for any elements J~, Ja of js .  This implies that the derivations annihilate the 
identity matrix: 

DI =0.  

The 26 traceless Jordan matrices form the basis vectors for an irreducible 
representation of F 4. F 4 can also be uniquely characterized as the simultaneous 
invariance group of the quadratic and cubic forms of J38 i.e. as the invariance 
group of 

(J1, J2) = tr J l  °J2 (3.2) 

and of 

[J1, J2, J3] = tr U1 x J2)oJ3. 

The derivations can be represented by the action of two traceless Jordan matrices 
X, Y on j8 : 

Dx, ~J = (X, J ,  Y) = - (~:; J , X ) ,  (3.3) 

where the RHS is the associator 

(X,J, Y)=(Xoj)o Y-Xo(jo y). (3.4) 

The derivations satisfy the following commutation relations: 

[Dx, Y, Dz, w] = DDx,yz, w + Dz,Dx,yW- (3.5) 

The automorphisms of the 2 x 2 Jordan matrices form an SO(9) subgroup of F 4. 
There are three of them in F~. If we denote the elements X, Yof J~ as 

X =  (0:1 x3 " ~ ] ) x 2 2 3  21°:2 xl0: -~ i~=l o:iEi +(X3)12 +(X2)314-(X1)23 (3.6) 

then the generators of the SO(9) subgroup leaving the indempotent E 3 invariant 
are given by 

D(x~)12,(r~)l 2 , D(x3)~,EI_E2. (3.7) 

The other SO(9) subgroups' generators can be obtained by a cyclic permutation of 
1,2,3. 

Each SO(9) subgroup has an SO(8) subgroup that leaves the diagonal terms 
invariant. However, the 3 SO(8) subgroups' actions are not independent of each 
other. These 3 actions are related via the principle of triality [21]. The principle of 
triality states that given an action d t of 80(8) on the octonion algebra © then there 
exist actions d 2 and d3, unique up to a sign, which satisfy the property 

(dlOx)(d202)=d3(OlO2)g01, 02~ © (3.8) 
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and there is a cyclic symmetry of the actions d~, d 2, d 3. The global action of the 
SO(8) subgroup on J~ can then be written as: 

(d3o3) 
SO(8): J-* ~ c~ 2 (dlO0~. (3.9) 

\(d202) (dlO0 / 
The infinitesimal generators of SO(8) satisfy the principle of local triality 
(sometimes called infinitesimal triality): 

(m 101)02 + 01(D202) = m3(o 10z) , (3.10) 

where D~ belongs to the Lie algebra of SO(8). An example of triality action, which 
we shall use later, is given by 

d l = L  a dz=R ~ d3=L~R~, (3.11) 

where a is a unit octonion and L a and R a stand for multiplication from the left and 
the right by the octonion a. 

We now prove tour lemmas which we shall need in the following [221. They all 
apply to one-dimensional projection operator P. 

Lemma 1. There exists always a transformation belonging to F 4 which brings P 
given by (2.14) to the form E 1 (see (3.6)). 

Lemma 2. Given P1, P2, Pa such that P1 °P2 =P2 °P3 =P3 °P1 = 0  then there exists 
always a transformation o f F ,  which brings them to the form E~, E 2, E 3. 

Lemma 3. Given any two P1 and Pz then there exists always a transformation o f f  4 
which brings them into a real form. 

Lemma 4. tr P1 °P2 = 0 implies P1 °P2 = O. For the proof of Lemma l, we start with 
the general form (2.14) for  P. Consider the SO(9) rotation 

R 12(q)) = exp (q)D(x)~,e~_E~) 

x = [n(ab)] 1/2 (3.12) 

2[n(ab)] 1/2 n(a)- n(b) 
sin q~ - n(a) + n(b) cos ~0 = n(a) + n(b)' 

One then gets, using (3.3) 

{n(a)-~ n(b)ll/2 
P'=R~zP=(n(a)+n(b))El +n(c)E3 + [ ' n-(~ ] (ca)31" (3.13) 

Now, perform the S0(9) rotation 

R310P) = exp (FD(m ~,E~ -e~) 

c8 
Y = [n (c~) ]  1/2 

(3.14) 
sin ~p = - 2[n(c)(n(a) + n(b))] 1~2~In(a) + n(b) + n(c)] 1/2 

cos ~p = - In(c)-  n(a)- n(b)]/[n(a) + n(b) + n(c)] 1/2 
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The result is 

P" =R31P' =R31RlaP = E  1 . (3.15) 

148th an appropriate permutation of  indices and letters one could also get E 2 and E 3. 

To prove Lemma 2 we first bring PI to the form E1 leaving P2 in the general 
form (2.t4). Then 

E1 °P2 =aBE1 + ½(ab)lz + 2X(ca)31 . (3.16) 

El°P2 =0  implies a=O, hence the most general form for P2 is 
Pz=bbEz+c'SE3+(b~)23 with bb+c'8=l .  The transformation R23(q~ ) obtained 
from (3.12) by the cyclic permutation t-~2-~3 and a - ~ b ~ c  brings P2 to the form 
E 2, while leaving E 3 invariant. It is then obvious that the only P3 that satisfies 
P3 oE1 =P3 oE2=O is P3 = E3. 

For Lemma 3 we bring P1 to the form E 3 with P2 given by (2.14). The SO(9) 
rotation R12(~ ) given by (3.12) brings P2 to the form (3.13). An SO(8) rotation via 
the triality action given by (3.11): 

d I = L o d2 = R o d 3 = LoR o 

a~ 
with 0 chosen as in(a.i)[1/~ brings P2 into a real form. 

For Lemma 4, first consider an F~ transformation that brings P1 into the form 
E1 with P2 being of the general form (2.14). Then from (3.16) we have 

t r E 1  °P2  = a8 

therefore trEx °P2 =0 implies a = 0  and thus E1 °P2 =0. 

Lemma 5. Any element of J~ can be brought to the diagonal form by an F 4 
transformation. 

Consider a general element X of J~ as given by (3.6) then by the triality action 

d~ = L ~  ~ d2 = L ~ d3 = R ~ .. 
Ix31 Ix31 1~31 Ix31 

it is brought to the form 

X~= Ix,3l ~2 x;p. 
\ xz ~'1 %/ 

Then by a simple real rotation this can be brought to the form 

X 2 = O~ 2 

Again via the triality action this can be brought to the form 

lx';I G ] 
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Now under the rotation 

TX 3 T -  1 =X4,  0) 
where T =  R , with R being the real rotation matrix that diagonalizes 

(c~ [x'~]), we find 
Ix'~l G 

( COSo ; 
X~ = - sinc~x~' ~ '  t 

\cos~x~' 0 ~; / 

Then by the triality action 

d 3 = R x ;  d 2 = L ~'  d~ = L ~ '  RY'~_... 
Ix~ I Ix;I Ix'~' I Ix~'l 

X 4 is brought to a real symmetric matrix which can always be diagonalized by a 
real rotation matrix. QED. 

4. The Moufang Projective Plane 

The representation theorem for projective spaces states that projective spaces of 
dimension n > 2 can be represented by vector spaces over a skew field [23]. If the 
underlying division ring is commutative then Pappus-Pascal-theorem holds. The 
Desargues' theorem follows from the projective axioms for n > 2. 

One example of a non-Desarguian projective plane (n=2) was given by 
Moufang [16]. She gave an affine coordination of this geometry in terms of 
octonions and showed that the harmonic lock incidence theorem (which is a 
weaker theorem than Desargues' theorem) is satisfied as a consequence of the 
alternativity of the underlying octonion algebra. 

Jordan gave a construction of the Moufang plane in terms of the idempotents 
of J~ [17]. The first rigorous study of the Moufang plane and its automorphism 
group was given by Freudenthal [24]. Below we shall use Jordan's method in our 
study of the Moufang plane and follow the work of Freudenthal [20], Springer 
[25], and the excellent review of Jacobson [3]. 

A projective plane is defined as a set of elements called points and a collection 
of subsets of points called lines such that the three following axioms are satisfied. 

G = Moufang plane 

t) Any two distinct points are contained in one and only one line. 
2) The intersection of any two distinct lines is one point. 
3) There exist four points no three of which are in the same line: 

as an immediate consequence, we can prove 
4) Given three distinct lines which intersect in three points, the line defined by 

two other points of two of these lines intersects the third one. 
5) Any line contains at least three points. 
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If we take 1), 4), and 5) as axioms we define an irreducible projective geometry. 
As a matter of fact, by 2) such a projective geometry is a plane. A linear variety is a 
subset of points such that, each time it contains two points, it contains the line 
defined by this two points. Here, for the projective plane the linear varieties are the 
void set, the points, the lines and plane itself. 

Up to a real factor, one-dimensional projection operators (or irreducible 
idempotents) are given by the condition 

P x P = 0 .  (4.1) 

As points in the plane we shall take the equivalence class P satisfying (4.1) and as a 
representative of this class take a P satisfying the trace condition 

t r P =  1. (4.2) 

A line in this plane will be represented by a two-dimensional projection operator 1 

12 = 1; trl = 2 (4.3) 

A point P is said to be contained in the line I if and only if 

Pol=P or Po(I - l )=O.  (4.4) 

To prove that axioms 1, 2, and 3 are satisfied, one first needs to show that for P1 
and P2 different one-dimensional projection operators, 

P1 x P2 (4.5) 
L 1 2 -  t rP 1 xP2 

is a one-dimensional projection operator. This can be simply done by considering 
the case P1 = E l  and P2 general and extending it to the general case. Or else, one 
can use the identity 

2(d 1 x Yl) × (dz x Yz)+4(dt x d2) x (J1 X d2) 

~--(J1 > J1, J2)Y2 -}-(JD J2 x J2)J1 . (4.6) 

It then follows that 

llz = I - L 1 2  = I  P1 x P2 (4.7) 
trP 1 x P2 

is a two-dimensional projection operator and hence a line. The points P~ and P2 
lay on the line 112 since 

1 1 
(P> L12) = t rP  1 x P2 (P1, P1 x P2 ) -  trP1 x P2 (P1 x P1, P2) =0  

and 

(P> L12) = t rP,  x P2 
1 

(P2, P1 x P 2 ) -  trP1 x P2 (P2 x P2, P1)=0.  

To show that/12 is the only line through P1 and P2, one needs: 
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Lemma 6. I f  P1 and P2 are different one-dimensional projectors then the projector 
P3 satisfies PloP3 =P2oP3 =0  if and only if P3 iS a multiple of P1 x P2. 

It is enough to prove the lemma for P3 = El, P1 and P2 being of the general 
form (2.14). Then PI°P3 =0  (i= 1,2) implies 

P i = biblE2 q- ciciE3 -k (b/ci)23 . 

Direct computation gives P1 x P2 proportional to Ep The converse has already 
been proven above. Therefore, axiom 1 is satisfied. 

The intersection of two lines I - P 1  and I - P 2  is the point 

P1 x P2 
P 1 2 -  trP1 x P2 (4.8) 

which, by the same arguments, can be shown to be unique. Hence, axiom 2 is 
satisfied. To prove axiom 3, consider the following four points 

Pi = Ei i = 1, 2, 3 

with P4 being given by the general formula (2.14). The line l K passing through 
points E i and Ej is given by 

E~ x E i = Ek = I--  lk; i, j, k in cyclic order. (4.9) 
trE~ x Ej 

The points E~ and P4 do :not lay on the line lk since 

EkoEk+O; EkoP4#O. 

Thus, there exist four points, no three of which lay on the same line. Such a 
projective plane constructed with Jordan matrices is called a Moufang plane. 

Let us now show that this projective plane is effectively non-Desarguian. First 
let us recall that Desargues' theorem states that given two triangles ABC and 
A'B'C' such that the lines AA', BB', and CC' intersect at a common point 0, then 
the intersection points of the lines AB and A'B', BC and B'C', AC and A'C' all lay 
on a straight line. 

We now give an explicit non-Desarguian configuration. For this consider the 
three lines 

13=I-E3;  12=I-E2;  10=I-023 

E 3 = 0 ; E 2 = 1 
0 0 (! o O 

023 = sin20 --sinOcos . 
-- sinOcosO cos20 / 
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These three lines intersect at the point represented by the idempotent E 1 since 

1 
E 2 x E 3 = ~ E 1 

COS 2 0 
E 2 x 0 2 3 -  2 E1 

sin 2 0 
E 3 X 023 = - - ~ - - E  1 . 

Now take two points on each line 

P,t ,  P A '~ 13 

Q~, Q~,e t 2 

R c, R c, e t o . 

Graphically, we have 

E1 RC~C 
Ss"~s ~ 

The line passing through points PA and Q~ is represented by t - - L e Q ;  
LeQ = P ~  x QB/trPA x QB and intersection point of the lines tpQ and Ie, Q, is the point 
(up to a trace factor) 

$1 =(PAx QB) x (PA' x QB')" 

Similarly tbr the points B, C, B', C' and A, C, A', C' one finds 

$2 =(QB x Rc) x (QB, x ec ,  ) 

$3 = ( P  A × Rc)  x (P A" × Rc')-  

Now Desargues' theorem would require that the points $1, Sz,  and S 3 lay on a 
straight line, which in our notation is equivalent to the condition 

(S 1 x $2, $3) = ES1, $2, $3] = 0 .  
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Let us now show that this condition does not in general hold tbr this Moufang 
plane. As the points in our plane consider the idempotents 

P _1{e( ~ -e21 
A--2 0 

1 I 0 
Q~=~ o 0 

--e 7 0 

R 1 1 
c =  ~1 =°s0e6 

sin0e 6 

1 [ 1 
R c, = ~ [c°s0e5 

\sin0e5 

PA'= ~ 0 

o 
Q,,=~ o o 

- e  3 0 

- cos0e  6 - sin0e61 
cos20 cos0sin0] 

cos0 sin0 sin20 / 

-cos0es  - sin0es\ 
cos20 cos0sin0].  

cos 0 sin 0 sin s 0 / 

After some long and tedious calculation, one finds that 

1 2 2 (S 1 x $2, $3)= ~ g c o s  0sin 0 (3+s in0-cos0+s in0cos0) .  

This shows the existence of non-Desargian configurations in the Moufang plane. 

5. Orthocomplementation of the Moufang Plane 

A projective plane is orthocomplemented if on it there exists an involution on the 
linear varieties which reverses the order of inclusion and maps each point to a line 
outside this point. Existence of such involutions over the Moufang plane has long 
been established [26] and thoroughly studied [27]. The simplest such involution is 
to associate with each projector P the projector 

U = I - P .  (5.1) 

If P is one dimensional (trP = 1), then I - P  is of dimension 2 and represents a line. 
This involution reverses the order of inclusion since if P oI= P then 

p ' o l ' = ( I -  P ) o ( I - I ) = l - I -  P + P=I ' .  

A linear variety is by definition orthogonal to another if the orthocomplement 
of one contains the other. Two points P1 and P;  are orthogonal if and only if 
P1 °P2 = 0 

P1 °P2 = 0<:~P, ± P2. (5.2) 

In this case 

P 1 P l x  ~ = ~ ( I - P 1 - P 2 )  (5.3) 
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and 

112 = P t  +Pz- (5.4) 

The third point orthogonal to P1 and P2 is just ( I - P 1 - P 2 ) ,  which is the 
orthocomplement of the line 112. We remark that for any orthogonal linear 
varieties l 1 and l 2 we have the simple formula for their union 

11 t.dl 2 = 11 q- l 2 . (5.5) 

Having now at our disposal an orthocomplemented projective geometry, we can 
construct a quantum mechanical system of propositions, satisfying all axioms, as 
shown in Ref. [15]. As in [15], two propositions 11 and l z are compatible if and 
only if (I 1 ~/2)w(ll c~l~) = 11 i.e. if l 1 can be written as the sum of two projectors, one 
in I 2 and one in 12 

11 = P 1  q -P2  with Plolz=P1 (5.6) 

P2 olz = 0 .  

In §6 we show the existence of a unique probability function and in §7 the theory 
of measurements and observables is discussed. 

The automorphism group of the orthocomplemented Moufang plane is again 
F~ [3]. Indeed, since F 4 preserves the Jordan product and the Freudenthal 
product, F 4 transforms points into points, lines into lines and orthogonal linear 
varieties into orthogonal linear varieties. 

6. The Probability Function 

We now show that given any one-dimensional projector P, there exists a unique 
probability function 

Wp(l)=tr(Pol) leG (6.1) 

satisfying Gleason's axioms [28] 

1) 0 < Wv(l ) < 1 (6.2) 

2) Wv(P ) = 1 (6.3) 

3) ~I~(I 1 v lz): I4~(I1)+ Wp(I2) (6.4) 

1 n J-12~G. 

To prove (6.2), we first choose for l a point Q. Since trPoQ is invariant under 
F4, we consider P in the form E 1 and Q general given by (2.14). Then trPoQ 
=[al2 < 1. Next, for l=I -Q,  trPol=l-jal2>O. 

To prove (6.4), we remark that according to (5.5), Wylwl2)=tr(po(l t +12)) 
=tr(P/1) + tr(Pl2)= g/~(ll)+ W~(/2). On the other hand, such a function is unique 
i.e. ira real function on G satisfies (6.2)-(6.4) it is identical with the one given by the 
trace. To prove this, let us first make two remarks 

1) Due to the condition (6.4) the function Wp(1) is completely defined by its 
values on the points. 
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2) The restriction of Wp to the real subplane defined by the real 3 x 3 
projection operators is a state on this plane and by Gleason theorem it is unique 
and given by the trace. This is indeed the case since the orthogonality condition 
P o Q = 0 (Jordan product) restricted to real 3 x 3 projectors is identical with PQ = 0 
(ordinary matrix product). 

Suppose there exists a point Q such that Wp(Q) is different from tr(PQ). Lemma 
3 of §3 shows that by an automorphism of F 4, we can choose P and Q real. Then 
by the second remark, we will have a contradiction and by the first remark the 
uniqueness is proven. 

7. Measurements and Observables 

We consider here ideal measurements of the first kind [ 15] which are simply called 
measurements in usual text-books. We show that the result of two successive, 
compatible experiments does not depend on the order in which they are 
performed, in spite of the non-associativity of octonions. 

We first consider a physical system in the state P (one-dimensional projection 
operator) and we measure the proposition l (yes-no experiment). Suppose the 
result of the experiment is the answer yes (the value one). What is then the final 
state after the measurement? The problem is only non-trivial if I is a line. 
According to reference [29], the final state is the point 

Ps=(PuI')c~I, (7.t) 

where l', the orthocomplement of l, is a point. Pul '  is the line 

~[=I- P×l '  
t rP x l' --I-£. (7.2) 

Then the intersection of the lines I and / i s  the point l' x L Normalizing, we get the 
final state 

l ' x[ ,  I ' x (Px l ' )  
Pf  = tr(l' x L) - tr(/' x (P x l'))' (7.3) 

Using Equation (2.16) and the fact that the free Jordan algebra with two 
generators (here P and l') is special, i.e. equivalent to a matrix algebra over an 
associative field with Jordan product [4], one finds 

tr((Pol')ol') = tr Po/', (7.4) 

tr((P x l') x I')= 4 ( 1 -  trPo/'), (7.5) 

1 
(P x l') x l '=(Pol')(l '- I) + ~ ( P - l '  trPol'). (7,6) 

The probability to get the answer yes if one measures the proposition l on a system 
in state P is 

W(l) = trPol. (7.7) 
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Suppose  now we measure  l~ on the initial state P1 and get the state Ptl- Then 
we measure  the compat ib le  [see Eq. (5.6)] observable  12 . The  probabi l i ty  to get the 
answer yes for 11 and yes for 12 is t r (Phol2) tr(Pot i ) .  Therefore,  we mus t  have 

tr (Ph °/z) t r(Po 11) = tr (Pl2 ° ll) tr(Po/2). (7.8) 

F r o m  Equa t ion  (7.3) we have 

Pi~ = 4 ( 1 -  t rP / ' l ) -  ~(P x l'l) x l'i, 

where l' 1 = I -  11. 
Then  

tr P~ o 12 = 4(1 - tr PI ' I ) -  ~ tr [((P x l]) x l't)o/2] 

= 1 - 4(1 - tr  Pl'~)- ~ tr [ (P x I'~)o(l'~ x t 2)] 

= 1 -4(1  - t rP l ' t ) - l t r [Po ( l ' ~  x (1' 1 x/~))] .  

The compat ibi l i ty  of l~ and 12 implies l'~ol 2 =0,  hence 

1 ,  
tl × × I i )  = t2 

t rPo( l  i x (l' a x ll) ) = l t rPo l '2 .  

Thus, we find 

trPz~ o t 2 = 1 - (1 - trPol'~) - 1 t r P  ol~ 

= (1 - t rPo l'0- ~(1 - tr e o l'~ - tr Po/~). (7.9) 

Since tr (Pl 1) = tr P o( I - / '1 )  = 1 - tr  Pl' D we get the result 

tr (Pao/z) tr (Po l~) = t - tr P o l' 1 - tr P o l~ = 2 tr P o(l'~ x I~). (7.10) 

Since the r ight-hand-side is symmetr ic  in I' 1 and l~, we have 

tr (Ph °/2) tr (P° l~) = tr (P~o/z)tr  (P o 12) = 2 tr P o (I'~ x ll). (7.11) 

Note  that  the point  21'~ × l~ is just  the intersection of the lines 11 and 12, as expected. 
W h a t  (7.11) implies is that  the probabi l i ty  of  successive, compat ib le  experi- 

ments  is independent  of the order  of the measurements .  This is a somewhat  
surprizing result in view of the nonassocia t ive  na ture  of  the oc tonion  product .  

We now come to the question of observables  [30]. First, each project ion 
opera to r  defines an observable.  In general, in the Moufang  plane, an observable  is 
defined by three one-dimensional  projections.  They can always be b rought  by an 
F4- t ransformat ion  to the form E 1, E2, and E 3 (Lemma  2). The  question arises if 
any  Jo rdan  matr ix  can be writ ten as a linear superposi t ion of three mutual ly  
o r thogona l  one-dimensional  project ion opera tors  and interpreted as an observ-  
able. The  answer  is yes, since any  element of  ds3 can be diagonalized by an F 4- 
t rans format ion  (Lemma  5). 

In order  to get a Schr/Sdinger equat ion,  we need a t ime evolut ion opera tor .  
This should t ransform or thogona l  states into o r thogona l  states and hence belong 
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to the a u t o m o r p h i s m  group  of  the o r t h o c o m p l e m e n t e d  Moufang  plane,  which is 
F 4. Some genera tor  in the Lie a lgebra  of  f 4 will p lay  the role of  the t t ami l ton ian .  

The  suba lgebra  of  complex  Jo rdan  matr ices  can be used to cons t ruc t  a 
Desa rgu ian  project ive subgeomet ry  of  the Moufang  geometry.  The  co r respond ing  
Q u a n t u m  Mechanics  can be real ized in a th ree-d imens iona l  Hi lbe r t  space. The 
subg roup  of F 4 which leaves the complex  subgeomet ry  invar ian t  is SU (3) c. J o r d a n  
matr ices  whose elements  compr i se  the six remain ing  oc tonionic  units  t ransform as 
3 and  3 under  SU(3) c. M o r e  precisely, under  the max imal  subgroup  SU(3y x SU(3) 
the represen ta t ion  26 of  F 4 reduces as 

26 = (Y, 3)@(>, 3)@0 ~, 8). (7.12) 

Hence,  it  is t empt ing  to identify SU(3) C with the color  group,  complex  Jo rdan  
matr ices  wi th  lep ton  states [18, 31], and  the o ther  with qua rk  and  an t i qua rk  states 
(note that  a pro jec t ion  o p e r a t o r  belongs to the reducible  represen ta t ion  
27 = 2 6 @  1). Since a non -Desa rgu i an  project ive  plane canno t  be e m b e d d e d  in a 
i r reducible  project ive geomet ry  of higher  d imension,  this would  mean  tha t  quarks  
have no space propert ies ,  these la t ter  requir ing  an infinite d imens iona l  geometry.  
On  the o ther  hand,  the lep ton  subgeomet ry  can hopeful ly  be embedded  in a 
consis tent  way in such an infinite geometry.  However ,  the defini t ion of  a consis tent  
tensor  p roduc t  of  qua rk  states is still an open prob lem.  
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