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Abstract. We show that for a wide class of Euclidean scalar field equations, 
there exist non-trivial solutions, and the non-trivial solution of lowest action 
is spherically symmetric. This fills a gap in a recent analysis of vacuum decay 
by one of us. 

1. Introduction 

In the course of a study of vacuum instability [11, one of us encountered the 
differential equation in four-dimensional Euclidean space, 

A@-- U'(rP). (1.1) 

Here A is the usual Euclidean Laplace operator, U is a quartic polynomial in the 
single real field ~, and the prime denotes differentiation with respect to ~b. This 
equation admitted a trivial solution, • a constant. In Ref. [1], a spherically 
symmetric non-trivial solution was constructed, and it was conjectured that this 
solution had the lowest action of any non-trivial solution. The purpose of this 
note is to supply the proof  of this conjecture. 

More precisely, we prove that, for a wide class of functions U, the non-trivial 
solution to Equation (1.1) of smallest action is necessarily spherically symmetric. 
Our proof  is valid for any number of Euclidean dimensions greater than two, 
although the class of admissible U's does depend upon the dimension 1. 

The remainder of this section is a statement of our main result with some com- 
ments on its meaning. Sections 2 and 3 consist of the proof. 

1.1. Statement of  the Theorem 

Definition. We will say a real function of a single real variable U(q~) is admissible 
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in N dimensions if: 
1) U is continuously differentiable for all q~; 
2) U(0) = U'(0) = 0; 
3) U is somewhere negative; 
4) There exist positive numbers a, b, ~, and/~ such that 

c~ < ~ < 2N/(N - 2), (1.2) 

and 

U - alO] ~ + blOl ~ >~ 0, (1.3) 

for all ~. 

The Main Theorem. In N-dimensional Euclidean space, N > 2, for any admissible 
U, Equation (1.1) possesses at least one monotone spherically symmetric solution 
vanishing at infinity 2, other than the trivial solution • = O. Furthermore, this solution 
has Euclidean action, 

S = fdNx [½(V~) 2 -~ U(~)], (1.4) 

less than or equal to that of any other solution vanishing at infinity. I f  the other 
solution is not both spherically symmetric and monotone, the action is strictly less 
than that of the other solution. 

1.2. Comments 

i) It is difficult to imagine weakening the first three of the four conditions for 
admissibility. Condition (1) ensures that Equation (1.1) makes sense, condition 
(2) is necessary if we are to have any hope of finding finite-action solutions that 
vanish at infinity, and condition (3) is necessary if there are to be any non-trivial 
solutions at all [3]. 

ii) Condition (4) is another story. It certainly cannot be dropped altogether 3, 
but it is possible that it could be weakened by better analysts than we. At any 
rate, we have stated it in the weakest form that we can, perhaps at the cost of 
making the statement somewhat clumsy. There are certainly conditions that are 
simpler to phrase and that imply our condition, though they are not implied by it. 
For example, it is easy to see that condition (4) is implied by the following: a) 
U is twice continuously differentiable, b) U'(0) > 0, and c) U is positive outside 
of some finite interval. 

iii) Because U can assume both positive and negative values, one might worry 
that S might be ill-defined, and our main theorem thus meaningless. This is not a 
problem for continuous functions [and therefore for solutions of Equation (1.1)] 
that vanish at infinity. This is because condition (4) implies that U is non-negative 

2 "Spherically symmetric" means that • is a function only of Euclidean distance from some point. 
"Vanishing at infinity" means that for any positive e the set of all points for which I~l >/e has finite 
Lebesgue measure 

3 Consider U= - ~2 
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in some neighbourhood of # = 0; hence U is a continuous function of x which is 
negative only on a set of finite measure, and the integral of U over all space is 
therefore unambiguous. (Of course, it might be unambiguously plus infinity, but 
this is no problem, since in this case we unambiguously do not have a minimum 
of S), 

iv) For certain U's, there exist a set of numbers c i, such that U(# - ci) is 
admissible in our sense for each i. In this case, we can apply our main theorem 
to solutions such that # -  c~ vanishes at infinity. We stress that although our 
main theorem tells us that in each of these classes the solution of minimum action 
is monotone and spherically symmetric, it gives us no way of comparing the actions 
of solutions in different classes. In particular, it does not exclude the possibility 
that an asymmetric solution in one class might have lower action than the 
symmetric solution of minimum action in another class. 

v) The omission of two dimensions is caused by technical details of our proof, 
not by any deep insight on our part. Our main theorem (with appropriate admissi- 
bility conditions) might well be true in two dimensions; we know of no counter- 
examples. 

vi) We should emphasize that the problem handled here is not a conventional 
minimization problem. We are not searching for a function which minimizes S; 
we are searching for a function which minimizes S restricted to its stationary 
points. If S were bounded below, these two problems would be equivalent, but it 
is not*, and therefore they are not. 

vii) It is for this reason that our first step is to reduce our problem to a genuine 
minimization problem. This is done in Section 2 below. We then handle the reduced 
problem with the standard methods of functional analysis in Section 3. 

2. The Reduced Problem 

Our first step is to divide S into two parts, 

S = T + V, (2.1) 

where 

T = ½j" dNx(V#) 2, (2.2) 

and 

V = 5dNxU(#). (2.3) 

If we define a scale transformation by 

#,(x) = ~b(x/a), (2.4) 

where tr is a positive number, then these objects have simple scaling properties: 

VErdi = ~ V [ ~ ] ,  (2.5) 

4 It is easy to see that, since U is somewhere negative, the inf imum of S is minus  infinity 
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and 

= ( 2 . 6 )  

As a first application, we observe that any solution of Equation (1.1) makes S 
stationary. Thus, in particular, S must be stationary under scale transformations; 
whence, 

(N - 2)T + N V  = 0, (2.7) 

or, equivalently, 

S = 2T /N ,  (2.8) 

for any solution of Equation (i.t). 

Definition. "The reduced problem" is the problem of finding a function vanishing 
at infinity which minimizes T for some fixed negative V s 

From Equations (2.5) and (2.6), it is obvious that if we can find a solution to 
the reduced problem for some negative V we can find a solution for any negative V; 
the solutions are just scale transforms of each other. Indeed, all the solutions 
have the same value of the scale-invariant ratio, 

R = - T (lv/u - 2)/V, (2.9) 

and the reduced problem can eqtfivalently be stated as the problem of finding a 
function with negative V that minimizes R. 

Theorem A. I f  a solution of the reduced problem exists, then, for appropriately 
chosen V, it is a solution of Equation (1.1) that has action less than or equal to that 
of any non-trivial solution of Equation (1.1). 

Proof First we shall show that a solution of the reduced problem can always 
by scale-transformed into a solution of Equation (1.1). A solution of the reduced 
problem 4~ is a function which stationarizes 

S' = T + )~2V, (2.10) 

where ,U is a Lagrange multiplier. By the same arguments as those which led to 
Equation (2.7), 

5 We emphasize that in defining the reduced probtem we do not necessariIy restrict ourselves to 
continuous functions. The minimizing function is indeed continuous (because it is a solution to an 
elliptic partial differential equation), but this is something we prove, not something we assume. However, 
one might worry that, in the absence of a continuity assumption, V, and therefore the reduced problem, 
might be ill-defined. In fact, this is not a problem; the argument is as follows: (1) if • vanishes at infinity 
and T is finite, then a standard Sobolev inequality implies 45 is in L ~N/~N'-2~. (2) It is trivial that there 
exists a positive constant d such that 

a l <  o - bt l + dL t >-- 0. 

(3) Adding this to condition (4), we find 

u/> - dl~l 2~z~-=>. 
Thus the integral of the negative part of U is finite 
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(N - 2)T + ,~2NV = 0. (2.11) 

Because T is positive and V is negative, 2 2 must be positive and our notation is 
not deceptive. Then the scale transformed function 4~;. is a solution of Equation 
(1.1). 

We shall now show that the solution we have constructed has S less than or 
equal to that of any solution of Equation (1.1). Let ~ be some non-trivial solution 
of Equation (1.1). Since ~ is non-trivial, T [ ~ ]  is not zero, and, by Equation (2.7), 
V I i i  is negative. Now, let • be the solution to the reduced problem with 

V[45] = V[~5]. (2.12) 

By the definition of the reduced problem 

T[q~] ~< T[433. (2.13) 

Comparing Equations (2.7) and (2.1 1), we see that 

)o ~< 1. (2.14) 

As before, ~;. satisfies Equation (1.1). But 

T[~z]  = 2(N-2/2)T[~] ~< T [ ~ ] .  (2.15) 

Thus, by Equation (2.8), 

SIVa] ~< S[~] .  (2.16) 

This completes the proof of Theorem A. 
It is clear from this proof that Theorem A is valid for a system of many coupled 

scalar fields. Unfortunately, the same is not true for the rest of our argument, 
which is very much restricted to the case of a single field. 

3. Analysis of the Reduced Problem 

Theorem B. There exists at least one solution to the reduced problem. All solutions 
to the reduced problem are spherically symmetric and monotone. 

Theorems A and B imply our main theorem. The argument for Theorem B is 
somewhat lengthy, and thus we have organized it as a long sequence of statements 
with short proofs. 

We begin by reminding the reader of our fourth condition on the function U: 
that there exist positive number a, b, ~, and/~ with 

2N/(N - 2) > fl > a, (3.1) 

such that 

U - a I + b i l l  ' >-- 0 (3.2) 

Statement 1. For any function ~ such that V I i i  is negative, 

fdNxl ~ f >~ b f dNxl ¢[~- (3.3) 
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Proof Integrating F~uation (3.2), we find 

bfdNxl4)l ~ > afdNxtq~t~-- V[~] .  (3.4) 

But V is negative. 

Statement 2. For any function q~ such that V[~]  is negative, and for any 7 > fi, 

f dSxt~t '  >~ ( b  )('-~)/(#-~)S dNxt~l~. (3.5) 

Proof By H61der's inequality, 

Combined with Statement 1, this yields the desired result. 
Having established these preliminary inequalities, we can now begin our 

attack on the reduced problem. Since T is a positive functional, it is bounded 
below on the set of all functions with fixed negative V, and thus has a greatest 
lower bound, inf T. Thus we can construct a minimizing sequence, an infinite 
sequence of functions ~, ,  such that V[~, ]  is a fixed negative number and such 
that 

lim T[~ , ]  = Inf T. (3.7) 
n - - *  o9  

Our task is to show that we can choose the elements of the minimizing sequence 
such that they converge to an actual minimum of T. 

It will be convenient to choose the elements of our minimizing sequence to 
be differentiable functions of compact support. (It is easy to see that this is always 
possible.) Of course, this does not imply that their limit (if it exists) is such a 
function. 

Statement 3. Either there exists a minimizing sequence such that ~b,(x) is greater 
than or equal to zero for all n and all x, or there exists a minimizing sequence such 
that ~n(x) is less than or equal to zero for all n and all x. 

Proof. Any function can be written as the sum of its positive and negative parts: 

• (x) = + (x),  (3.8) 

where 

• +(x) = max {~(x), 0}, (3.9a) 

and 

_ (x) = min {~b(x), 0}, (3.9b) 

Clearly, 

T[~b] = TIc0+] + T [ ~ _ ] .  (3.10) 

Also, because U(0) = 0, 

v i i i  = + (3.11) 
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Now let us construct the scale-invariant ratio of Equation (2.9), 

R[q~] - - (T[~+]  + TEq~_]) N/(N-2) 
V[q~+] + V[~_] (3.12) 

From this, it is easy to see that either 

R[~] ~>R[~+] if V[~_]  >/0, (3.13a) 

R[q~]/>R[4~_] if V[~+] ~>0, (3.13b) 
o r  

R[q~l>~min{R[Cb+],R[~]} if V[~b+]<0. (3.13c) 

These inequalities must be obeyed by each function in a minimizing sequence; 
thus, either the minimizing sequence has an infinite subsequence for which 

R[~b,] ~> R[q~,+], (3.14a) 

or it has an infinite subsequence for which 

R[~,]  ~> R[q~,_]. (3.14b) 

For the moment, let us assume it is the first alternative that prevails. The subse- 
quence is then a minimizing sequence for which Equation (3.14a) holds throughout. 
We now define a new sequence of functions ~',, where each ~', is a scale transform 
of q~, +, with the scale transformation chosen such that 

V [ ~ J  = V[45 ]. (3.15) 

But, by Equation (3.14a), 

T[q~;] ~< T[q~,]. (3.16) 

Thus we have constructed a minimizing sequence composed exclusively of non- 
negative functions. Identical reasoning applies if (3.14b) holds for an infinite 
subsequence. 

To keep our arguments as simple as possible, we will assume from now on that 
we are dealing with a minimizing sequence composed of non-negative functions. 
The arguments for the alternative case can be constructed trivially by replacing 
4~ by - • everywhere. 

Statement 4. There exists a minimizin 9 sequence such that q~,(x) is spherically 
symmetric and monotone for all n. 

Proof We remind the reader of the definition of the spherical rearrangement 
q~ of a non-negative function ~. q~R is a spherically symmetric function, monotone 
decreasing as one moves away from the origin, such that, for any positive number 
M, 

/z{x I ~R(x) ~> M} = #{x t q~(x)~> M}, (3.17) 

where/~ denotes the Lebesgue measure. It is trivial that 

V [ ~ ]  = V[~].  (3.18) 
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It is not trivial, but it is known [4], that 

T[~R] ~ T [ ~ ] .  (3.19) 

Thus, the spherical rearrangement of our minimizing sequence is a minimizing 
sequence. 

For spherically symmetric functions, it is a wise policy to rewrite things in 
terms of spherical coordinates. We define y by 

r = exp [y], (3.20) 

where r is the usual distance from the origin. We also definef,(y) by 

f ,  = ~b, exp [½(N - 2)),]. (3.21) 

It is easy to see that 

1 df,, 2 2)2f2],j T[~J=CN~dy fg (~y  ) ( N -  + g (3.22) 

where C N is a positive constant, the result of integrating over angles. 

Statement 5. There exists a minimizin 9 sequence of non-negative spherically 
symmetric monotone functions such that all of the followin 9 are uniformly bounded 
from above: 

~dy(df,,/dy) 2 , (A) 

i dyf 2 (B) 

if.(Yl) -f.(Y2) t (C) 
JY~ - Y2 4 ~/~ ' 

If.(Y)], (D) 

I dNx ] @. l 2N/('- 2), (E) 
SaNxL .I (v) 
(This motley collection of bounds is arranged in this order because each is 

a consequence of the preceding ones, as we shall see.) 

Proof It is trivial that one can choose a minimizing sequence such that T is 
bounded; bounds (A) and (B) then follow from Equation (3.22). Bound (C) then 
follows from bound (A) and the Schwarz inequality: 

,2 )[ 
l f,(Yl) --f,0'z) l = f dy(dfjdy 

)'2 1/2 Y2 1/2 

<- ~ dy(dfffdy) 2 f dy (3.23) 

Y2 1/2 [1/2 ~ dY(df.tdy) 2 l Y e -  Y2 • 
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Becausef,(y) vanishes at infinity, 

= ~ <~ Sdy[f~ + (df,/dy)2], [ f,(yl)[2 2 dyf,(dfJdy) 
o 

from which bound (D) follows. Bound (E) is now immediate6: 

SdNxI~,,]zu/(N-2)= ~dylf.[2N/(u-z, ~< sup ] f .  I4/(N-2)~dy] Li2" 

Bound (F) is a consequence of bound (E) and Statement 2. 

(3.24) 

(3.25) 

Statement 6. There exists a minimizing sequence of spherically symmetric functions 
and a bounded eontinuous function f sueh that 

lira f,(y) = f (y ) ,  (3.26) 
n--~ oo 

pointwise for all y and uniformly on any finite interval. 

Proof By bounds (C) and (D), the minimizing sequence is a family of uniformly 
bounded equicontinuous functions; Ascoli's theorem then asserts the existence of 
a subsequence with the stated property. 

If we define (b by 

= / e x p  [ - ½(N - 2)y], (3.27) 

then Statement 6 tells us that 4~, converges to • pointwise almost everywhere 
(that is to say, except possibly at the origin). Because f is bounded, ~b vanishes 
at infinity. Note that we have not yet shown that @ is not zero. 

Statement 7. For the minimizing sequence of the preceding statement, 

lim 5dNxl .l ydNxl (3.28) 

Proof 

I dnx I~ , f  = CNSdy[f, f e x p [ (N  -½f l [N - 2])y] -- CNfdyh.(y ). (3.29) 

We break this integral into three parts: 

Yl y 2  

fdyh,(Y) = 5 dyh,(y) + I dyh,(y) + ~ dyh,(y), (3.30) 
-- co Yl Y2 

where Yl and Y2 are numbers we shall fix shortly. Now, 

t '~ ~ supl f.[~ exp[(N - ½fi(N - 2))yl] dyh,(y) (3.31) 
_ N - ½/ (X - 2 )  

Thus the first term in Equation (3.30) may be made as small as we please, uniformly 

6 We are aware that bounds (C), (D), and (E) are standard Sobolev imbedding theorems [5], but, 
since they are easy to prove, we chose to include explicit proofs here 



220 S. Coleman et al. 

in n, by choosing Yl sufficiently large and negative. Also, 

dyhn(Y ) <~ C~1 sup i j~ i¢-~e-~tN-2)(#-a)y2~dN X I ~ n I~. (3.32) 

Thus the last term in Equation (3.30) may also be made as small as we please, 
uniformly in n, by choosing Y2 sufficiently large and positive. Finally, 

Y2 Y2 

lim ~ dyh,(y) = ~ dy lft ~ exp[(N - ½fi[N - 2] )y], (3.33) 
n - *  O0 Yl Yl 

by Statement 6. 

Statement 8. For the minimizing sequence of the preceding statement, 

V[~] ~< V[q~,]. (3.34) 

(Remember: V[~b,] is independent of n.) 

Proof From Equation (3.2), 

Thus, by Fatou's Lemma, 

V I i i  + b~d'Vxlq~[ ~ ~ lim [V[~,,] + b~dNxt(~,[ p] 
n - ~ o o  

= V[~,] + b~d~x[~t p. (3.35) 

We now know that ~b is not zero. 

Statement 9. For the minimizing sequence of the preceding statement, 

T[~]  ~< lim T [ ~ ] .  (3.36) 

Proof T can be thought of as defining a Hilbert space norm. In terms of this 
norm, our minimizing sequence is a sequence of bounded vectors; such a sequence 
always has a weakly convergent subsequence. Statement 9 is then just the well- 
known proposition that the norm in Hilbert space is weakly lower semicontinuous. 

Statement 10. The function 49 defined above is a solution of the reduced problem. 

Proof By Statements 8 and 9, 

R[~0] ~< lim R[q~n]. (3.37) 

But the limit on the right is the infimum of the scale-invariant ratio R. Thus, 
"less than" is not a possibility, and q~ must attain the infimum, that is to say, 
be a minimum of R. 

Thus we have almost proved Theorem B; we have constructed a monotone 
spherically-symmetric solution of the reduced problem. However, the remainder 
of Theorem B, the non-existence of non-spherically-symmetric (or non-monotone) 
solutions, is trivial, since it is known [4] that T for any function is equal to T for 
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the spherical rearrangement of the function only if the original function is spheri- 
cally symmetric and monotone. This completes the proof. 
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