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Abstract. We prove the existence of isometric and unitary dilations of a class 
of semi-groups of completely positive maps on an algebra of operators on a 
Hilbert space. The result has relevance to the problem of embedding an open 
quantum mechanical system in a closed one. 

§ 1. Introduction 

Empirical semi-group laws for the irreversible evolution of the state of a quantum 
mechanical system have been remarkably successful in a variety of applications 
[1, 2, 8, 14]. This has encouraged some workers to propose axioms for dynamical 
semi-groups [10, 12, 7]. From the point of view of fundamental theory such semi- 
groups are by themselves unsatisfactory: the conventional position is that the 
laws of quantum theory prescribe the time-reversible evolution of a closed systero~ 
and irreversible behaviour enters only when the evolution is restricted to an 
open sub-system. The time-reversible evolution of a closed system is described 
by a strongly-continuous one-parameter group of unitary operators on a Hilbert 
space. The question then arises: is a given irreversible dynamical semi-group the 
restriction to an open subsystem of a time-reversible evolution of a closed system? 
The purpose of this paper is to formulate this question mathematically and to 
answer it in the affirmative for a class of dynamical semi-groups which have 
interesting applications. 

From the mathematical point of view we prove results for semi-groups of 
completely positive normal maps of W*-algebras which are analogues of 
Sz6kefalvi-Nagy's dilation theorem [17] for semi-groups of contractions on 
Hilbert spaces and Stroescu's dilation theorem [16] for semi-groups of 
contractions on Banach spaces. Some results in this direction were obtained by 
Davies [5]; his proof was based on his theory [4] of quantum jump processes. 
We adopt his construction of a semi-group of isometries but our proof uses only 
the perturbation theory of semi-groups on a Banach space. 
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§ 2. Dilations of Dynamical Semi-Groups 

A dynamical semi-group on a W*-algebra M is a semi-group {Tt:t~0} of com- 
pletely positive normal maps of M into itself such that: 

(i) To=i~, (ii) Tt(1)=l for all t>0 .  
A dynamical semi-group is said to be weakly continuous if lira (Ttm, p ) =  

t--, 0 + 

(m, ~0) for all m in M and all q~ in the pre-dual M .  of M; if Tt is weakly continuous 
then the pre-adjoint semi-group .Tt, defined on M.,  is strongly continuous and 
hence has a densely-defined generator (Yosida [18], p. 233). (Whenever A : M - , M  
is a(M, M.)-continuous we denote by .A :M. - - .M.  its pre-adjoint, defined by 
(Am, ~o) = (m, .Aq~) for all m in M and (p in M..) A dyanmical semi-group T t is 
said to be norm-continuous if lim I l r t - l l t - - 0  in which case T~ itself has a 

t--*0 + 

a(M, M.)-continuous bounded generator L so that Tt=e tL. Lindblad [12] has 
shown that the generator L of a norm-continuous dynamical semi-group T t on 
the algebra N(YF) of all bounded operators on a separable Hilbert space d f  can 
be put in the form 

L(m)= i[H, m] + V(m)-½{ V(1), m} (2.1) 

for all m in ~(Y) .  Here H is a bounded self-adjoint operator on 2(f and V :N(JF')~ 
N(J(F) is a completely positive normal map so that, by Kraus [11], there exist 
bounded operators Ai, i=  1, 2 . . . .  on Jr" such that 

V(m)= ~ Vi(m), Vi(m)=A*mAi, (2.2) 
i = 1  

for all m in N(~ff). 
Let Yf be a Hilbert space and let 2~ be a yon Neumann algebra contained 

in 2(YF). Let e: M~dV/be an embedding of M in N/such that e(M) is a W*-algebra 
on Yf (see Sakai [15], 2.7.5), and let N :/~--,M be a conditional expectation such 
that N oe = i M (i.e. N is a completely positive normal map of AI onto M such that 
(i) I lgt l=l ,  (ii) g ( f ) = l ,  (iii) N(m(eoN)(m'))=N((eoN)(m)m')=N(m)N(m') for all 
m, m' in MT). Let {G~ : t>0} be a strongly continuous semi-group of isometries 
on Yt ~ such that G*MGt c M for all t > 0. Then (Gt, e,/~, N) is said to be an isometric 
dilation of the dynamical semi-group (T~, M) if for all t > 0  and all a in M 

(eo Tt)(a ) = G* e(a)Gt . (2.3) 

Remark. Equation (2.3) cannot hold for Gt unitary unless T, is a homomorphism 
of M. Let {Ut :t~lR} be a strongly continuous group of unitary operators on d/f 
such that U*/~Ut _c_ 1~ for all t>0.  Then (Ut, e, ;vI, N) is said to be a unitary dilation 
of the dynamical semigroup (T,, M) if 

T,(m) = N(U* e(m) Ut) (2.4) 

for all t=>0 and all m in M. Notice that if a dilation exists then so does a minimal 
one; in the isometric case take M-to be {G*e(M)Gt:t>O}" and in the unitary 
case take fi/i to be {U*e(M)U~'t>O}". 

First we prove the existence of isometric and unitary dilations of a norm- 
continuous dynamical semi-group ~ on the algebra .~(~f) of all bounded operators 
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on a separable Hitbert space J~fP. Then we relax somewhat the conditions on both 
the semi-group and on the algebra. 

Theorem 1. Let 2,f be a separable Hilbert space. Let { T t: t >0} be a norm-continuous 
dynamical semi-group on N ( Y ) .  Then there exists an isometric dilation (Gt, el, M 1, 
N1) of (Tt, ~(J{')). 

Proof. We have seen that the generator L of Tt has the form (2.1) where V is given 
by (2.2). Define ZEN(Y)  by 

Z =  - i H  -½V(1), (2.5) 

so that {Bt = etZ:t > 0} is a contraction semi-group on Y and (St t ~ 0}, defined by 

St(m) = B*mBt (2.6) 

for all m in ~6,~), is a contraction semi-group on N(Y) with generator Lo given by 

Lo(m) = Z*m + mZ  (2.7) 

for all m in N(X/f) so that 

L = Lo + V. (2.8) 

Hence T~ and St are connected by the perturbation formula (Kato [9], p. 495) 

t 

~(m) = St(m) + I (St-~o V o Ts)(m)ds (2.9) 
0 

for all m in N(X). The pre-adjoint semi-groups ,Tt and ,S t on the pre-dual of 
N(~U) (which we identify with the Banach space J ( X )  of trace-class operators 
on ~ )  satisfy 

t 

. T,(O) = ,St(o) + l ( ,  Ts °,  V o,S,_ s)(o)ds (2.10) 
0 

for all ~ in J ( Y ) .  Because of the particular form (2.2) of the perturbation V we 
can write the yon Neumann series for (2.9) and (2.10) in an unfamiliar but useful 
way (cf. Davies [4, 5]). 

Let X~ be the set of all sequences {(xi, ti)e N x (0, oo) :0 < tl < t2...} regarded 

} as a Borel subset of Nx(0,  oo) in an obvious way, let Y~ be the Borel 

subset of Xo~ consisting of all sequences of finite length and, for each t>0,  let X t 
be the Borel subset of X~ consisting of all finite sequences {(x i, t i ) :0<t  1 <t2. . .  
t ,<t} .  For each t > 0  there is a Borel isomorphism 2t:Xt x Y ~ Y ~  defined by 

t n m {(Xi, i)}i=l,{(yj, sj)}j=l~-+(Xl, tl),...,(Xn, tn),(yl, s l+t)  . . . .  ,(ym, Sm+t). (2.11) 

The inverse map is given by 

s " {(Yi, s l -  t)}7=p+ 1 (2.12) {(y~, ~)},= 1 ~+{(y. s~)}~= 1. 

where p is the unique integer such that sp < t < sp+ 1. We denote by X 0 the subset 
consisting of the single sequence z of zero length. We define a measure #t on Xt 
given by the product measure constructed from cotmting measure on each 
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component N and Lebesgue measure on each component (0, oe); we assign Dirac 
measure to the point z s X t .  We define a measure #~ on Yoo in an analogous fashion. 
For each w E X  t define ( , S , V , S ) ( w )  by 

( , S ,  V,S)(w) = ,S,~ o, Vx~ o,S,2_~ o, Vx... , Vx, o,&_ ~,, ; (2.13) 

where w = {(x i, ti): 0 < t i <.-- t, < t}, then the Neurnann series 

t 

, Td~) = ,Sd~) + f (,St1 ° ,  V o,S t_ q)(o)dtl 
0 
t t 2 

2V I f ( ,S t ,  o, V o,5,2_, ,  o, V o ,S ,_  t2(e)dtldt 2 
0 0 

+. . .  (2.14) 

can be written as 

, Tt(o) = I ( , S ,  V,S)(w)(o)dt~,(w), (2.15) 
Xt 

and the adjoint series can be written as 

T,(m)= j" [ ( , S ,V ,S ) (w) ]* (m)dMw) .  (2.16) 
Xt 

Define the operator Gt on L2(y~; Y )  for t > 0  by 

(G,~p)(w) = (BaB)(w~),p(w,), (2.17) 

where 

(w~, w,)= 2[ t(w) (2.18) 

for we Y~, and (BAB)(w')eN(Jf) is defined by 

(BAB)(w') = B, IA~B,z_ , IA ,  . . .Ax B t_,. (2.19) 

for any w'= {(x~, h ) : 0 < t ,  <tz . . .  < t , < t } ~ X , .  

We prove next that { G : t  > 0} is a strongly continuous group of isometries on 
L2(y~o; ~f'). We have 

(G,~(G~q~))(w) = (BAB)(wh)(Gt2tp)(w t ,) 

= (BAB)(wh)(BAB)(w q &)~p(w,,,~=) 

= (BAB)(w~)tp(w,,+ t2) 

= (G< +,2~#)(w) (2.20) 

where we have used the following immediate consequences of the definitions: 

(BAB)(wr~)(BAB)(w,I&) = ( B A B ) ( w ~ ) ,  (2.21) 

w,~,, = wt~ +,~ . (2.22) 
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We check that Gt is an isometry using (2.15) and the observation that the measure 
~ is the product of the measures #t and #~ under the Borel isomorphism )~ of 
X t x Y~ with Yoo : 

(GriP, Gt~) = I ((BAB)(w/),p(w,), (BAB)(w-f)~(wt))dll~(w) 
Y~ 

= S S trace([(BAB)(wt)]tp(wt) ® tp(wt) [(BAB)(w0])* 
Y~ Xt 

"d,u,(wOd#~(wt) 

= I trace( .( (, S ,  V,S)(wr)Op(wt) ®,p(w~))d#,(wO)d# ~(wt) 
Y~ X~ 

= I trace (, T~(~(wt) ® ~(w~))d#~(wt) (2.23) 
Y~ 

where we have used the positivity of the integrand to interchange the trace and 
integration operations. 

But T~(1)= 1 implies trace (,Tt(~))= trace(~) so 

(Gw,  GriP) = [. (~(wt), ~(wt))d#~(wt) = (~,  ~P). (2.24) 

Since we have shown that (G~'t~0} is a semi-group of isometries it is enough 
to check that it is weakly continuous at the origin on elements of the form f ( - )k  
where f ( . )eL2(Y~)  and k e f .  This follows using the observation that 
#t{Xt \{z}}  = te t. 

Now take M '  to be L ~ ( Y ~ ; ~ ( f ) )  which is a W*-algebra with pre-dual 
1 1 . M , = L  (Yo~,J(~r)) (Sakai [15], 1.22.13); the mapping f ® a - ~ f ( . ) a  can be 

extended uniquely to a W*-isomorphism of L~(Y~) (~ ~ ( X )  onto L~(Y~; ~ (~ ) ) .  
The predual of L°~(Y®)~(~C) is L ' ( Y ~ ) ® r J ( ~ ) ,  the projective tensor product, 
which we identify with L I ( Y ~ ; J ( S ) ) .  We make use of the embedding with 
ei : M ( X ) ~ M  1 defined by 

el(a) = 1 ® a, (2.25) 

where 1 is the constant function in L~(Y~o); we use the conditional expectation 
Ni  :M i - + ~ ( X )  defined by 

N~(m)=m(z) . (2.26) 

We note that 

(,e0(q~)= I ~(w)d#~(w), 

~ (2.27) 
( ,N  O(e)=,5~®~ . 

Next we check that G*M1GtC=M 1 for all t=O. For this we require the explicit 
form of the action of G* on a vector ~p; we get this by inspecting (Gt~o, dp) for 
arbitrary ~b: 

(Gtq), q~) = I I (BAB)(wT)tp(wt), q~(2,(wr), w,))d#t(w~)d#~(wt) 
Yo~ Xt 

= I I ~P(wt), [(BAB)(w~)]*~b(2~(w~, wt))d#jwr)d#~(wt). 
Ym Xt 
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Hence G* is given by 

(G*O)(w) = l [(BAB)(w')]*(a(2,(w', w))d#,(w'). (2.28) 
Xt 

In what follows we use the notation w ~ to denote 2~(w', w) where w'~X~ is a running 
variable of integration and remark that w~r=w ', and wtt=w. Now we take a(.)e 
L°~(¥~o; ~(X))  and compute G*a(.)Gr as an element of ~(LZ(Y~o, ~ ) )  and show 
that it lies in L~(Y~; ~(~ff)): 

(G*aG,~p)(w) = S [(BAB)(w')]*(aG,~p)(wt)d#t(w ') 
Xt 

= I [(BAB)(w')]*a(wt)(BAB)(w~)~P(w~)d~t(w') 
Xt 

= S [(BAB)(w')]*a(wt)(BABXw')tP(w)d~,(w ') 
Xt 

= S [( ,S ,  V,S)(w')]*a(w')d#,(w')~p(w). (2.29) 
Xt 

But 

(G*aG,)(w) = ~ [ ( ,S ,  V,S)(w )] a(2t(w, w))d#~(w') (2.30) 
Xt 

lies in L°~(Yo~; ~(~(')) and so G*M1Gt~M 1. 
Now put a ( . ) = l ( . ) ® m  where m6~(J((); we have 

(G*t el(m)G,)(w)= l(w)@(x~ [(,S,V,S)(w')]*d#t(w'))m 

= l (w)® T~(m) (2.31) 

by (2.16). Thus we have proved 

el(Tt(m)) = G'el(re)G,. (2.32) 

Theorem 2. Let 2/t be a separable H ilbert space. Let { T t : t >= 0} be a norm-continuous 
dynamical semi-group on N(2U). Then there exists a unitary dilation (Ut, e, )~, N) 
of  (Tt, ~(J{)). 

Proof. Let (Gt, ei, M 1) be the isometric dilation of (T,, ~(Jg)) of Theorem 1. Then 
by Cooper [3] (see also Masani [13]) there exists a Hilbert space ~f, an isometric 
embedding W:L:(Y~,J~f f )~W and a strongly continuous group {Ut:tEIR} of 
unitary operators on W such that for t > 0 we have for all ~p in Lz(Yo~;)ff) 

WGt~p = Ut W~p . (2.33) 

It follows that for t > 0 we have 

Gt= W*U, W , (2.34) 

and 

G* = W* U~* W. (2.35) 

Put ] ~ =  {U*e2(M~)Ut "t>= 0}" where e 2 :M a ~N(~gt') is defined by 

e2(a ) = WaW* (2.36) 
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and N2 :/VT~N(La(yo~ ; Sf)) be the conditional expectation given by 

N2(m)= W * m W .  (2.37) 

Then we have to show that N2(i-)= 1 and that N2(lVI)__c M 1. By (2.34) and (2.35) we 
have for t > 0  and x in M 1 

N2(g*~e2(x)Ut) = W* Ut* W x W *  Ut w (2.38) 

= G*xGt, 

which we saw is in M 1. For  n >  1 and t~>0, i = 1 , 2  . . . . .  n, we define a, by 

- -  * * e  a , -  N2(Utt ez(xOUt, Ut2 2(x2)Ut2... U * t . e 2 ( x n ) U t . )  • (2.39) 

We have 

- *x * x * (2.40) a , -  G,, 1 Gt2Gt~ 2Gt3Gt2... Gt._, x . G t .  

where we have used the observation that for all s, t > 0  

W UtUs W = G s  Gt. (2.41) 

(For t > s  we have W * U t U * W = G t _  s but GsGt_~=G t so that Gt_~=G*Gt since 
G~ is an isometry; an analogous calculation works for s>  t.) We have to show 
that a, lies in M 1. In order to be able to use induction we define b, for n > l  by 

b _ C * x  c * c  x G * c  .XnG*+IG t (2.42) - -  ~'~t 1 1 ~ t 2 ~ J t l  2 t 3~J t2  " " n 

and notice that bnlt.+l=o=a,. 
We have by direct calculation of the kind used in the proof of Theorem 1 

"" w w2 d " (b14)(w)= I I 1)l(w', w , w)4( t,) P,(w')d#t2( w ) (2.43) 
X q  X t  2 

where 

- -  ! tt b t (w, w ; w) = [(BAB)(w')]*x I(w'~)[(BAB)(w")]*(BAB)(w'lt~r~ ) . (2.44) 

Suppose that for n > 1 we have 

(b,O)(w) . . . .  I I b,(w ' , ..., w ("+ l); w)4(w"t~ ..,t"+~t.)d#,,(w' ) 
Xt l  X t n  + 1 

...d#t.+,(w~,+ 1)) ; (2.45) 

then 

" t n  - i i n )  
bn(w ' , , , ( n +  1 ) .  u,]['v" I'~ * ~r  r]l'~(W t i t 2  tn tn+ 1 (b,+l~b)(w)= I I - ' . . . . . .  ~ vv ~ r v l \ ~ r l +  J. x J t n  + 2 ~ t n  + 1"1"]\ t l  " " 

X t l  X t n  + 1 

d/~(w').., d#t~ + ,(w <n + 1)) 
tt tn+ 1 t n ~ 2  = b,+ l (w,  w , w)4)(wW~,... I I - ' . . . .  w ~ " + 2 / ;  , °  , ° + )  

Xt l  X t n  + 2 

d#t l(w').., d#t. + ~(w ~"+ 2)) (2.46) 

where 

F - -  , - , . . . ,  . ' - + , , ° )  ,+l(w . . . . .  w("+2); w)=b,(w , w(,+ 1); W)Xn + l(wtlt2t,.. 

x[(BAB)(w(,+2))] ,[(BAB)(wW~ ... t.+~_,.+ ~.~q. (2.47) 
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But (2.45) holds for n=  1 and hence by (2.46) for all n>  1; evaluating (b,q~X w) at 
t, + 1 = 0 we have 

t t n  (a,4))(w) = S .., ~ b,(w . . . . .  w ~"), z; w)4)(w~'t2tl.., t,_~,,)d#t~(w )...d#~,(w (")) .(2.48) 
X t  I X t ~  

But it follows directly from the definitions that 

t~2 t, - w (2.49) 
t,,~ t l  " * " t n  - i t n  - -  

so that 

(a,O )(w) = 8,(w)4)(w) (2.50) 

where 

~7,(w)= f --- J" b,(w', .... w ("), z; w)d#,l(w')...dlzt,(w ~")) (2.51) 
X t  1 X t  n 

which lies in M 1, and by continuity we have N(M)_-_ M z. We complete the proof 
by putting e=ezoe 1, N = N l o N 2 ;  then N( [ )= I  and 

N(U* e(m) Ut) = Tt(m), (2.52) 

and it is easily checked that N is a conditional expectation. 

Remark. The map t ~  U*. U t is weakly continuous. It cannot be norm-continuous 
even though t--, Tt is unless Tr is a homomorphism of M. Indeed, suppose t ~  T~ 
is strongly continuous with generator L, suppose t ~  U*. U~ is strongly continuous 
with generator 6, and Z=N(6)c~M is a core for L (that is, L=(L]z)-);  then for 
x ~ ( f ) ~ M  we have 

L(x) = (NocSoe)(x) (2.53) 

so that L is a derivation and hence ~ is a homomorphism (Evans [63). 
Inspecting the proofs of Theorems 2 and 3 we see that they still work if we 

relax somewhat the hypotheses on the continuity of t-~ T t and on the algebra M. 
We have in fact proved the following 

Theorem 3. Let ~ be a weakly continuous dynamical semi-group on ~(~V) where ~U 
is a separable Hilbert space. Suppose that 

(i) there exists a strongly continuous contraction semi-group B~ = e zt on au{ whose 
generator Z is a bounded perturbation o f  a self-adjoint operator, and a completely 
positive normal map V : ~ ( ~ ) ~ ( S )  such that 

! 

T,(m) = St(m) + I (T  t-~o V oS~)(m)ds 
0 

for all m in ~ ( J f ) ,  
(ii) V has a decomposition V(m) = ~ A ' m A r l y ( x )  where (X, v) is a a-finite 

X 

measure space and x ~ A~ is weakly measurable. 
Then if  M is a yon Neumann algebra on 345 such that Ax lies in M for v a.e. x in 

X and i f  B * M B  t C= M Jbr all t >_ 0 the conclusions of  Theorems 1 and 2 hold. 

Remark. The unitary dilation theorem for a family of completely positive maps 
indexed by the elements of a group which was recently proved by Evans [6] does 
not overlap with the above results. 
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