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Abstract. We develop the statistical mechanics of unbounded n-component 
spin systems on the lattice 27 interacting via potentials which are superstabte 
and strongly tempered. We prove the existence and uniqueness of the infinite 
volume free energy density for a wide class of boundary conditions. The 
uniqueness of the equilibrium state (whose existence is established in general) 
is then proven for one component ferromagnetic spins whose free energy is 
differentiable with respect to the magnetic field. 

1. Introduction 

The study of continuous unbounded spin systems on a lattice has received great 
impetus in recent years from its close connection with Euclidian quantum field 
theory [1, 2]. While the applications to field theory require the passage to the 
limit of zero lattice spacing which poses great difficulties (yet to be overcome for 
the physically interesting situations) the lattice results are of interest in their 
own right and many of them carry over, more or less directly, to field theory once 
the existence of the latter is proven. Indeed certain lattice results are very helpful 
in proving the existence of the corresponding field theory. 

In this paper we develop the general statistical mechanical theory of such 
systems: making use of what was done for continuum particle systems and Ising 
systems in the last decade [3, 4]. For this reason we consider interaction potentials 
of fairly long range and not necessarily of ferromagnetic type, although these are 
not currently of interest in field theory. We do however restrict ourselves es- 
sentially to pair-wise interactions; all higher spin interactions would have to be 
bounded. More general many spin interactions can be dear with by an extension 
of those methods [5] but they will not be considered here. 

Our main results are: a) the existence and uniqueness (independence of 
boundary conditions) of the infinite volume free energy density F, b) the existence 
of infinite volume "regular" equilibrium states as limits of finite volume Gibbs 
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states and as solutions of the DLR equations and c) the existence of a unique 
regular equilibrium state for one component ferromagnetic systems at all values 
of the magnetic field h at which ~?F/Oh exists. Part c) is an extension of the result 
of Lebowitz and Martin-L6f [6] for spin-~ Ising systems and implies in particular 
that for ferromagnetic systems satisfying the Lee-Yang theorem there is a unique 
regular equilibrium state whenever h + 0. No comparable results have yet been 
derived for field theory: only equivalence of a few boundary conditions has been 
shown so far [1, 2, 7]. It seems reasonable to expect however that our stronger 
results also hold in field theory. We might even hope that the connection between 
properties of the free energy and equilibrium states extends to more general 
systems [8]. 

Notation and Assumptions. We consider the lattice ~7' at each site of which there 
is a vector spin variable Sx, x s  2g v, S~e IRd. Each Sx has associated with it an intrinsic 
or free, positive measure #(dS), the same for all sites, and we will consider both 
interactions between the spins as well as self interactions. We use the following 
notation, essentially the same as in [5]. 

Definition 1.1. A configuration of spins in Z~ is a function S : 2 ~ I R  e with values 
S~ at x~2g ~. SA, AC2g v, is the restriction of S to A and denotes a configuration of 
spins in A. We denote by X(A) the configuration for the region A. Both X and 
X(A) are topological spaces for the product topology of IR a. 

Definition 1.2. For x =(x 1 . . . . .  x~), S = ( S  1 . . . . .  S e) 

Ix] = max [x i] ISI = (S~) 2 • 
l<_i<_v 

A and A will hereafter denote bounded sets in ~ .  

Definition 1.3. We assume ~t to be a Borel measure on IRe and 

~l~(dS)e - ~  for every ~ > 0 .  (1.1) 

Definition 1.4. The energy is a real function U on the configurations of all A 
satisfying the following conditions: 

(a ~) U(SA) is a Borel function on (IRe)a. 
(a 2) U is invariant under translation of ~'.  
(b) Superstability. There are A > 0  and c~IR such that for every S a 

U(SA) >= Y~ [ A S ~ -  d .  
x~A 

(c) Regularity. Let A 1 and A 2 be disjoint sets in 2g ~ with A = A 1 u A  2 and S A 
a spin configuration in A with restrictions SA~ and SA~ in A~ and A 2 respectively. 
The interaction between the spins in A~ and A 2 is defined as 

W(SA~ IS m) = U(SA)- U(SA~)- U(SA~). (1.2) 

The following regularity condition is assumed for the interaction. There is a 
decreasing positive function on the natural integers such that 

]W(SAIISA2)I~½ E E T([x-Yl)($2+$2) (1.3) 
x~AI y~A2 
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with 

~(r) < Kr-~ -~ (1.4) 

for some K and e > 0. 

Remark. Many results in this paper hold also with a regularity condition weaker 
than Definition 1.4 (c), namely 

~(lxl) < + oo. (1.5) 
X~Z v 

In particular the basic estimates in [4, 5] are proven under the assumption of 
Equation (1.5). We actually need Equation (1.4) only when we fix the external 

2<~  spins in Sections 3, 4, 5, as Sx=alog]xl.  Equation (1.4) implies then that the 
interaction of any spin with all the others is finite. 

It is convenient to state explicitely the following consequence of Definitions 
1.4 and 1.3 (see [5]). 

Definition 1.4 (d). There is a bounded Borel set Z in IR e and b>0  such that 

1-[ #(dSx) e x p [ -  U(SA)] >__blAI . 
~A x~A 

Definition 1.5. The finite region partition function with zero boundary conditions, 
Z(A), is defined as 

Z(A) = ~ ~(dSa) exp [ -  U(SA) ] = exp [IAIf(a)] 

where F(A) is the free energy per site and 

#(dSA) = 1-[ #(dS~). 
x¢A  

The finite volume equilibrium m e a s u r e  VA(dSA) is given by 

VA(dSa) = Z(A)-  ll~(dSa) exp [ - U(Sa) ] . 

The dependence on temperature and magnetic field is included in U(SA): it will 
be made explicit when necessary. (Later we will also consider partition functions 
and finite volume equilibrium measures with non-zero boundary conditions.) 

Definition 1.6. For A and A CA we denote by Qa(S~)14dS~) the restriction of v A 
to X(A), that is 

oA(S~) = exp [ - U(S~)] Z(A)  1 ~ #(dS a \4) exp [ - U(Sa\~) - W(S A [S a \4)]. 

We also introduce the set of bad configurations 

The main tool in our analysis will be the following theorem due to Ruelle [5]. 
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Theorem 1.1. Let the conditions Definitions 1.3, t.4(al), (b), (c) be satisfied. Then 
there are 7, ~, ~, S such that for every A c= A 

oA(Sa)~exp[-x~a(~S~-5)] ,~>O, (1.6) 

vA[BA(N21A)] =< exp [ -  (7N z - 6)[A ]], 7 > 0. (1.7) 

Proof. Equation (1.6) is proven in [5]. Equation (1.7) is easily obtained from 
Equation (1.6) with 7<~-and 

e ° = e~{l~(dS) exp [ (7-  Y)SZ], 

where the integral is finite because of Definition 1.3. 

2. Thermodynamic Limit of the Free Energy with Zero Boundary Conditions 

Using the estimates given in Theorem 1.1 we essentially reduce the problem 
to a "bounded spin" lattice system; the strategy of the proof is then the usual one 
[3, 4]. We first prove that the free energy is uniformly bounded. Then by com- 
pactness there exists an increasing sequence of cubes F,-~2E v for which the free 
energy F(F,,) has a limit, F. We then consider a general sequence of domains 
A,-~7/v, in the Van Hove sense (see Def. 2.3). For n sufficiently large we will be 
able to decompose (almost completely) A, in cubes Fm and find upper and lower 
bounds for the interactions between the spins in different cubes. At this point use 
of Theorem 1.1 is crucial since the interactions are not uniformly bounded: 
what we actually prove is that they can be bounded in a set of configurations of 
sufficiently large measure. As a result we obtain that the free energy F(A,) differs 
from F(F~) by a quantity for which we have explicit bounds. As n increases Fm 
can be made larger and the error smaller, so that in the thermodynamic limit 
F(A,)--* F. 

We carry out the above program through a series of partial results stated as 
lemmas, some of whose proofs will be given in an appendix. 

The first point is to obtain a uniform bound on the free energy of a finite 
region A. The upper bound is a direct consequence of the superstability assump- 
tion (Def. 1.4b) and of the finiteness of the measure p~ Equation (1.1). The lower 
bound is obtained by restricting the spins in each site to belong to the bounded 
set Z (see Def. 1.4). We therefore obtain the following lemma. 

Lemma 2.1. Let the assumption of Section 1 hold, then there exists a 2 such that 
for every A, IF(A)[ =<2. 

It now follows by compactness that 

Corollary 2.2. There is an increasin 9 sequence of cubes Fm~ Z ~ such that 

lira F(Fm) = F . 
m ~ o o  

Our next step will be to consider general domains A and to fill them up almost 
completely with some cube F m of the sequence used in Corollary 2.2. For this 
purpose we restrict the sequences of domains {A,} as follows [3]. 
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Definition 2.3. We say that {A,} tends to ~* in the sense of Van Hove if: 
a) A,+IDA., b) A, D AVA and some n, c) given any parallelepiped F and the 
partition H(F) of ~7 generated by translation of F 

lira Nr(A,) = oo l imNr(A,)/Nr(A,)= t 

where Nr(A,) is the number of sets of II(F) contained in A,, N~(A,) the number 
of sets with non-void intersection with A,. 

The main point in the whole procedure is to control the interaction between 
two disjoint regions, A1 and A2, contained in some region A. We proceed as in 
the proof of Lemma 3.1 of [4]. Assumption Definition 1.4c gives the following 
bound 

w(s ,ls 2)<½ Z Z 
x~al y~2 (2.1) 

We observe that the first sum in the r.h.s, of Equation (2.1) depends only on the 
sum of the S~ z for x varying in the equipotential surfaces of the potential 

T(]x- Yl). This enables us to bound W on a set of configurations which have 
yeA2 
a non-vanishing equilibrium measure. Let V~(A1, A2), i=  1, 2 . . . . .  be the values 
taken by the function ~ ~(Ix-yI)  when x is in A~, ordered in decreasing order. 
Let y~A~ 

g~(A1, A2)=ISA ] 2 S2~NZlgi(Ai, A2)I} (2.2) 
t [ X~ vi(Al, 42) 

where 

vi(AI, A2)={xeA1 y~ea2 T('x-Yl)>= Vi(A1, A2)} 
and let 

oo 
gA(A1, A2)= (~ A A gi ( 1, A2) (2.3) 

I 
A direct consequence of the definition of g and of Equation (2.1) is the following 

Lemma 2.4. Let A i and A 2 be contained in A and be disjoint. Let the interaction 
satisfy D.1.4c, then with the notation of Equations (2.2) and (2.3) 

IW(S~llS~)[ <Nz 2 Z T(Ix-y]) (2.4) 
x~A1 yeA2 

for S Aega(A 1, Az)~gA(A2, A 1). 
Lemma 2.4 allows us to bound the interactions in regions of the configuration 

space whose equilibrium measure can be easily controlled by the superstability 
estimates given in Theorem 1.1. In the Appendix we prove 

Lemma 2.5. Let dlmA2=O and A1CA. Let the assumptions Definition 1.4 hold 
then there is N independent of A, A 1, A2 such that 

VA(,q c) = Z -  ~(A) ~o4t(dS A) e x p ( -  U ( S  A) ) ~ ¼ (2.5) 

where g ~ = complement of gA(A i, A 2). 
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From now on N will be considered fixed as in Lemma 2.5. By Lemma 2.4 and 
2.5 we can obtain estimates on the additivity of the free energy. We prove in the 
Appendix the following 

Lemma 2.6. Let the assumptions of Section 1 hold and let 
tl 

A=UAi, Aic~Aj=O for i@j. 
i 

Then 

(-Ii [½Z(A3 e x p ( -  N2/2 x~  y¢A, ~ ~P('X--y[))I<Z(A)<= fi~ ]2Z(AI) 

It is now straightforward to prove the following theorem 

Theorem 2.7. Let the assumptions of Section I hoM and let An-*T as in Definition 
2.3; then the thermodynamic limit Jot the free energy exists and is independent 
of the sequence An. 

Pro@ Let F be defined as in Lemma 2.2 then we will prove that 

lim supF(A,) <_ F <_ lim infF(An). 

We only give the proof for the lower bound, the upper one can be proven anal- 
ogously. 

Let e >  0, we then fix n o so that 

O) IF.o[ -1 lnZ(Fno)- f <e/4, IF.o[ -1 lnX<e/4,  

(ii) IFnol- 1NZ/2 ~, ~, 7J(lx- yl) < e/4 
X E F n  o Y ~ F n  e 

we then fix m o so large that for n >mo condition (iii) on An, which will be stated 
later, holds. 

For n>mo we decompose 11. into cubes of the decomposition /I(Fno), see 
Definition 2.3, which are contained ha A., their number is Nroo(An) and the in- 
dividual remaining points in A n, their number is IA.I- N[~o(A.)[F.ol. We then use 
for this decomposition of A. the upper bound of Lemma 2,6 and we have 

g E l ' n o  ydS1/'no 

!P(lx- y]))l ] + ]An]- I(IAnl- N[~o(An)lrno]) log {2Z({0}) 
k N ~  

exp [N2/2 y.~ 0 IP(lYD] } 
I J A  

< Nr, o(A,)[Nr, o(An)[Fnot ] -1 log (2Z(F,o)) 

+(IFnol)-lN2/2 2 2 ~P(ix-Yl) 
X E F n  o y ~ l " n  o 

+(t-~+)log{2Z({O})[exp[NZ/2y~.ogJ([Y[)]} . 
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Therefore the theorem is proven ifm o is so chosen that for n>m o 

(iii) ~ > = l - e [ l o g ~ 2 Z ( { O } ) e x p [ N 2 / 2  ~, ~(lYl))}] -1 
1Yr.°tAn) [ [ \ y*0 

This is possible because of Definition 2.3 and since by assumption Definition 1.4(c) 
and (d) the denominator in the rhs of (iii) is bounded. 

3. Non-Zero Boundary Conditions: Free Energy 

We first establish the notation used for the free energy and Gibbs measure with 
non-zero boundary conditions (b.c.). We then prove that the thermodynamic 
limit of the free energy exists and is the same for "all" b.c. In the next section 
we discuss the thermodynamic limit of the Gibbs measures. 

We will consider pure b.c., general b.c., and periodic b.c. 

Definition 3.1. Pure b.c.: For a > 0 let 

X(a) = {_SIS ~ < a log Ixl, Ix[ > 1 }. (3.1) 

For S_sX(a) we define the partition function, free energy and Gibbs measure as 

Z(AI_S) = ~ #(dSA) exp [ -  U(SA)-- W(S a I SA,)] (3.2) 

F(A I_S)= IA1-1 log Z(AI_S) (3.3) 

VA(MSA[8 ) = Z(AI_S)- X#(dSA) exp [ -  U(SA) -- W(SAISAo )] = e(SAIS)].2(MSA). (3.4) 

For A C A let 

VA(dSAIS_) be the projection of VA(dSA [_S) on X(A), (3.5) 

~¢ A(dS A 18) = OA(S A t S)~(dSA) -~- #(dSA) ~ I~(dS A \A)~( S A I8)- (3.6) 

Remark. The choice of X(a) in Definition 3.1 is quite arbitrary. The criterion was 
to include sufficiently many configurations in the allowed external conditions. 
We assumed Equation (3.1) to hold because when a is sufficiently large any spin 
configuration is asymptotically in X(a) with probability one for the (physically 
relevan0 infinite equilibrium measures v, see Section 4: namely for sufficiently 
large a the set 

X(a)= {_S 13A(_S):S z <alogtxl  for x ~ A(_S)}, (3.7) 

has 

v [X(a)] = 1. (3.8) 

To introduce general b.c. we first give the definition of regular measures on X. 

Definition 32. A regular measure 2 is a Borel probability measure on X whose 
projection 2(dSA) on any X(A) satisfies (1.6), i.e. 

g(SAI2) <exp  [-- x~A (~$2 --(~3) ' ~'> 0 (3.9) 

such that 

2(dSa) = #(dS A)g(S A l~) . (3.10) 
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As in Theorem 1.1 we can deduce from Equation (3.9) that there are 7>0, 6 such 
that for every A 

)c [B(N2IA)] ~ exp [ - [AI (7N 2 - 6)]. 

The following property holds for regular measures: 

Lemma 3.1. Let Z be regular with coefficients ~ and ff Then there is an a sufficiently 
large so that 2[)7(a)] = 1. 

Proof (c.f. [9]). We have for every A 

complJ?(a)C U Xx(a) 
x~A 

where 

Xx(a) = {S_IS~ > a log lxl}. 

Hence 

2[complJ?(a)] < lim ~ 2[X~(a)]. 
A x e A  

If A is sufficiently large 

2 [X~(a)] = ~ #(dS,)~(S~ f 2)z(S 2 > a log Ixl) 

< const exp ( -  ~-a log Ix[) 

and therefore the result is obtained if 7a> v; v the dimension of the space 2g ~. 

Definition 3.3. General boundary conditions: For a regular measure 2 we define 
the free energy as 

F(A 12) = ~ 2(dS)F(Af~. (3.11) 

The Gibbs measure va(dSa]2 ) is defined via 

VA(dS A 12)f(SA) = ~ 2(d8) I VA(dSA [8)f(Sa) (3. t 2) 

where VA(dSAIS) is defined in Equation (3.4). We finally define for A CA 

vA(dS~12 ) as the projection on X(A) of vA(dSAI2 ) (3.13) 

V A(dS,~ I)0 = ~A(S A I2)#(dSA) = #(dS ~) j" #(dS A \ zI)~(dS Ae)~(S AIS_) . (3.14) 

Remark. In Definition 3.3 we defined the free energy as the 2-average of the free 
energies with pure b.c. We could have given a different definition by taking the 
2-average of the pure b.c. partition functions and take the logarithm to define the 
free energy. By our choice the thermodynamic potentials are 2-average of the 
pure b.c. ones. This makes them generating functionals for the correlation func- 
tions with 2 b.c. 

Definition 3,4. Periodic B.C. Let F be a parallelepiped in ~ ,  then periodic b.c. 
amount to considering a new energy defined as 

U(Sr)--, U(S~) + W(Sr [Sr~) - U,(Sr) (3.15) 
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where Sro is obtained by translations of Sr by F all over the lattice 7Z ~. To treat 
periodic b.c. we strengthen the superstability condition Definition 1.4(b) by 
asking that 

A -  ~ 7~([xl)=A.>0. (3.16) 
Ix[>O 

We define the partition function and the free energy as 

Z,(F) = I/4dSr) exp [ -  Up(Sr)], (3.17) 

rp(F) = Irl- t  log Zp(F). (3.18) 

The Gibbs measure is naturally obtained from the zero b.c. by the substitution 
given in Equation (3.15). 

In the Appendix we prove the following (see Note added in proof) 

Theorem 3.1. Let the assumptions of Section 1 hold and let A, ~ ffZ as in Definition 
2.3. Then F(A,I~ and F(AI,~) have the thermodynamic limit F, the same as .for zero 
b.c. in Theorem 2.7. I f  F. is an increasing sequence of parallelepipeds then Fv(F,) 
also has F as its thermodynamic limit. 

4. Equilibrium States 

In this section we study infinite volume equilibrium measures. We use compactness 
arguments to prove the existence of limits of finite volume Gibbs measures with 
zero and non-zero b.c. The main technical tool is again the superstability estimates 
of Theorem 1.1, and their "extensions" to the non-zero b.c. case, Theorem 4.1 and 
Corollary 4.2 below. In the remainder of the section we introduce a DLR equation, 
[10], whose solutions are all the limiting measures of the finite Gibbs measures. 

First of all we observe that, because of the assumption (3.16), the periodic b.c. 
can be treated as the zero one, just as in Section 3 for the free energy. For the 
sake of brevity we therefore do not mention it explicitely. 

As we said before the main point is to extend the estimates of Theorem 1.1 
to non zero b.c. In the pure b.c. case the external spins can be very large and can 
"drive" the spins of sites dose to the boundaries to large values also. The idea 
therefore will be to look well inside the region, and then arguments similar to 
those of [4, 5] can be reproduced. 

In the Appendix we prove the following 

Theorem 4.1. Let the hypotheses of Section t hold. Then there exists 7 > 0  and 
such that the following holds: For every A there is A(A) such that for S_~X(a) 

where ~a is defined in Equation (3.6). 

The extension of Theorem 1.1 to general b.c. can be related to Theorem 4.1 
as follows: 
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Corollary 4.2. Let the assumptions of Section 1 hold, then there are y > 0  and b 
such that the following hoM : For every e > 0 and A there is A(e, A) and a decomposition 
of QA(S~IA), see Equation (3.14), 

~A(SA I ~) ~--- ~I(SzI [/~) -]- ~ ( S  AI~), A ~ A(e, A) 

such that 

0 <  0~(S~J2)__< exp [ -  x~  (yS : -3 ) ] ,  A~ A(~,A), 

0 __< e;~(Sz 1~,), ,[ ~(dSz)e;~(Sz t2) < ~, A ~ A(~, A). 

Proof. Since 2 is regular there is an a such that 2[J?(a)] =1 see Lemma 3.1. Then 
for f(_S) cylindrical and bounded in X(A) define v~ by 

f V'A(dS~) f(S~)=f )o(dS)z{S ~ <=a logixt where x 6 A }  

Z-I(AINAO)[.p(dSA) exp { -  U(SA)-- W(SAISAo)}f(S~). 

For this measure we have the estimates of Theorem 4.1. The proof is then com- 
pleted by noting that for A sufficiently large 

S2(dS_)z{S2<alogJxl when x ¢ A } > l - ~ .  

We restrict our attention to the following class M of measures on X. 

Definition 4.1. A measure vE M is 
(i) v is a Borel probability measure on X, 

(ii) v is tempered 1-4]: it is carried by the union over N of the sets 

RN={-SJVj ~2~+, 2 S2<NZ(2j+1)~l. 
Ixl_-<j -- J 

(iii) v(dS~) is absolutely continuous w.r.t, bt(dSA) and its density is denoted by 
eA(SAIv). 

We will say that v~EM converge to v~M if for every Borel cylindrical set j ;  

lim v~(f) = v(f).  (4.1) 

We have the following 

Theorem 4.3. Given any sequence Am increasing to ~ and the corresponding zero 
(pure, general) b.c. Gibbs measures, there is a subsequence Am, and a measure veM 
such that 

l i m  VAn ,, = V 

in the sense of Equation (4.1). 

Proof. To fix our ideas let us consider the measures VA~ " as general b.c. Gibbs 
measures w.r.t, a regular measure 2 [the other cases can be treated analogously]. 
We fix A and consider the sequence of measures VAm(dSAt2 ) on X(A), ACA~. As 
in Corollary 4.2 

"9 Am(ds A J/~) =VtA ~(dS a 12) + v~ m(dSA Ida) 



Statistical Mechanics of Systems of Unbounded Spins 205 

and v'~m(dSAlA ) approaches zero in the sense of Equation (4.1) for f= f (SA)  in 
X(A). Again by use of Corollary 4.2 and then by compactness arguments, a 
subsequence can be found for which v'am(dS/3 and therefore VA,~(dS x) have a limit. 
By a diagonalization procedure and the Kolmogorov theorem we therefore 
prove that the subsequence {Am,} and the measure v exist. Still by Theorem 4.2 
it is finally proven that v is tempered and therefore in M; the proof is then com- 
pleted. 

Theorem 4.3 tells us that the limits of finite volume Gibbs states exist. To 
characterize them we use equilibrium equations. For any A we introduce the 
operators -c A on the Borel cylindrical sets as 

(% f)(S) = ~ v j(dS~ I S)f(S). (4.2) 

Definition 4.2. We say that a measure v satisfies the equilibrium equations if 
v~M and for any Borel cylindrical set f 

v(zaf)=v(f) .  (4.3) 

The same arguments as used in [41 allow us to prove the following 

Theorem 4.4. Let the hypotheses of Section 1 hold. Then there are ~ 5 (the same 
as in Theorem 1.1) such that if v satisfies the equilibrium equations and ~(S a)li(dS~) 
is its retativization to X(A), then 

Q(S~) < exp { -  ~ (~-$2- if)}. (4.4) 

As a consequence v is a finite volume Gibbs measure with general b.c. deter- 
mined by a regular measure 2 which is just v. Therefore v is the (trivial) limit of 
general b.c. Gibbs measures. 

With the next theorem we prove a converse of the last statement in Theorem 4.4 
and we show that there are solutions to the equilibrium equations which charac- 
terize the limiting Gibbs measures. 

Theorem 4.5. Let the hypotheses of Section 1 hold. Let v~ be a sequence of Gibbs 
measures for the regions Ao~2g ~. Let v be the limiting measure, then v satisfies the 
equilibrium equations. 

The proof is given in the appendix. 

5. Uniqueness of Equilibrium States for Ferromagnetic Systems 

Definition 5.1. The one component spin system, SxsR, will be called ferromagnetic 
[1, 11] if the energy has the form 

U(SA)=-  ~ J(x,y)SxS,-  ~ ~(S~)- ~ h(x)Sx, with J(x,y)>O, (5.1) 
x * y ~ A  x~A x~A 

A ferromagnetic system satisfies the F K G  [1, I1] inequalities: Let VA(flS_) 
be the expectation value of f(S) with respect to the Gibbs measure in A with 
b.c. S, 

V A(f IS_) = ~ f (S a, S Ac)~(S AIS)IA(dS A) , (5.2) 

where o(SAIS_) is defined in Equation (3.4). 
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Define a partial ordering on the configurations X;  S > S', if and only if Sx > S'. 
We call f an increasing function if f(_S)> f(_S') whenever S > S'. 

Lemma 5.2. (FKG). Let f and g be increasing functions then, for a ferromagnetic 
system, 

va(fg[S-) > YA(ftg-)vA(atS-) . (5.3) 

The inequality clearly remains valid in the limit A ~  oo. 

It follows directly from the F K G  inequalities that 

Corollary 5.3. I f  f(S) is an increasin 9 function then so is Va(fIS) , considered as a 
function on Sat. 

Proof. There are two ways in which vA(flS ) can depend on SAo: a) an explicit 
dependence o f f  on SAC and b) through O(SAIS ) in (5.2). Since f(_S) is increasing the 
explicit dependence a) certainly satisfies the corollary. To treat b) we differentiate 
Va(f[S_ ) with respect to Sy, y~A  c, ignoring any dependence o f f  on Sac. Using (5.2) 
we find, 

0 
0S---~ va(f  I-S) = xeA2 J(x, y) [va(fS ~ [_S) -- va(f[S_)vA(S x [_S)] > 0,  

since Sx is an increasing function and J(x, y)>0. 
It follows from Corollary 5.3 that for an increasing function f 

VA(f[S- (*)) < VA(f[_S (2)) < VA(f[_S O)) (5.4) 

where S~, i=  1, 2, 3, are configurations of spins in A c such ~(1)<~(2)<~o) x ~ A  c. * J x  = J J x  = ~ x  

Let us now introduce the following increasing functions" 

Gx= ¢~(s~)= I s~/2' IS~l < 
tsgnSx, [S~I>=2, 2=>1, 

~o~=½(l+G~), (5.5a) 

R z = f i  O~,,Za= ~ S x , , Q A = X ~ - R z ,  (5.5b) 
i = 1  i = 1  

where x~e A ; not necessarily distinct (note that 0 < R~ < 1). 
It then follows from (5.4), cf. [6], that 

O<VA(R[S_+)--VA(RIS_-) < ~ [YA(Sxi[S_+)--VA(Sx, tS - ) ] , x i~AQA,  (5.6) 
i = 1  

whenever S + >S~, y ~ A  ~ and we have dropped the subscript A from R since A 
will be kept fixed from now on. 

It is seen from (5.4) and (5.5) that iff va(S~[S+)--VA(S~IS-)-,O as A-->ov, x e Z  ~, 
then lim va(R[_S) is independent of the b.c. SAo whenever SAo<SAo<S]o for 

A---) oo 

sufficiently large A. Since the functions R form a total set (by letting 2- ,  oo) for all 
cylinder functions f(S~) and A is arbitrary the same will be true for the infinite 
volume limit of vA(flS_ ). This was the method used in [6] to prove the uniqueness 
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of the equilibrium state for a spin one Ising ferromagnet (Sx = _+ 1), in a aniform 
magnetic field h and J(x, y)=  J(x -y )  whenever the free energy density F(h) is 
differentiable. Their proof consisted of showing that the differentiability of F(h) 
implies v +(Sx)= v_(Sx) where v_+ are the equilibrium states obtained with +_ b.c., 

+ . + {Sx~,Sy = - S ]  =1, yEAC}. The analysis of [6] carries over unchanged to the 
case of compact spins, NdS)=0  for ISt> 1. 

In the unbounded case, also, extremal measures can be introduced which 
play the rote of v+. We assume hereafter that the hypotheses of Section 1 hold, 
then by Lemma 3.1 we can fix a so that v[J?(a)] =1, when v is any tempered 
equilibrium measure, see Theorem 4A and 4.5. In this class there are extremal 
states, determined for each A by the values of the external spins: 

S + = ___ a(togLxl) -~, x ¢ A.  

We write 

•A(dSA I S- + ) = VA(dSA I ---+ ) "  (5.7) 

Since Jr(a) has full measure we will find that the interesting measures are between 
VA(dSA] +) and va(dSa]-) as in the unbounded case. Also as in the bounded case 
we have the + and - limiting states: 

Theorem 5.4. Let the hypotheses of Section t hold and let the interaction be ferro- 
magnetic. Let A , ~  in the Van Hove sense. Then there are equilibrium measures 
v(dS_] +) which are limits (in the sense of Eq. (4.1)) of VA(dSA] +_). 

Proof. It is sufficient to prove that for any sequence A,--,7I ~ the limits for 
va,(dSa. [ +__) exist. Let A,T~ '~ be fixed. We consider A and R~ as in Equation (5.5). 
By Theorem 4.1 and 4.3 there is a subsequence A,, such that VA,~V and 

lim supvan(Rzi I + ) =  V(RA)<= 1. (5.8) 

Given e > 0  we can find Am, m sufficiently large, so that [see Eq. (3.12)] 

V(RA) = ~ v(dS_) f V Am(dSA~ I S_)RA(S ~) 
< va~(R~ I +) + ~ (5.9) 

where 

1-e<vE{s-lS2~<aloglxl for X$Am} ] . (5.10) 

By Equations (5.9) and (5.8) 

VA~(Ra] +) > -- e + lira sup Va,(Ra] +). 

Since e is arbitrary the existence of v(dS_l +)  is proven. The analogous holds for 
v(dSI-) and so the thesis is proven. By standard arguments [6, 8] we have 

Corollary S.5. The states v(d_S1+) defined in Theorem 5.4 are translationally 
invariant. 

We are now able to prove the following 



208 J .L .  Lebowitz and E. Presutti 

Theorem 5.6. Let the hypotheses in Section 1 hold. Let the interaction be ferro- 
magnetic. Define M(h) as the set of tempered equilibrium states at magnetic field h 
and F(h) as the corresponding free energy defined via Theorem 2.7. Then if F(h) is 
differentiable at h, M(h) contains only one measure. 

Proof. Equation (5.9)-(5.10) and Theorem 4.4 applied to vsM(h) show that for 
any R~ 

v(R~[-) =< v(Ra) =< v(g~[ +). (5.11) 

We also have as a consequence of Equation (5.6) and of Theorem 5.4 that 

v(Ra ] + ) - v(R~l - )  < ~ [v(Sx,[ +) - v(Sx,[ -)],  x,~ A. (5.12) 
i = l  

Using now Corollary 5.5 in Equation (5.12) we obtain for x e Z  v 

~(R~I + ) -  v(R~l - ) <n[v~SxI + ) -  v(Sxl - )] 

=lA[-ln ~ [v(SA+)-v(SA-)]  
xEA 

<n{~v(dS_l +)~va(dSAlS_)[lAI--1 2 Sx] -- ~v(dS_I-)~va(dSA[_S) 
x~A 

[111-1 ~ S J }  
x~A 

[d d l 
: n[-~ F(A; v(dS_] +); h ) - ~  F(A; v(dS]-); h)] (5.13) 

where F is defined in Definition 3.3 (generN b.c.) and its dependence on h has 
been made explicit. Taking the limit A ~  * it follows from the independence of 
F(h) on the boundary conditions, and the convexity of F as a function of h [8, 6] 
that the right side of Equation (5. t3)~0 whenever F(h) is differentiable. Q.E.D. 

Remark It follows from the convexity of F(h) that it will be differentiable, and 
there will thus be a unique equilibrium state, except possibly at a countable 
number of values of h. ff furthermore the system is of the Lee-Yang type, [1, 12] 
e.g. U(S) and/z(dS) even and ~ exp [hS-  U(S)] #(dS)# 0 for Re h # 0, then for real h 
only h = 0 can be a place of non-analyticity of F(h) and therefore of non-uniqueness. 

(Note that in proving Theorem 5.6 we did not require that U and # be even, 
i.e. the system need not have any symmetry for h = 0.) 

Acknowledgements .  We would like to thank D. Ruelle for providing us with Theorem 1.1 prior to 
publication and for many stimulating discussions. 

Appendix to Section 2 

Proof of Lemma 2.5. By Equation (2.2) we have 19~(A1, A2)I>j so that using 
Equation (1.7) 

"~'zJ [gC(A 1, A 2)] -< ~'~ va[g~(A 1, A 2)] N ~ exp [ -- (7N 2 -- 6)j] 
i j 

for N 2 ~t~/7. The r.h.s, goes to zero as N increases so that the thesis is proven 
for N sufficiently large. 
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Proof of Lemma 2.6. We first prove the following Lemma A2.1. The proof of 
Lemma 2.6 is then obtained as a corollary. 

Lemma A2.1. Let the assumptions of Section i hold. Let A=AIUA2, Alc~A2=O. 
Then 

½Z(AOZ(A2) exp[ - N 2  x~mE r~zZ kU(lx-Y[)] <=Z(A)<=2Z(AOZ(A2) 

expFZ Z I. 
x~A1 y~A2 

Proof. Let 9=gA(A1, A2)c~gA(A2, A1) then using Equations (2.4), (2.5) we find 

Z(A) = j" #(dSa) exp [ -  U(SA)] + ~ #(dSA) exp [ - U(SA)] 
9 c O 

<½Z(A) + ~ #(dSa ~)#(dSa 2) exp [ -  U(SA ~)- U(Sa2)] 
g 

exp NZ[x~ r ~  T(Ix- Y])] 

=<½Z(A) + exp N 2 [ E Z tP(Ix- Yt)] l #(dS~,)#(dS~2 ) 
[xeA1 yeA2 

exp [ -  U(S a ) -  U(SA2)] 

SO that the upper bound is proven. To obtain the lower bound we write 

Z(A) > ~ #(dSA) exp [ -- U(SA) ] > j" #(dS~,)NdS~) 
g g 

exp[ -U(Sa) -U(S~) -N2  2x~m ,~2 *(Ix-y[)]. 

Thus 

exp IN2 x~, r~a22 7~(Ix-YI)IZ(A)>j fo #(dS~')p(dSa) 

exp [ - U(S~,) - U(Sa~)] > Z(A 1)Z(A 2) --  ~ # ( M S A  ,)  
o e 

#(dSa~) exp [ -  U(Sa~) - U(Saz) ] 

with the notation of Equations (2.2), (2.3) we have 

g~= g¢(A 1, A2)ug~(A2, A ~) 

hence 

j" #(dS ~)#(dS a2) exp [ - U(S a ~) - U(S ~2)] 
O ~ 

<j#(dS~2 ) e x p [ -  U(Sa2)] {~o~,m,a2)~dSm) exp [ -  U(Sa)]} 

+ ~ #(dS A ~) exp [ -  U(S~,)] {~,,(a2,~ ~)#(dSj~) exp [ -  U(S~)] } 

<__¼Z(A OZ(~)+¼Z(A 9Z(A,) 

where Lemma 2.5 has been applied twice with A = A 1 and A = A 2. 
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Proof of Lemma 2.6. It is obtained from the previous Lemma by induction on the 
number n of the decomposition. For n=2 we are in the case of Lemma A2.1. 
Therefore we assume the Lemma true for n - 1  and we have to prove it for n. We 
consider the decomposition in n - 1  sets given by A1uA 2, A 3 . . . . .  Then we have 
by hypothesis and Lemma A2.1 applied to A ~wA 2 

Z(A)>½Z(A1uAz)exp[ -½N2 ~11~22 ,¢A~a~2 ~P(tx-Yt)] 

i = 3  xezli y¢:Ai 

=½½Z(A,)Z(Az)exp[-N2 2 2 ~([x-y[)] 
x~At y~A2 

Z E e x p [ - ½ N 2 ( ~  + r ~ ) , ¢ m ~  7J(lx-Yl)] 

f i  ½Z(Ai)exp[-~-N2 Z Z 7J([x-Yl) l" 
i = 3  L xaA~ Y¢Ai 

We proceed analogously for the upper bound, therefore the corollary is proven. 

Appendix to Section 3 

Proof of Theorem 3.1, General B.C. We divide the potentials for which the super- 
stability condition Definition 1.4(b) holds into two classes. The first class consists 
of potentials whose translationally invariant one site energy U(Sx) satisfies the 
condition 

U(Sx)>.AS~-6. (13.1) 

It follows then from the regularity condition Definition 1.4(c) on the interaction 
that there are A and c such that for any bounded A 

U(SA)>= ~ (AS~- c). (A3.2) 
x~A 

The second class consists of potentials for which Equation (A3.1) does not hold 
for any A, c. For this class we can find A, c, A +, c + such that for any A 

2 (AS2-c)~U(SA)~ 2 (A+S4x-C+) • (A3.3) 
x~A x~A 

First Class of Potentials, Equation (A3.2) Holds. As usual we look for upper and 
lower bounds of the free energy. We have 

Z( A,1S_) = ~ lt(dS A. ) exp [-- V( San ) - I/V(S A.I S A~)] 
~t]J(dSAn) e x p [ -  U(SA.)+I(SA.)] exp[½[ xEAnZ ,,a.X tP(tx-yI)S2] 

<Z+(A") exp[½t x~A~Z y(iAnE V(Ix- yl)S~ 1 
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where Z+(A,) is defined by the last two inequalities and 

I(SA,)= Z Z ½~([x-yI)S2x 
x~An y~A~, 

F(A,[v)<tA,t-' ln[Z+(A,)]+(2M,[)-'~v(d_S){x~. ,CA, ~ 7~(lX-- yL)S~} 

<IA,t - l lnZ+(A.)+(zlA.I)  -1 Z Z 'I'(Ix-Yl)~v(dS-) $2 
x~An y~An 

<IA.I-* InZ+(A.)+k(21&I) -~ Y~ 2 t/'0x-Yl) 
xeAn ?,'~An 

where 

(A3.4) 

oo>k>~v(dS)SZy for every ye2g ~. 

Fatou's lemma has been used in the second inequality in Equation (A3.4). It 
follows therefore from Equation (A3.4) that 

lim sup F(A, lv) <= lim sup ]A,]- 1 In Z + (A,). (A3.5) 

We will now prove tha) the r.h.s, of Equation (A3.5) is bounded by F. The partition 
functions Z+(A,) are determined by the energies 

U+(SA) --- g(SA)-½ F, ~ 7'(Ix-yl)S~--- U(SA)--I(SA). (A3.6) 
x~A y¢A 

U + is not translationally invariant, while the energy U is. Nevertheless because 
we assumed Equation (A3.2) to hold, all the other conditions in Definition 1.4 
on the interaction are fulfilled by U +. Therefore Theorem 1.1 can be stated for 
the finite volume Gibbs measures v~ corresponding to the energy U +. Then, 
with the notation employed in Theorem 1.1, we have that there are 7 + >0  and 6 + 
so that 

v~ [B(A, N2)] < exp [ -  (7 + N2 - 6 +)IA [] (A3.7) 

for any bounded A and A CA, N2> 0. [gn below denotes g(A,, Ag) as defined 
in Eq. (2.3).] 

Z+(A,) =( ~ + ~ ) {#(dSa.) exp U+(SA,)} 
\gn g~/ 

< ~ #(dSa. ) exp [ -  If(SAn ) + I(SAn)] + ½Z + (A,) 
gn 

<2Z(A.)exP½ N2 Z • T(lx-yt) 
xeAn y6An 

where Z(A,) is the zero b.c. partition function. Use of this inequality in Equation 
(A3.5) then gives the required upper bounce For the lower bound the procedure 
is analogous and so the thesis is proven (in the case we examined). 

Second Class of Potentials, Equation (A3.3) Holds. The difficulty here lies in the 
fact we cannot evaluate directly the interaction energy in Z(A,[_S) because the 
corresponding energy U + need not be superstable anymore. It is therefore neces- 
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sary to prove first that configurations with large spins in a neighborhood of the 
boundaries OA. have small probability and therefore do not contribute in the 
thermodynamic limit. For the remaining configurations we can bound the 
interaction via Definition 1.4(c) and then proceed as in the first case. We need 
some notation: given the region A, its "contour" JA. is defined as 

~A.nA. = 0 zf, = A.w flA., (A3.8a) 

7J(lx-yl)<2A for every xeA.  (A3.8b) 
y¢& 

where A is the superstability coefficient appearing in Equation (A3,3). Since A. 
increases to ~ in the Van Hove sense, Definition 2.3, flA. can and will be chosen 
so that, 

• 1 5 A . I  
hm]-A~-i =0 .  (A3.9) 

As usual we look for lower and upper bounds. We have 

Z(A.IS_) = Z(A.IS_) exp [ -  U(SsA.)] exp [ U(S~a.) ] 

<=f #(dS'a")exp [ - U(S'a"~S~a')+½~a.E ,,¢~,E 7t(lx- yl) $2] 

exp[½L x~AnE yCXnE e ( l x -  yl) $2] exp[U(S~A.)] 

S2(S~A")exp[½~, ,,A. ~ IP(lx-yl)S;] expU(S~") 

where 

(A3.10) 

2( Saa.) = S #(dS'A.))L(dS'~ A.I SM.) exp [ -- U(S'A.) + I'(S)u)] 

fl~(dS~A,~lS~n.)= [[I "~x(dS'xISx) 
x~OAn 

2~,(dS'~ISx)f(S~) = f(S'~ = O) + f(S'~ = S:,) 
I'(Sh,)=~- ~ 2 !f(lx-yi)S]. 

xsAn y~An 

(A3.11 a) 

(A3.11b) 

(A3.1 lc) 

With the above choice 2 satisfies the same properties as the intrinsic flee measure # 
uniformly in Sg~.; we will then extend Theorem 1.1 to this case. Firstly we have 
from Equation (A3.10) by use of Equation (A3.3) 

F(A, Iv)<IA.I-~v(dS_) ln2(S~A.)+(21A,I) -~ ~ 
x~An Yg~An 

7J(fx--Y[)Iv(ds-)SZy +Mo[ -~ ~ A+ Iv(ds-)S 4 
xegAn 

~[A.I-1fv(dS-)ln2(S~a.)+KIA.1-1 ~ 2 7'(Ix-y[) 

+ A + K'IJA,f/IA.f (A3.12) 
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where K is the same as in Equation (A3.4) and, by the regularity of the measure v, 

oo>K'>~v(dS_)S 4 for every x~;g ~. 

Therefore from Equation (A3.12) 

lim sup F(A, 17) < lim sup IA,,l - 1 ~ v(dS_) In 2(S-~A.). (13.13) 

We will now prove that the r.h.s, of Equation (A3.13) is bounded by F. As after 
Equation (A3.5) we introduce the new energy 

C~ + (s x.) = u ( s~o) -  r(sA,) 

and correspondingly the Gibbs measure 

~Xn(dSt n I Si~An ) = 2(S~A. ) -1 ~ fi(dS}, ]S~A.) exp [ -- U + ~[S'-An ,tA~'l , (A3.14a) 

~(dS'&IS~A.) = #(dS'A,)2(dS'~A. I S~A,), (A3.14b) 

Since the "free" measure/2 and the new energy 0 + satisfy the conditions in Defini- 
tions 1,3 and 1.4 uniformly in S the estimates of Theorem 1.1 can be extended to 
the new Gibbs measure ~7 + As a consequence the analogous of Lemma 2.6 can A.. 
be proven also in this case and so we obtain uniformly in S~A. 

" < ' " exp[U 2 ~, ~P(Ix-Yl)], (A3.15a) Z(S3A.) ~_ 2 Z  (A.)Z (S3An) 2 
[ x~An y e~Ar, 

Z'(A,3 = ~ #(dSA.) exp [ -  U(SA,) + I'(SA,,)], (13.15b) 

Z"(S~A,) = f 2(dS~a,,) exp [ - U(S~A.)] < exp (c~l JA.I) (13.15c) 

for some sufficiently large e independently of S~A, and JA,. By the estimate in 
Equation (A3.15) we reduce Equation (A3.13) to the analogous of Equation (A3.5) 
and so we prove that the rhs of Equation (A3.13) is bounded by F. 

Lower bound. Given A, we write 

A , = L = A , u J A ,  

where ¢~A, is defined as in Equations (A3.8), (A3.9). By use of Definition 1.4(d) 
we have: 

Z(A n ]_S) ~_ ~ #(dStAn) I,~sAn ~(dSt~An) exp [ - U(SA.) -- W(S'A,I Sac,)] 
~ #(dS~.) ~s~,,, #(dS-6,~,) exp [ - U(S~,) - I'(S~,,)] 

[ EA ~$A --y[)Sy--~ ~ 2 ~/(Ix-Y[)S2] e x p - ½ ~  ~(Ix 2 t (A3.17) 
n Y n XeOAn y¢An 

where S 2 is the sup of S 2 in N. 
By Equation (A3.17) we are essentially reduced to the case in which Equation 

(A3.2) holds, in fact the energies in Equation (A3.17) are superstable and the 
procedure is completely analogous to the previous case. 
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Proof of Theorem 3.1. Pure B.C. The proof is analogous to the one for general 
b.c. The only difference being that estimates of the kind 

iv(dS-)S~ < k for m = 2, 4 

used in the latter, now become 

~v(d_S)S m = a "/2 lnm/21xl m = 2, 4. 

However the condition Equation (1.4) on T(lx-yl)  allows the same estimates as 
before. 

Proof of Theorem 3.I. Periodic B.C. By Equation (3.15) we have 

E E u.(sr)<_½ Z 
xeF y~F xeF yCF 

~ ( l x -  yl)(S~ + S~) + U(Sr) . 

Since we assumed Equation (3.16) to hold we can apply the estimates of Theorem 
1.1 to Up(St). The proof is then straigthforward. 

Appendix to Section 4 

Proof of Theorem 4.1. We fix A then A(A) is such that 

2tx-yl>lx[ for x¢A(A) and yeA.  (A4.t) 

For the notation we refer to [4, 5]. Let S_~X(a) then we choose the function ~ in 
Proposition 2.1 of Ref. [4] as 

~p(r) = b In + r In + r = max {1, In r} (A4.2) 

with b larger than a and fixed as in Equation (A4.7) below. Note that the choice 
of~p in Equation (14.2) is allowed by the assumption Equation (t.4). Any SeX(a) 
is in some set either of the form 

{_Six,q] S~ < tpqVq Vq~P} (14.3a) 

o r  

/_Slthere is a largest q>P such that ~. S~ 2 >qzqVq~. (A4.3b) 
t xe[q] J 

b will be chosen larger than 2a so that the statement remains true for translations 
of the origin of ~ to any point in A, see Equation (A4.1). 

As in [5] we split up CA into two parts Q~, ~ .  For ~] we can proceed as in [5]. 
~ is expressed as a sum over q: still no difference arises when the cube q (centered 
somewhere in A) is in A. For the other cases, in [5] there appears a factor 
exp [ -  U(S~qj)] while we have exp [ -  U(Sa)] therefore we lack a factor 

e x p [ -  xE[q]/A2 (AS: -c ) ]<exp[-  xe[q]/A ~ (2aAlnlxl-c)] 

< exp { - Vq[2aAq)q/b- c] }. (14.4) 
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In [5] the sum on q was of the form 

exp[ -  ~ 7S2]q~e f . . . .  e x p / - c  tpq+tVq+l +D Vq+l};C">O. (A4.5) 
XEA 

In our case therefore we have 
2 ~r ~t exp -- Z ySx] Z e x p [ - c  tpq+tVq+l+D Vq+l+(2aA/b)tpq+iVq+l] (A4.6) 

x~A j q> P 

which is again of the form of Equation (A4.5) if 

c" > 2aA/b 

and therefore b has to be chosen so that 

b > 2a and b > 2aA/c" . (A4.7) 

Proof of Theorem 4.4. For N2< oe and A bounded we introduce the operator 
z(a N2'A) on the bounded Borel cylindrical functions, f ~ J  

('g(N2"A) f ) ( S ) :  y lA(dSA))~[x~A 8 2 ~ T2] exp[-- U(Sa)- W(SAISA)] f (SA, SAc) 

{~ #(dSa)Z[x~ $2 < Nz] e x p [ -  U(Sa)- W(SAISA) ] }--1 (14.8) 

with range on the same space. 
Let the measure v be the limit of finite volume Gibbs measures v,, where n 

refers to the bounded region A,. We have to prove that for every f e ~ ,  zaf  is 
v-integrable and that 

V(zAf ) = v(f) .  (14.9) 

We have for every N 2, A 

lim v, [¢AN:'A)f] = v ['C(ANZ'A)f] (14.10) 

and by the (Lebesgue) dominated convergence theorem [ f  is bounded] we have 
that z~f is v-measurable and 

lim V[Z~'~'A)f]=v(%f). (A4.11) 
"k A ~ Z v J  

The idea of the proof is the following: we have by Equations (A4.10), (A4.11) that 

Iv(f)-  v(%f)l < e + Iv()')- V(¢AN~'A) f)I 

< 3~ + IV,(%f)-- V,(¢au~'a)f[ (A4.12) 

for N 2, A, and n sufficiently large. The proof is then completed if we can show that 

]v,(z a f  ) -  Vn('C~NZ'A) f] < g. (A4.13) 

More precisely we ask that given e>0 there exist A~, N 2, n, such that Equation 
(A4.13) holds for all n>n v N>N~, A3A, .  In proving Equation (14.13) we shall 
for the sake of simplicity, consider v, as the pure b.c. Gibbs measure, the general 
case can be treated analogously. 

The estimates we need are collected in the following: 
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Lemma A4.1. Let v,, be the pure b.c. Gibbs measure, and let the assumption in 
Section t hold. Then the following is true: 

(i) given e >0  and A bounded in ;g ~ there are N 2 and A(~, A) such that 

(ii) given A bounded and e > 0  there exists A'(e, A) such that 

Va[La(A')]> 1 --e ADA'(e, A)3A 

where za(A') is the characteristic function of the set 

S I/f q is the largest integer such that ~ S~ > tpqVq, 
xe[q] 

1 ' thenAC[q+ ] C A } ;  
(iii) given A bouhded, ~ > 0, N z there is A"(e, A, N 2) D A'(e, A) such that 

exp[+_ 2 E 'e(Ix-ylNS:+s~)]}+-'<=l+ ~ 
I x~A y ~ A "  

for all the configurations S_ e )~a(A") and such that 

Y <__N 2 
x~A 

Pro@ (i) is proven in Theorem 4.1. (ii) is also proven in Theorem 4.1. (iii) is a 
consequence of Lemma 2.2(b) and Lemma 2.4(b) of Ref. [4]. 

We now proceed in the proof of Equation (A4.13). Given e > 0  we fix A~, N~, n~ 
as in Equations (A4.17)-(A4.19). We will obtain upper and lower bounds for 
(v A zaf  ) in which 

V.(Z~N~'A) f )  

appears. For the sake of brevity we employ the following notation 

W(S~ J S~O = W(S~ iS_), (A4.1 4) 

[. Ix(dS~)g(Sz, S~)x({S~t ~ S:<N2})=~m#(dS~I)g(S~,S:) (A4.15) 

for any g e J .  
We then have, with va. = v, 

v.(dS)(za f )  = ~ v.(dS) [JN~ tx(dS~) exp [ - U(Sa) - W(Sa I_ )3 f(S~, D~)] 

[[, lx(dS~) exp - U(S~)- W(Sa ]S)] -1 
+ S v.(dS)/j lx(dSa) exp [ - U(Sa)- W(Sa I S)] f(S~, 

F 

X[~ S2>=N21!{[. tx(dSa)exp[-U(Sa)-W(S~IS)]}-I. (A4.16) 
k 

xeA _1 

The second term in the rhs of Equation (A4.16) is not larger than (Ifl < 1) 

~v~[d(S~, O)]~l~(dS~)exp [ -  U(S~)- W(S~IS)] z/ .~` $2 > N2/ 
) 

=v"f/-SI~Lt ,~a S : > N 2 } ] < e  for A, DA(e,A) (14.17) 
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where (i) of Lemma A4.1 has been used and the notat ion 

v,(d(SAc, Q)) = #(dSanm) exp [--  U(SA,/~ ) -  W(SA, m ]SA~)] Z(A,, S_)- t (A4.18) 

has been employed. Therefore by Equat ion (A4.17) from Equat ion (A4.16) 

v,(dS_)%f < ~ + ~ v,(d'3))~(A", S) [~N2 #(dS) exp [. J f ]  

[~N2 #(dS~) exp [. ]] 1 + ~ v,(dS_) [ 1 - )IA(A", S_)] (A4.19) 

where ZA(A", S_) is the characteristic function as introduced in Lemma A4.1(ii) 
and we used the inequality 

1 > J'N~ t~(dS~) exp [-]  f {~N2 #(dS~) exp [- ] } - ~. 

Therefore for A, ~ A"(~, A), see Lemma 4.1(ii), we have 

v . ( ~ f )  =< 2e + ~ v.(dS))G(A", S)~N~#(dS~) exp [. I f  

{.IN2 #(dSA) exp [, ]} -1 (A4.20) 

We now finally consider A,3A3A"(~,  A, N2), see Lemma 4.1(iii) 

v,(%f) ~ 5e + ~ v,(dS_)z~(A", S) ~N~ #(dS ~) exp [ -  U(S j ) -  W(S j tS A) f l 

{~N2#(dSd) exp [ - U(Sa)- W(SalSA)] } 

5e + ~ v,(dS_)(z~ N~' A) f )  , (14.21) 

Lower Bound. We have, with the same notat ion as in the upper bound:  

v,(dS)'c A f ~ ~ v, [d(S~, 0)] ~ #(dS ~) exp [ - U(S A) -- W(S a I Sa,)] f 

>= ~ v.d(S ~¢, O)z~(A", S_) ~N~ #(dS ~) exp [ U(S a) 

- W ( S ~ [ S A ) ] ( 1  - e)f 

=> - ~ + ~ v. [d(;~ ao, 0)])/a(A", _S) ~N~ #(dSa) exp [. ] f 

>= - e + ~ v. [d(Sao, 0)] z~(A", S_) ~N~ #(dSa) exp [ -  U(S~) 

- W ( S ~  t SA)] (¢N~,A)f) 
>= -- 2e + j v.(d(S d~, O)))~( A", S_) ~ #(dS a) exp [ - U(Sa) 

__ W ( S z  i t~) ] (~(N 2, A ) f )  _ ~ v. [ d(S A~, 0)] )~(A", S) ~ ~(dS ~) 

exp [ ']x[{S~Ix~ ~ $2>N2}I 

> - 3e + I v,(dS_)ZA(A", ~)(~N2.A)f) 

= - 4e + ~ vn(dS_)(~c~s2'a)f). 
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Note Added in Proof. In Theorem 3.1 the following additional hypothesis is needed: the sequence 
A,~7/~ as in Definition 2.3 in such a way that 

limlA~l-l{ ~a ~ 7S(lx-YJ)(ln+lYl)2} = 0 '  
n ~ c ~  x n y q ~ A n  


