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Abstract. New systematic approximants are proposed for exponential functions, 
operators and inner derivation 6xl. Remainders of systematic approximants 
are evaluated explicitly, which give degrees of convergence of approximants. 
The first approximant corresponds to Trotter's formula [1]: exp(A+B)= 
!im [exp(A/n)exp(B/n)]". Some applications to physics are also discussed. 

1. Introduction 

In this paper, we investigate systematic approximants and errors of exponential 
operators such as e A, e A+B etc. and exponential inner derivations such as exp6~, 
exp(6Lrl +3H) etc. These exponential operators and inner derivations are used 
very frequently in many-body problems. As it is mostly difficult to diagonalize 
such exponential operators, it is convenient to find appropriate systematic 
approximants of them which can be easily evaluated. In Section 2, systematic 
approximants of e ~ are discussed for illustrating our idea. In Section 3, systematic 
approximants of exponential operators are introduced and studied in detail. 
Some applications are listed in Section 4. 

2. Systematic Approximants of an Exponential Function 

In this section we present our idea in a simple exponential function e ~. As is well- 
known, this is expressed by 

e~= lim (1 +x/n)", (2.1a) 
n - ~ a o  

or  

eX= 1 + x +  x2/2! +X3/3 ! +  ... + xm/m!  + . . . .  (2.t b) 

The above two formulae give methods to calculate e ~ numerically. The second 
expression (2.1b) is more convenient for such a purpose, because the convergence 
of (2.1b) is better than that of (2.1a). 
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Is there a much more rapidly convergent expression for eX? To answer this 
question, we try to unify or combine the above two formulae as follows: 

e ~ = l ime ,  re(X)= lira en,m(X), (2.2) 
n - + o ~  , m ~ o o  

where 

1 (xlk]" 

The case m=  1 corresponds to (2.ta) and n =  1 to (2.1b). It is easy to evaluate 
(the upper bound o0 the remainder S,,,~(x) defined by 

e x = e,,,,(x) + S,,m(x). (2.4) 

In fact, using the generalized mean value theorem or Taylor's theorem, we obtain 
the following result: 

Theorem 1. With (2.3), we have 
m + I  

[eX_e,,,,(x)[< Ixl-" _ el, I (2.5) 
n~(m+ 1)! - 

Proof. The proof is the same as Theorem 2 for general case. 

It is easily seen from this theorem that the error S,,~(x) becomes extremely 
small for large n and m. The convergence of en,m(x) with respect to the series 
m (or n) for a large fixed n (or m) is much better even than (2.1b). Consequently 
the above formula (2.3) will be very useful in calculating e ~ (and other elementary 
functions derived from it) by a high speed computer, in which the operation of 
product is much reduced if n = 2 p (where p is an integer). Thus, we may call e,,m(x) 
the n -  m approximant of e x. 

3. Systematic Approximants of Exponential Operators 
and the Generalized Trotter's Formula 

(i) We first discuss a simple exponential operator e a. Similarly to (2.3), we define 
the n - m  approximant of e A by 

[m t (At~. 
f,,,,~(A) = Lk=~ ° ~ \ n J J  ' (3.1) 

We obtain easily the following theorem concerning the convergence and error 
estimation: 

Theorem 2. For any operator A in a Banach algebra, 

1 
lie A -- f,,m(A)II < n"(m + 1)! ilA Ii "+ 1 e l lA l [ ,  (3.2) 

and f~,m(A) converees to eA: 

lirn L,m(A) = 2 im  f,,m(A) = e A (3.3) 

for a bounded operator A. 
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Using the properties of a norm in a Banach algebra, we can easily prove 
Theorem 2 as follows: 

Ile A -f,,~(A)]] N IleA/'--ht]. ]](ea/') n-1 +(eA/n)n-2h+ ... + h ' -  1 I1 

<nilexp(A/n)-h]l exp ]]A , (3.4) 

with 
1 

h-- (A/n)k (3.5) 

Next, the Taylor's theorem yields 

]]exp(A/n)-h,l= k=m~ ~ ~ (A/n)k 

< ~ (]lAII/n)k=exp(tlAUn) - ~o~.(llAII/n)k 
k = m + l  • k -  

1 
([JAIL~n) "+1 exp(OTfAiI/n); 0 < 0 < 1 .  (3.6) 

(m+l)! 

Substituting (3.6) into (3.4), we get Theorem 2. 
(ii) Next we study here systematic approximants of a non-commutative 

exponential operator such as e A+R. It is convenient to introduce the following 
approximant 

f,,l({Aj} ) = {e ~I/, eA2/n...eAv/n}~. (3.7) 

We have the following theorem. 

Theorem 3. For any operators {A j} in a Banach algebra, 

exp(j=~ Aj) - f , , l ( {Aj})  2(j=~ llAj!I) 2 {n+2 ----<n exp I - - ~ - j ~  1 IIA~tl) (3.8) 

with an arbitrary positive integer p. For bounded operators {A j}, 

lim f~,~({Aj})=exp J A t . (3.9) 

Corollary 1. For p=2, Eq. (3.9) is reduced to the following Trotter's formula: 

ea+B= lim (eA/"eB/")" (3.10) 

for bounded operators A and B. 

The above formula (3.9) and (3.10) have been used in statistical mechanics 
[2~5]. 

Proof of Theorem 3. If we put 

g=exp(  -! ~ Aj) and h=eA1/"...e A,/", (3.11) 
\nj=1 
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then we obtain 

P -  expQ=~Aj)_ - f , ,~({Aj})  =],g"-h ' ] ,  

< [Fg-hll (llg]l"-~ + IPgl] "-2 Ilhlr + .., + Ilhll "-~) 

<nHg-h[Jexp(nCn 1 i ][Aj[[), 
j = l  

where we have used the following lemma: 

Lemma 1. For any operators a and b in a Banach algebra, 

ILa'- b"l[ = [La"- l ( a -  b)-l-an- 2(a - b)b +.. .  + ( a -  b)b'- 1El 

< IPa- bit (llal["- ~ + flail "-2 [Ibll + . . .  + Hbll"- 1) 

<nlla-bll  {max(llal], Ilbll)} "-a . 

Then we get 

[lg-h II < llht] • Ilgh -1 - 11i 

2 
<,Ihl] { e x p ( ! j ~  1 ]IAjl])- ( l - l - n j $ t  ]IA)]I)} 

M. Suzuk~ 

(3.12) 

(3.13) 

2 P 2 2 P 

\n j=l 

where we have used Theorem 1. From (3.12) and (3.14), we arrive finally at Theo- 
rem 3. 

Next we introduce the following systematic n - m  approximant f,,,,,,(A,/3): 

f,,m(A, 13) = (e A/n e n/" e c2/'2.., e" mc~)" , (3.15) 

where {C,} are defined recursively as 

1[  C2 = ~ l~-g t~ ~ ,! [B, A] (3.16) 
L J2=O 

i ~3 ] 
C3 = ~. [~i3 (e-~2C2e-X%-aAe~(A+m) I]z=o = ~[C2, A+2B]  , (3.17) 

and in general 

C , =  ~.~1 [ ~' (e-'~" [~2~ ~c.,-~ "'" e-~C~e-~Be-;~aeZ(A+m)tJ~=o" (3.18) 

The coefficient C, is a polynomial of order n (of operators A and B), which appears 
in the Zassenhaus formula [6]: 

e.~(A + B) = eZA e)~B e~2C2 e~C~ .. . .  (3.19) 

For this series of approximants, f,,m(A, B), the following theorem holds, 
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Theorem 4, For any operators A and B in a Banach algebra, 

I C,,,m ellAll + IIBII (3.20) e A+B -f , , , , (A, B) <= n"(m+l) !  ' 

where %,, is defined by (3.31) and satisfies the .following property 

0 <  lira c, m< oe. (3.2t) 

For bounded operators A and B, 

lira f,,,~(A, B) = exp(A + B). (3.22) 

Proof For the proof, it is convenient to introduce the following projection operator 

~"(f(2)) = ~"  (k=~0 21 ) f(k)(O) 

2 k 2 k 
= I ( 2 1 -  k-i (3.23) 

k = m +  1 k=0 " 
for any operator or scalar function f(2). Namely, ~,, means to eliminate all the 
terms of order lower than 2 ~+ 1. Now we have 

P-- [IeA + B-- f.,~(A, B)fl = I[g'- h"tt 

=< IIg-hll x n{max(]lgll, Ilhll)} "-1 , (3.24) 

where 

g=exp[ l  (A+B)] and h=[f, .m(A,B)]' .  (3.25) 

Then, using the projection operator Nm, and the definitions (3.16) ~ (3.18) of 
{C,}, we obtain 

[jg-h]l < Ilgll • k[g - l h -  1 ][ <= Ilgll ' [I~m(g- lh) II 

( [2 ,]C2t [ ]]C,,I[ ]] (3.26) =<]Igt{~m exp (IIAli+tlBII)+ ~ -  + . - - +  ~ ; v - l /  

Thus, we arrive at the following inequality 

P < n IIg [I [max( Ilg [I, [I h IL)J" -1 f,, (1 t ,  (3.27) 
\n/ 

where 

f,,(2) -= ~m(eXp [22(IhA I[ + rIB ll) + 22 II c2 II + , . .  + 2" II C,, tl]). (3.28) 

From the generalized mean value theorem and from the property that f , (0 )=  
fro(l)(0) . . . . .  f~m)(0)=0, we obtain 

2m+1 2m+1 
- -  (('~ + 1'(2) (3.29) f~(2)= (m+ 1)! f("+ *)(02)< (m+ 1)i ~" 
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with 0 < 0 < t  and 2>0 .  Consequently, P is bounded as 

n'(m + 1)7 [max(llg ]l, lib rl)]"- 1 f (m + 1) 

< nm(m+C"'m 1)! exp(11A11 + lIB1[) , (3.30) 

where the coefficients {%,,} are given by 

1 r. 1 
c = f(m+i)(--]exp( y, n-~r_lllCkl [], (3.31) 
-"" ~" \n/ \k=2 

and they satisfy the property (3.21), because all {Ck} are bounded and 

l im c,,,, = £ " +  1)(0)= finite (3.32) 

for bounded operators A and B. 
The above result can be easily extended to a more general exponential operator 

exp(A 1 + a g ÷ a 3 . . .  +Av). We first define a sequence {Ck} by 

a~ 
__ 1 [ (o-*ap o-talol(&+...+Ap)~} 

C2 - -2  [ - ~ '  . . . . . .  ']~.= 0 

= _ { { [ A , , & + . . . + A p ] + [ A i ,  A3+.. .+A~]+.. .+[Av_,,Ap]},  (3.33) 

and in general C, is determined recursively by 

1 C = ~.. [ ~--~, (e- ~,"- 'c,- ~...e- ;~2C~e- ~Ap...e- i& e~(A, +'" + Ap))la= ° (3.34) 

It should be noted that these coefficients are also determined formally by the 
following generalized Zassenhaus formula: 

exp(2 ~ A,)=e~A~e~AL..e~A~e~C~e ~c~ .... (3.35) 
j = l  

With these preparations, we obtain the following theorem. 

Theorem 5. For any operator {A j} in a Banach algebra 

exp Aa - f,,m({As}) < nm(m + 1)! exp IIA s , (3.36) 
i J 

where f,,,, denotes the n -  m approximant defined by 

f.,m( {As }) = ( eA'/" eA ~/"... eA'/" eC=/"~.., e" - ,.c..). , (3.37) 

and c.,,. is 9iven by (3.31) with f,.(2) defined by 

fm(2)= ~., (exp [22 s~= l ,[Aj[[ + 22 [ICz [I + ... + )d"HCm,,]) (3.38) 
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instead of (3.28). For bounded operators {A j}, 

lim f,,m({Aj}) = exp Aj . (3.39) 

As a simple example, we consider the case that [A, B] commutes with A and B. 
Then, we have C 3 = C4... --- 0, and consequently 

e A + e  = eAene~-[B ,AJ  (3.40) 

as is well-known. Therefore, we get 

ea+B--¢ tAB)exp(  t ) - 3o,1, , 2-nil [B, A]  , (3.41) 

or  

lie a+B-L,I(A, B)II •(e Itta'•lll/<2")- 1) exp(liAII + IIBII) • (3.42) 

All the above results are easily extended to the inner derivation 6n (i.e., 6n(A)= 
[H, A]). In particular it should be noted here that the inner derivations {6nj} 
satisfy the following formula 

(exp 6nl exp 6n2... exp fin,.)" (A) = (enl... era")" A(e- m,... e- n,),, (3.43) 

as is easily proven from the well-known formula [7] 

(exp 3n) (A) = e n A e- n. (3.44) 

All the formulae derived in this section are applicable to strongly interacting 
systems, for example, models for phase transition, in which two competing 
interactions play equally important roles and consequently neither of them can be 
treated as a perturbation. 

4. Applicat ions and Concluding R e m a r k s  

The theorems derived in the preceding sections, particularly (3.9), (3.10) and the 
corresponding formula on 3 n are very useful for studying the following problems: 

1. It is possible to prove that the ground state of the d-dimensional quantal 
spin system described by 

~ =  - Z J ~ a ~ - r  Z a~ (4.1) 
ij j 

is equivalent to the (d + 1)-dimensional Ising model [5, 8]. 
2. The partition function ofa quantal spin system in d dimensions is expressed 

by that of the Ising model with many-spin interaction in (d + 1) dimensions. 
3. The above fact makes it possible to perform the Monte Carlo calculation 

of qnantal spin systems such as the Heisenberg model [9]. 
4. One can prove the existence of the thermodynamic limit of non-equilibrium 

quantum mechanical systems [10]. 



190 M. Suzuki 

5. It is poss ib le  to ca lcu la te  a p p r o x i m a t e l y  t h e r m o d y n a m i c  proper t i es  of 
some  q u a n t a l  sp in  sys tems wi th  the use of the n - m  a p p r o x i m a n t s  i n t r o d u c e d  in  
in the  p resen t  paper .  De t a i l ed  ana lyses  will be p u b l i s h e d  elsewhere.  
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