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Abstract. Employing the technique of Mellin transforms to scalar convergent 
Feynman amplitude in the Schwinger integral representation, we determine its asymptotic 
expansion for large Euclidean momenta. 

The determination of the coefficients of the expansion is effected via the use of generalized 
Taylor operators. 

I. Introduction 

Early in 1960, Weinberg [ t ]  presented the famous power counting 
theorem to determine the asymptotic behaviour of a convergent scalar 
Feynman amplitude. This theorem was later extended by Fink [-2] 
to further information on the logarithmic behaviour of the leading 
power. Although, this theorem is believed to be also valid for divergent 
graphs  and is widely applied to obtain various properties of high energy 
physics, no successful at tempt was ever made to establish it in this 
case. Moreover  the studies of gauge fields have demonstrated that a 
generalization of this theorem is necessary to study those physical 
situations where some but not all masses are zero. 

This communicat ion is the first of a series of papers devoted to 
these generalizations. Applying the properties of Mellin transforms [-3] 
on the Schwinger integral representation of Feynman amplitude, we 
will establish the teChnique of determining the asymptotic expansion 
of a scalar convergent graph and calculate its coefficients. The main 
tool to perform the analytic continuation of Mellin transforms is a 
generalization of the z operators first introduced in Ref. [-4] for the 
purpose of renormalization. In subsequent papers, this method will be 
generalized to divergent graphs and to the case where some masses 
and some momenta  become large. 

* Supported in part by DFG. 
** Anach6 de Recherche CNRS; on leave of absence from S PT, CEN Saclay. 
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The rest of this section is devoted to introduce to the reader the 
Schwinger representation of Feynman amplitudes, and to emphasize 
the pertinent properties required for subsequent discussion. In Section II, 
we shall adapt the technique of MeUin transforms for our purpose, 
while Section III will be divided into three parts - to discuss the mero- 
morphic structure of Mellin transforms of Feynman graphs, to extract 
the poles corresponding to the dominant behaviour for large momenta, 
and to convert the information to the asymptotic expansion. Two 
Appendices are reserved for discussion of some properties of z operators. 
A third Appendix is devoted to some technical details. 

For  a scalar Feynman graph G, which has Euclidean external 
momenta p,l  lines, n vertices, L loops and incidence matrix ~ia 1, the 
Feynman amplitude IG is defined by 

g)w) Pi rcLD/2Io(p,m)=S I-[ dDka I-I (k~ +m2) -~ 6w)(P~-e~ak,), 
i = l  a = l  a = l  i = 1  

(i . i)  
where D is the dimension of space with positive metric. The Schwinger 
integral representation for I~ is 

l n - I  
l - ~, Otam 2 - ~ p i [ d ~ l ( 7 , ) ] ~ j p j  

Ia(p, m) = I-[ de,  e "=~ e ',J~ PG(~) -0/2 . (I.2) 
0 a = l  

Here PG(c0 is a homogeneous polynomial of degree L in the a's and is 
defined as follows. Let I = {1, ..., l} and define Z to be the set of all 
subsets 6 ~ of I such that cutting the ith line for all i in 5 p reduces the 
graph G to a sinole connected treegraph. Then PG(a) is defined to be 

Pd )= 2 lq (L3) 

The matrix [d~ (~ ) ]u  is the ratio N u / P  G of two polynomials where N u 
is a homogeneous polynomial of degree L + t in the ~'s and is defined 
as follows. Let J =  (1 . . . . .  n -  1}; for any subset T of J we define ~ r  
to be the set of all subsets 50 of I, such that cutting the ith line for all i 
in 50 reduces G to two connected tree-graphs, one with external momenta 
p j, j ~ T, and the other with the rest of the external momenta. Then 
N-~j is defined by 

p,N/j(~)pj= Z ( Z  pj]2 Z 1~ ei. (I.4) 
T C ~ J \ j E T  ] ~ e ~ T i e 5  ~ 

To any subset 5 ~ of integers in I, we associate a subdiagram, that is a 
set of lines and vertices. It is well-known that Pz(e) and d ~ ( e ) h a v e  

e~ = + 1 if the line a points away from the vertex i, e~, = - 1 if the line a points into 
the vertex i, and 0 otherwise. 
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the following properties: 

1. piN~j(cOpj>O Vc~>0. 

2. PG(a) > 0 V a > 0 ,  

3. given a subdiagram 5: = I, 

(I.5) 
(i.6) 

P~(c0 ~ = ~ v i~ s: = (9(~ L(sO) (I.7) 

pd~a(a)p~=ovi J =  ~(9(~) i fS:  is an essential subdiagram (I.8) 
(60(~o °) otherwise 

In (I.7), L(50 is the number of loops of the subdiagram 5Q and in (I.8) 
an essential subdiagram is a subdiagram that alone conserves all the 
external momenta of G. From the above properties it can be shown that 
the integral in (I.2) is convergent if, for any 5: = I, co(50 < 0, where the 
superficial degree of divergence co(50 is defined as 

co(S0 = L(50 D - 2/(5:) (I.9) 

and I(5:) is the number of lines in 5:. 
The concepts of union, intersection and inclusion of subdiagrams 

will be understood as those of sets of lines and vertices. Two subdiagrams 
5: l, and 5:2 are disjoint if their intersection is empty. If two subdiagrams 
are neither disjoint nor such that one is inside the other, they are said 
to overlap. A forest is a set of nonoverlapping subdiagrams. Given two 
subdiagrams 5: and y'(__c 50, the reduced diagram 5:/5: '  is the diagram 
obtained from 5: by shrinking 5:' to a point. The functions P6(a) and 
pd;l(a) p, have a power expansion in the dilatation variables corre- 
sponding to the subdiagrams of any forest, after all common factors 
have been removed. Finally, let us close this section by quoting two 
well-known important properties [-5]. Given a subdiagram 50, let us 
dilate all e{s, i e Y,  by # in the functions PG(a) and pd;  1 (~) p and obtain 
Po(~, #) and pd~ 1(c~, #)p respectively. Defining FG(~, #) by 

pa(a ' #) = #L(~) P;(c~, #), (I.10) 
we have 

Ph(a, O)= Px(~) Pa/:(a). (I.11) 

If cf  is an essential subdiagram, we define d~(a, #) by 

pd~ ~ (~, #) p = t, tpd'G(e, #) p ,  (I. 12) 
and we find 

pd'6(e, O) p = pd)l(a) p .  (I.13) 
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II. Mellin Transform 

To determine the asymptotic expansion of a function qo(2) as 2 
tends to infinity we use the technique of Mellin transforms [6]. Given a 
function ~0(2), which is finite in the region 0 < 2 < oo and which possesses 
the asymptotic expansion 

-- oo qmax (P) 

~o(2)~ ~ ~ apq2P(ln2) q, (II.1) 
P = P m a x  q = 0  

we define the Mellin transform M(x) in the interval A < Rex < A + 1, 
where A is an integer ~ Pmax, to be 

M(x) = ~ d22-x-*( t  - T; A) ~o(2). (II.2) 
0 

In this equation Tff is the Taylor operator defined by 

A 
T?~a(2) = ~ ~ @")(0) 2". (II.3) 

n=0 /~'~ 

To continue M(x) to the entire complex x-plane, we first split M(x) 
into two pieces 

M(x) = M 1 (x) + M: (x) (II.4) 
with 1 

M~(x) = ~ d22 -x-  1(1 - W?) tO(2) (II.5a) 
0 

and 
M2(x) = ~ d22 -x- 1(1-  T~ A) q~(2). (II.5b) 

1 

The functions Ml(x) and M2(x) are analytic respectively in the region 
R e x < A +  1 and Re x > A .  Now, we continue Ml(x) to the region 
Rex < A + n + 1, where n is an integer ____ 1, by separating the integrand 
into two parts 

A+n 
T~+. ) qo(*}(0) t . (II.6) M, (x )=  ~d2)o-x-~(1 - qo(;O- Y'. i! x - i  

0 i = A + I  

Since n can be chosen arbitrarily large, equation (II.6) shows that the 
analytic continuation Ml(x) of Ml(x ) is analytic everywhere except 
for simple poles at x = A  + t, A + 2  . . . . .  Next, we continue M2(x). For 
any integer m > 1, we define for the function q~(2) given in (II.1) the analog 
W m of the "Taylor" operator at oo by 

WIn(P(2) = ~ E apq 2p(ln2)q" (II.7) 
p=m q=O 
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For Rex > A, 

M2(x) = ~ d),.2 -x- 1(1 - W A-m+ 1) ( t  - -  T A) q~(2) 

1 (II.8) 
A q ; ~  (P) 1 

+ Z 2 ' '  p=A-,,+l q=O apqq.(x_p)q+l, 
where 

qmax(p) = S qm,x(p ) for P<Pmax (II.9) 
/ 0  for P > Pm~,, 

and 
[apq for q4:0  or p < 0  

a'vq=~avo-qCP)(O) for q = 0  and O<=p<Pmax (II.10) 
[-qCP)(0) for q = 0  and p>Sup{0 ,  pm~x+l }. 

The integral in (II.8) exists for R e x >  A - m .  Hence the analytic con- 
tinuation ME(X) of M2(x) is analytic everywhere except for simple poles 
at x=A, A - 1  . . . . .  Sup{pin,x+1,0}, and multiple poles at X=Pmax, 
Pmax- 1 . . . . .  Thus, the analytic continuation M(x) of M(x) is 

= (x) +  22(x). (11.t 1) 

The function Mr(x) is analytic everywhere in the complex x-plane 
except for multiple poles at x = p  . . . .  Pm~.--1 . . . .  , and simple poles at 
x = Sup {Pmax + 1, 0}, S u p  {Pmax + 1, O} + l ,  . . . .  

Let us define 

F(x) = F ( -  x-----~' (I1.t2) 

- -  09 q m a x  (P )  

Z Z 
P = p r n a x  q = O  

which is analytic everywhere except for multiple poles at 

X = Pmax, Pmax - -  1 . . . . .  

Since, from (II.6) and (11.8) we obtain 

apqq! ~ ~o(')(0) t 
(x -- p)~ + 1 ~ n ! x - n n = O  

therefore, we find 

+ continuous part ,  

(11.t3) 

F(n) = ( - ) "  ~¢")(0) (II. 14) 

for integer n > Pmax + 1. 
From the properties we have found for Mellin transform of functions 

~o(2) satisfying (ILl), we now pose and solve the inverse problem to 
determine when q~(2) possesses an asymptotic expansion of the form (II. t). 
First let us remind ourselves of the following theorem on inverse Mellin 
transform. 
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Theorem. [6]. Let f(2) be piecewise smooth for 4 >  0, and let 
So d22-x-  if(2) be absolutely convergent for ~ < Rex < ft. Then, if 

S "~Xa(x)dx g(x)= o d22-x-~f (2 ) '  f ( 2 ) =  2hi ~-~oo 

with ~ < a < fl. 

Then, if there exists an integer A > - 1  such that ( 1 -  T~)cp(2) 
fulfills the conditions of the theorem for A < Rex < A + t, 

1 ~+~o~ 
( 1 -  T A) qo(2)= 2rci S dx2~M(x) , (II.15) 

G--~oO 

where M(x) is defined in (II.2) and A < o < A + t. 
If moreover the analytic continuation M(x) of M(x) is found to be 

analytic for Rex < A + 1 except for multiple poles at integer values of 
x < A ,  and, if for Rex in any interval a < R e x < A + s ,  IM(x)j-,0 
uniformly in Rex faster than l lmxl-1-~ when I Im x l ~ oo (e and 6 > 0), 
then the contour of integration can be shifted towards the left to a value 
of a such that M(a) exists. The residues of the poles between A + 1 
and cr then generate an asymptotic expansion for q~(2) of the form (11.1). 

lII. Feynman Amplitudes at Large Momenta 

a) The Mellin Transform 

Let us scale all external momenta p by 2 in the integral (I.2) for 
convergent scalar Feynman amplitudes in Euclidean space and obtain 
the function q~(2), 

at? 

~0(2) = S de e -~"2 P(oO -D/2 e -'~`2pd- l(a)p (III. 1) 
o 

In Appendix C, we shall derive the following two estimates for the 
positive function q~(2) 

q~(2) < const (III.2) 
~0(2) ~ const x 12j '°+~ for t21 > N ,  

where e > 0 and 
co = Sup [co(Sg)]. (III.3) 

In (III.3), Sup runs over the superficial degree of divergence of all 
essential subdiagrams. These two estimates allow us to define the 
Mellin transform of q~(2) as in (II.2) with A = - 1. Indeed, splitting the 
integral into two parts 

N oo 

M(x)= S a~-x-x:0(~)+ S ~2-x-1~0(~), (III.4) 
o N 
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and using (III.2), we see that the 2 integral is absolutely convergent for 
c o < R e x < 0 .  Then, the theorem on Mellin transform in Section II 
can be applied and the inverse Mellin transform is valid for the function 
q~(2) and for co<cr<0.  Replacing ~o(2) in (II.2) by its value in (III.t) 
and interchanging the order of integration by Fubini-Tonelli theorem, 
we obtain for the Mellin transform the integral representation 

1 ( 2)~do~e_~,,,2p(co_D/2[_pd_l(oOp],q 2 (III.5) M ( x )  = y r - 
0 

Since pd-a (~)p vanishes linearly with those ~'s belonging to an essential 
subdiagram (I.8), every- essential subdiagram 5 p will cause the divergence 
of the e-integral in (III.5) whenever Rex < co(J), the superficial degree 
of divergence of 50. Then, co is the largest negative integer where M(x) 
is singular, tt wilt be shown in this paper that M(x) has a multiple pole 
at x = co and that shifting the integral contour across the pole at x = co 
in (II.15) will yield a leading behaviour for q~(2) of the form 

q~(2) ~ 2'~(ln 2) q a,oq + ' - - .  (Ill.6) 

This is the famous power counting theorem due to Weinberg [1]. 
In (III.6), q is a nonnegative integer and co has been defined in (III.3). 
Let us remind ourselves of the rule to obtain essential subdiagrams; 
they are the subdiagrams which alone conserve the external energy- 
momentum flow. 

Let us now show the meromorphic structure of M(x). For this 
purpose, we decompose the domain of integration in (III.5) into sectors 
[7] 9 as defined in Appendix C. Then, 

M(x) = ~ Mo(x ) . (III.7) 
g 

In each sector 

d g =  {~10 < ctil < ~i2 ... < ai,}. (Ill.8) 

We define a sequence of nested subdiagrams 

R j = {ia . . . .  , ij} (III.9) 

for j =  1 . . . . .  I. The set of all essential subdiagrams is denoted by & 
If R j e 8 all R r e g for r > j ;  let R a be the smallest essential subdiagram 
among the RJ's. Performing the change of variables defined in (C.6) 
and integrating over fl~, we obtain 

l -  1 ( I I I . 1 0 )  

• [dfliflZ'°~R')- 1] l~ fl~Q°( m2, P, fl, x) 
i = k  
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with 

Q°(m2, p, fl, x) = m~ + • fl~. ... flL 1 m j = 1 (III. 11) 

pg(fi)-DI2 [p Ao(fl ) pixie. 

The functions Pg(fl) and pAg(fl)p, defined in (C.8), are such that 
Q°(rn 2, p, fl, x) has a Taylor expansion in any subset of fl's, convergent 
in a neighborhood of these fl's = 0. 

We introduce in (III.10) the identity 

Q°(mZ, p, fl, x) = E H TZ: l~ (1 - TZ: ) Qg(m 2, p, fl, x), 
S~{k  . . . . .  l -  1} ~ e s  ti~S 

t e { k , . . . , l -  1} 

where the q'~ are any set of nonnegative integers. Let us denote by 

Q~,ls( m2, p, {fit : t ~ S}, x) 

~ l_l_{ ~__t,~QO(rnZ, p, fl, x) (111.13) 

Using (111.13) and (III.12) and integrating in (III.10) over fit for t ~ S  
in the region Rex > co, we obtain 

sc{k ..... 1 -1}  (III.14) 

0 2 x)/, s~.},~(m, p, 
t?;=o ~ x -  co(R')+ n, 

where 
1 

0 2 I~°~,s(m , p, x) = ~ [ l  [dfl, flV°'(R~)- '3 [ I  
0 tCS  tCS  

n,~ l l  (1- r;:) 
t ¢ s  

Rt essential t~{k , . . . , I -  1} 

Qf, i,s( rn2, P, {fit" t ~ S}, x). (III.t5) 

The integral (III.15) is shown in Appendix C to be analytic in x for 
R e x >  Sup (o)(R~)-qt - 1). Summing over all possible S in 

t ~ s  
R t essential, =UR~ 

(III.14) shows that the only singularities of M0(x) in the region 
R e x >  Sup (co(Rt ) -q t - l )  is a set of multiple poles at integer x; 

R t essential, 
Rt~-RI 

each essential subdiagram R i of the sector develops single poles at 
x =  co(Ri), co(Ri) - 2 . . . . .  Since the qt's are arbitrary_Mg(x) is a mero- 
morphic function and so is M(x) by (III.7). Then, M(x) is analytic in 
the entire complex plane except for simple poles at x = 0, 2, 4, .... and 
multiple poles at x = co, c o - 2 ,  c o - 4 , . . ,  for even dimension of space- 
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time and at x = co, co-1 ,  c o - 2 , . . ,  for odd dimension of space-time. 
It will be shown by extracting the residue of the pole at x = co, that it is 
not zero. 

It is also shown in Appendix C that the integral in (III.15) is poly- 
nomially bounded when tImxJ~oo, and that this boundedness is 
uniform in Rex in any fixed interval. Then the presence of the F functions 2 
in Mg(x) insures that we may shift the integration contour towards the 
left for the inverse Mellin transform (II.15). The asymptotic expansion 
for q~(2) is then of the form (ILl). 

It is certainly possible to extract the coefficients of all pole terms 
from (III. 14) but the result is not obviously sector independent. However, 
we will present in Section IIIb) an alternate determination of the 
coefficients which has the advantage that it is not dependent of the 
sector decomposition. 

b) Leading Poles of F(x) = M(x) /F( -  x) 

In Section IIIa), we showed the pose structure of )~t(x) from the 
property that the integrand in (1II.5), apart from a common factor, has a 
power series in the sector-dependent variables ft. Here, we shall use the 
fact that, for any forest of subdiagrams, the same property holds with 
respect to the dilatation variables corresponding to the subdiagrams 
of the forest. In the following, we shall present a method to analytically 
continue F(x) to the band 09- N < Rex < c o - N  + 1 where N is any 
positive integer, and we shall explicitly determine the coefficients of the 
leading poles, that is, at x = co. The main tool used to perform the 
analytic continuation is the generalized Taylor operator as defined in 
Appendix A. This is a generalization of the operators introduced in 
Ref. [4] for the purpose of renormalization. We shall here merely 
restate the definition. Given a function f (x)  such that x-" f (x )  (where v 
may be complex) is infinitely differentiable at x = 0, then we define z" as 

z~f  (x) = x -  ~-~ T" + ~ {x ~+ ~f(x)}, (III. t6) 

where 2 > - E ' ( v )  is an integer, E'(v) is the smallest integer >Rev, 
and e =  E'(v)-v .  As an application of (A.t t), let us define for any sub- 
diagram 6 ° 

z)  f(e)  = ['c~ f(c0[,~ = 02 g i ,  Vi  ff o ~ ° ]  e = 1" (III. 1 7) 

2 See Eq. (6) on p. 47 of Bateman, Higher transcendental functions, Vol. I, McGraw- 
Hill (1953): 

lim ]F(x + iy)l e~l~llyl ÷ x  = ~ 

for x, y real. 
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Let us now consider the quantity 

H (1 - z~ 21(:)) {[pd-l(~) p]X/2 p(oe)-o/2}, (III.t8) 
~ c G  

where the product runs over all subdiagrams 5: of the graph G, including 
G itself. Although the z operators do not commute, it can be shown that 
the complete product rI~cG(t - z~ 2t(~)) is independent of the order of 
application upon the function between the brackets { }. For real integer 
x the proof of this statement can be obtained via the formula for the 
remainder of Taylor series, analogous to Refs. [4] and [8]. Such a 
proof does not hold for other x. Fortunately enough it is proved in 
Part b) of Appendix B that whatever is the order of application of the z 
operators in (III.tS) we obtain the forest formula 

where the sum runs over all nonempty forests of subdiagrams. From 
property (A.4) it is easy to convince oneself that all z operators give 
zero for Rex>co.  For Rex<co,  only z operators corresponding to 
essential subgraphs will give non-zero results. If no ~ is equal to zero 
the quantity (III.18) or (III.19) is band-wise analytic in the bands 
co - N < Re x < co - N + 1 with possible discontinuities at the boundaries. 

For a given positive integer N, and for ~ # 0 we define the functions 
g~U)(x, ~) and h(U)(x, ~), analytic in the entire x-plane, by the respective 
conditions 

g(m( x, ~) = e-~"~ [ I  (1 - z~ 21(J)) {[pd- 1(~) p],,/z p(~)-D/z}, (III.20) 
5%G 

h~N~( x, ~) = e-~'2 Y~ rI ( -  z;  2 ~ )  {Epcl- 1(~) p]X/2 v(=)-~/=}, (III.21) 
o~ 5 ~  v 

for x in the band c o - N  < Rex < c o - N  + 1. From (III.]8) and (III.19) 
we show that in this band, and hence everywhere by analyticity, 

g~U)(x, o:) - h~m(x, o 0 = e-~"2Epd - 1(~) p],,/2p(~z)-v/2 " (III.22) 

Integrating over the d~'s for Rex > co, we obtain 

F(x) = F ( - ~ )  ~ dc~g~N)(x, o0-- F ( - } )  i ~ do~h(m(x ' cO" (III.23) 
2 F ( -  x) o 2 F ( -  x) 0 

In Appendix C, it is shown in full detail that the integral ~o d~g(~( x, °O 
exists for Re x > co-  N and is analytic in the same region. 

F ( - ~ )  
i ~ d~h(~)(x, ~) in the region Rex > co will give The integral 2 F ( -  x) 0 

the singularity structure of F(x) when analytically continued to the 
domain Re x > co - N. 
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From the definition (III.21), we see that any forest containing a 
nonessential subdiagram contributes nothing to hC:°(x, a). Replacing 
the z operators by Taylor operators T, we obtain 

h(m(x, cO=e-'m~ I-I ( -T¢ ;  (~)-'o+N-') 
~' .s* ~ '  (111.24) 
• {[pA~,(~, ~)py/2 e~,(~, ~)-D/2}I~=,, 

where the sum runs over the forests of essential subdiagrams with 
superficial degree of divergence c o ( 5 o ) > c o - N +  1, and where A~,, 
and P~,, defined by 

"Pd-l( c~, ~)P= I~ ~2PAo~'(c~, ~)P (III.25a) 

P(e, 4)= I~ ~2L(SOp~,(~, ~), (III.25b) 

have power expansions in the ~ corresponding to subdiagrams of ~ :  
Since a forest of essential subdiagrams is necessarily a forest of nested 
subdiagrams, in each of the forests of the sum (III.24) there exist a 
minimal essential subdiagram contained in all others of the same forest. 
We now regroup the forests ~ '  into the classes of forests which have 
the same minimal elements: 

T O ~ ( ~ ' ) - - e a +  N - 1" t htm(x,°O=e-~m2EE I] (-~¢~,, 
s~ ~ {e'~& (III.26) 

• (_  T~tJ)- ~,+u- I) {[pA~. (o~, ¢) p]X/2 p~. (o:, ~)-~/a}l¢=,, 
where the first sum runs over all essential subdiagrams 5 ° and the 
second sum over all forest ~-s, whose minimal element is 5O. To obtain 
the pole structure of h(U)(x, ~) we operate T¢~, on { }, and each term so 
produced can be factorized into two parts: an x-independent part which 
is a function of the a's belonging to the reduced diagram (G/SO), and an 
x-dependent part, which is a function of the £s belonging to 5O and which 
can be integrated in the region Rex > co to yield the poles of F(x). It is 
beyond the scope of this paper to determine the coefficients of all the 
poles of F(x) and we shall contend ourselves with the determination 
of only those of the poles at x = co. 

The poles ofF(x) at x = co will be obtained from the function h°)(x, ~). 
The essential subdiagrams with superficial degree of divergence equal 
to co are said to be leadin9 subdiagrams. Of course, only the leading 
subdiagrams contribute to the forests in h(1)(x, e): 

h(')(x,c~)=e-'maEE I-[ (_~o)  
s~ ~, g~' ~ (III.27) (,9o'. 5o 

• (-- T~ °) {[pA~. (a, ~) p]~/2 p ~  (oc, { ) - ° / 2 } 1  e = 1" 
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On applying the Taylor operator T~ ° for the leading subdiagram 5 P, 
we obtain by virtue of (I.11) and (I.13) 

[_pd) 1 (a) p]X/2 ps~(e)-D/2 P~/s~(a, ~)-w2. (III.28) 

This factorisation allows us to separate every term in h(t)(x, ~) into two 
factors: one depending on 5 a and the other one depending on the reduced 
diagram G/5C Thus, 

h°)(x, a)=  - e  -~m~ Z ~ [ I  (--z~'~) spTsq) {Pa/~(cQ -D/e} 
y ~ gs~ '~ (111.29) 

t2g '  :I: Y' 

• [ p d 9  ~ (x) p l  x/~ P: , (a ) -~12,  

where we have reintroduced the z operators for the reduced subdiagrams 
5~'/5C Since, for a subdiagram 5~'~ o~s~, o~' /~ is a subdiagram in G/5 ~ 
with superficial degree of divergence ¢0(&°'/~)= O, we may express the 
sum over ~,~y as a sum over forests of logarithmically divergent sub- 
diagrams of G/o~: 

h(1)(x, :0 = - ~ e-Z*°~*=''] ~, H ( -  z~'2/) s~'/s~)) Palsy(e) -D/2 
~ se'/s~ ~ (Ili.30) 

- e  - ~ ' ~  ~"~ [ p d )  ~ (a) p]:,/2 p s , ( a ) - , / 2  . 

We may enlarge the sum over .~ in (III.30) to cover all forests of G/Se, 
since the contribution from any convergent diagram is zero. Then, 
by applying the forest formula (part b of Appendix B) we obtain: 

h(1)(x, ex) --- -}-~, e -£i~is:~a# I-I (t - zR 21(R)) P~l,¢(o:) -z)12 
s~ Rc 6is ° (III.3 t) 

. e-2,~e~,"{ [pd~'(a)p]X/2 P~(a) -D/2 . 

Let us define 

F ( - ~ )  ~ (,) (III.32) ya(x) = 2 F ( -  x) o d°~gG (x, ~:) , 
and 

e~ = ~ dc~e-~"2 I-[ (1 - r2, z'(s')) PG(e) -°/a , (III.33) 
o se__cG 

where we have displayed explicitly the dependence ofg (1) on the diagram 
G. The function 0~ is nothing but the renormalized amplitude for the 
Feynman graph G at external momenta equal to zero [41. Then, 

FG(X ) = ya(x) + ~ ~a/sfFs~(x). (III.34) 
t e a d i n g 5  ~ 

Since we are going to use the function F(x) recurrently, we have indicated 
its dependence on the diagram G by writing Fa(x ). In Eq. (III.34), ~a/a 
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is meant to be one. This equation is trivial if the entire graph is leading, 
since in that case rtG(x ) = QG/s: = 0 for 5: :~ G. 

The singularities of FG(x ) at x ~ co are now present in the functions 
Fs:(X). To extract the pole from Fs:(x) at x = co, we change all integration 
variables ~ in the integral representation of Fs~(x), into #o~ (# > 0), 

F s,(x )= F(-~)  ~ do~e_u~,m2#tx_~o(y)l/2[pd~l(ot ) p]X/2 p~(oO-o/2, (111.35) 
2 r ( -  x) o 

and we differentiate by # on both sides. On setting # = 1, we obtain 

F ~ ( x ) = -  2 ~ rnZFs:,(x), (III.36) 
X - -  c o  i e S :  

where ~ is the diagram obtained from 50 by inserting a 2-1eg vertex 
(analogous to mass insertion) on the line i. Substituting (II1.36) into 
(Ill.34), we obtain the following recurrent relation 

2 
FG(x) = Yo(x) + - -  E Qo/s~ E m~Fs~,(x). (III.37) 

X - -  co leadingSO ieS: 

Some of the functions F¢~(x) are still singular at x = co. Such singularities 
are due to leading subdiagrams of 5 p which do not contain the line i. 
We use exactly the same technique to extract the poles of F~(x) and 
thus (III.37) can be applied recurrently. The recurrence stops when the 
functions Fm,(x) so obtained are not singular anymore at x=co,  that 
is when m is a minimal leading subdiagram. In that case Fm,(x)= y,,~(x). 
The solution of the recurrence is 

2 k 
F~(x) = 7a(x) + ~ ( x -  co) k ~°G/s'l~s'l/s:2"'" Os:k-~/s:kYs:~(x), (111.38) 

(SPl . . . . .  ~7,) 

where the sum runs over all forests (5:1 . . . . .  ~-~k) of nested leading sub- 
diagrams 5:1 D 5:2 D--. ~ 5:k, and where we define 

~s:(x)= ~ m~y~(x), (III.39) 
i ~ '  

0s: = ~ mZQs:~ • (III.40) 

Note that in the case where G is leading, (III.38) simplifies into 

2 k 
Fa(x) = ~ (x - co)k ~a/se2... Os:~_,/s~/s:~(x), (III.41) 

(G=g'~ . . . . .  5:~,) 

where the sum is as above except that all forests must now contain 
G=5"a.  The functions yo(x) and ~¢~(x) are analytic in the region 
R e x > c o - 1 .  Hence, (III.38) and (III.4t) display the poles of Fa(x) 
at x=e ) .  
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c) The Asymptotic Expansion 

The analytic continuation of the function M(x) in (III.5) in the region 
R e x > c o - 1  is F(-x)F(x), where the pole structure of F(x) at x=co 
is given by (III.38). To obtain the asymptotic expansion of q~(2), we first 
substitute (III.38) and M(x)= F(-x)F(x) into the equation of inverse 
Mellin transform (II. l 5): 

1 ~+~oo 
(p(2)- 2rci f dxUF(-x )  

2k (III.42) 

" {76(X) + ~ (X__co)k~GtS:,OSP, lS:2"''OS:k-,I~k~S:k(X)}' 
~1 .. . .  ,5:k 

where co < tr < 0. It is shown in part c) of Appendix C that j-;o dxg(l)(x, ~) 
is analytic for R e x > c o - 1  and is polynomially bounded in IImxl as 
IImxl--*oe, and that this boundedness is uniform in Rex in any fixed 
interval of Re x > 03 - 1. So, taking into account the property 2 o f F ( - x / 2 )  
as l Imxl~oo,  we may integrate term by term in (III.42) and shift the 
contour of integration parallelly across the pole at x = co. Then we obtain 

t a+iae 
0(2) = (p,s(2) + 2-rci- j" d x U r ( -  x) { }, (III.43) 

-'oo-i 

where co - 1 < ~r < co, { } is the same as that in (III.42), and where 

qmax (~) 

(p~s(2)=2 ̀° ~ a<oq(In2) q. (III.44) 
q=O 

In (III.44), ~o, defined in (III.3), is the Weinberg power, qm,~(CO) = (number 
of elements in the largest set of nested leading subdiagrams)- t, and 

1 2 k 

k>q (III.45) 

• {dx _ 
where the sum runs over all forests (5:1 . . . . .  ~ )  of k (> q)nested leading 
subdiagrams 5:1 D 5:2 D... D 5:~. 

To justify that 0,~(2) are the leading terms of the asymptotic expansion, 
note that the absolute value of the integral in (III.43) is bounded from 
above by 

const x 2 ~ (~r < co). 
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Let us remind the reader the following recipe to obtain the coefficients 
Q, 0, and the function p: 

1. 0s~ is the renormalized Feynman amplitude for 5 ~ at zero external 
momenta; 5 e / 5  ° '  is the reduced diagram obtained from 5 p by shrinking 
5 p' to a point; Q~/G is one by definition, while QG/se is zero if G is leading; 

2. 0so is the sum of renormalized Feynman amplitudes over graphs 
obtained from 5 P by making a mass insertion; 

r ( - ~ )  ~ _ . . ~  
3. ~y(x)= 2 r ( - x )  Y~ m{ j d ~ e  ~J~~'~' ' 

i e ~  0 
(111.46) 

I-[  (1 - -  27 R 2/(R)) [pd~(oOp]X/2 pspi(OO-o/2, 
R~Sa~ 

where the ~ ' s  are obtained from 5 a by making a mass insertion on 
the ith line. 

IV. Condusion 

In Section lIIc), we have obtained an asymptotic expansion for 
any scalar convergent Feynman amplitude with all coefficients of the 
leading power determined for all logarithms. Weinberg's theorem [1] 
has been obtained at the very early stage of this paper, and later the 
leading logarithmic behaviour, as already given by Fink [2], has been 
recovered. It must be pointed out that our treatment does not distinguish 
the case where some partial sum of external momenta vanishes; in this 
case the essential subdiagrams may be disconnected, and this may 
result in a larger value of co. Using the homogeneity equation, we also 
find, of course, that, in the limit all masses tending to zero, a convergent 
scalar Feynman amplitude exists only if the entire graph is the only 
leading subdiagram. 

Our method using the Mellin transform [6] and the combinatorics 
of the z operators [4] actually allows all coefficients of the asymptotic 
expansion to be determined. The main feature of the coefficients so 
obtained is a factorization property inside the forests of essential sub- 
diagrams. 

Although the result of Section IIIc) is not directly applicable to 
Lagrangian field theory (except in 2 dimensions where all scalar graphs 
without derivative couplings are convergent), this paper provides the 
basic ingredients which will be used in a following paper (Part II) to 
extend our results to divergent graphs. Later on, the results will be 
further generalized to the case where only some masses and some 
external momenta tend to infinity; application to physical situations 
will then be pointed out. 
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Appendix A 

Generalized Taylor Operators 

The generalized Taylor operators have been defined and extensively 
employed in Ref. [4]. Here we want to further generalize the definition 
over a class of functions f ( x )  which behaves like x ~ at x = 0 (where v 
is not necessarily an integer). 

Definition. Given a function f ( x )  such that x -  ~f(x) is C ~ in [0, a > 0,) 
we define the generalized Taylor operator z" on f ( x )  as 

: f ( x )  = x -  ~-~ T "+ ~ {xZ+~f(x)}, (A. 1) 

where 2 > - E ' ( v )  is an integer, E'(v) is the smallest integer > R e  v, 
and e = E " ( v ) - v .  In (A.1), n is an integer and T is the usual Taylor 
operator. 

The above definition is 2-independent. The purpose of introducing e 
is to remove the cut of f ( x )  at x = 0. 

Let us mention the following properties: 

1. "cnf(x):~X q at X ~ 0  with R e q < n ,  (A.2) 

2. ( t - : ) f ( x ) ~ x  ~ at x ~ 0  with R e q > n ,  (A.3) 

3. z~f(x)  = 0 if n -  g'(v) < 0. (A.4) 

By using the formula for the remainder of the Taylor expansion, we have 

i d  ~ ( t ,  ~)n+2 0n+)~+l (1 ~ ~ f ~x~ ~ 0 ~n~-)-~. v ~?~,+z+a {~z+~f(x~)}. (A.5) 

The e in (A.5) is essential to ensure the existence of the integral. In this 
equation, 2 > S u p ( -  E'(v), - n). 

The generalization of the definition of "c to functions of several 
variables is straightforward but in general the z operators do not commute. 
We observe the properties. 

x q for x ~ 0 ,  y + 0  and R e q < n x  
,x , ,  . (A.6) 

1. z x z y f ( x , y ) ~  yq for y ~ 0 ,  x=~0 and R e q < n y  

2. ( 1 - v ~ x ) ( 1 - z ~ " ) f ( x , y ) ~ x  q for x ~ 0 ,  y:l=0 and R e q > G ,  
(A.7) 

but nothing can be said on the behaviour at y ,-~ 0, x =~ 0. 

n~ . . . f = 0  if ni<n i. (A.8) 3 . . . .  (t - z~').., zx~ 

Corollary 

... (1 - z~" , ) . . . f  . . . .  (1 -z~ ' , ) . . .  (1 - z ~ , ) . . . f  if n'i<ni (A.9) 

,~ ,i ,,~ ' < (A. t 0) ... z~, . . . f  . . . .  "c:, i ... zx, . . . f  if n~=ni, 
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where ... means a sequence of • operators. The integral representation 
for the remainder of the Taylor expansion is not always generalizable 
to functions of several variables. Indeed in (1 - zy) (1 - z~)f, ~y is generally 
different for each term in ( 1 -  z~)f. 

Finally let us define the z operators relative to a family of variables. 
Given a function of several variables f({x}, {y}), where {x} and {y} 
are families of variables, we define 

~}f({x},  {y}) = [z;f({Qx}, {Y}]10= 1 • (A.I1) 

Appendix B 

1. Nested Forest Formula 

A forest formula has been introduced in Ref. [4] for the purpose 
of renormalization. Here we present a similar formula for forests of 
nested elements only, and relaxing the requirement of a special type of 
ordering, as in Ref. [4], in the product r I ( l -  z). We extend the proof 
to a larger class of functions, on which this product acts. These functions 
Z(e) have Taylor expansions in the dilatation variables corresponding 
to the subdiagrams of any forest of nested elements, after all common 
factors, which may be non integer and complex powers of these variables, 
have been removed. This nested forest formula can be precisely stated 
as follows. Given any ordering, 5el, 5e2 ... of all the 2 ~-  1 subdiagrams 
of a diagram G (consisting of/l ines),  then 

2t.-1 

TI VI (B.,) 
i=1 X ,.q" e J~ r J 

where the sum runs over all non-empty forests ~ r  of nested subdiagrams 
of G. 

The proof is by recurence. Consider 
21-1 

H ( 1  - 
i=1 

: ' -  1 (B.2) 

where gm-~ is the set of all forests of nested elements built from the 
subdiagrams in W m_ 1 = {Se~ . . . . .  6P,,_ 1 }. For m = 2, it is trivially true, 
while, for m = 2 ~, it reduces to (B.t). If we assume it to be valid for 
m = n -  1, then it is valid for m = n provided that 
2t -1  

[ I  (1 - r~ : ' ( se ' ) ) ( - r )~  t(s~")) Z I-[ (-r~: '(se))Z(a) = 0 ,  (B.3) 
i = n +  I X e ~ h -  I S~ e~4 ~ 
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where ~',_ ~ is the set of all forests of nested elements built from the 
subdiagrams 501, ..., 50,-1 with at least one element either disjoint or 
overlapping with 50,. Hence, the nested forest formula is proved by 
establishing (B.3). 

Given a set of elements T~ C.,. C T, we define an extended set of 
elements 

r 0 = 0 C  rl  C.. .C T~C T~+ 1 = G', (B.4) 

where 0 is the empty subgraph and G' is any graph containing the entire 
graph G. These two elements are introduced for matter of convenience. 
We define for Tj C Ti 4 :0  

 0(r, = = (B.5) 

Then it follows 

a) 

b) 

c) 

Tj __c co(Ti, Tj) __c Ti, (B.6) 

co(Ti, ~ ) =  T : *  7~w50, = T y  50,, (B.7) 

co(Ti, Tj)= T::~ Ti ~ 5~, = Tin50,, (B.8) 

fo~(Ti, R) = R, and 
d) co(Ti, Tj) = t~<:~co(R, 2r)) = R.  (B.9) 

We define a maximal nest N with respect to 50, to be a nest 
To=OCTIC...CT~CT~+I=G' such that for any T~q=0 in ~, 

or  (B.10)  

Let us map ~ into the oriented positive real line by mapping each T~ 
to the integer i. If co(T, T~_I)= T~, we asign to the interval between 
i -  t and i an arrow pointing into i, and if co(T~, T~_ 1) = T/_ 1, an arrow 
pointing into i -  1. Then we can partition the nest f~ into three nests 
respectively ~ Y(,,, 9~. Yd is the set of T's represented by those integers 
such that two arrows point into it; YFis the set of T's represented by those 
integers such that no arrow point into it; and N is the rest of the elements 
having only one arrow pointing into it. Then, between two consecutive 
T ' s s ~ ,  there is one and only one element TeX,, and between two 
consecutive T's ~ Y ,  there is one and only one element Te  ~ .  • is 
never empty since G' e N';, and X contains at least two elements. Indeed, 
if G' is the only element of X, then co(T i, Ti_l)= Ti_l for all i >  0, which 
implies T~c~50, = 0 for all i, in contradiction with the fact that T~ ~ 50, 
for a maximal nest N. Since ~¢# has one more element than ~ ,  ~ :  is 
also never empty. If 0 and G' are the only elements of ,U,, then ~q' = {50,} 
and ~ is a nest containing 5~,,; conversely, if 50, belongs to the nest ~, 
then S = {0, G'} and ~f~ = {5~,}. 
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Given two elements Tj C T~ then (o(Ti, T~) = T~ if all the arrows between 
j and i point towards i, and o(T~, T~)= T~ if all the arrow's between j 
and i point towards j. The converse is also true. Given two elements 
T~ C T~ so that in between them, only one element R is in ~ and none in ~ ;  
then e)(T~, T~) = R. 

Given a nest ~,, we define f2(~A/') to be the set consisting of elements 
of the form o)(T~, T~_ ~) for T~ and T~_ t in J~  (T~ nonminimal). If f¢ is a 
maximal nest, then by definition 

= ~ u fJ(N). (B.11) 

We define the corresponding minimal nest J f f -  corresponding to N to be 

JV- = 3 f ' w N .  (B.t2) 

Then, it is clear that the f2 operation on JV- reconstruct ~ (f2(Y -) ) ~fe) 
and 

N = Y -  u O ( ~ - ) .  (B.13) 

It is straightforward to show that no subnest of ~ r -  satisfy (B.13). 
Any nest Y '  such that JV'-__c~'__c N also reconstruct ~ by the f2 
operation on .iV' and 

ff = J f f ' u f 2 ( ~ ' ) .  (B.14) 

Conversely, any nest Y '  satisfying (B.14) also satisfies j r - _ ~ , _ _ _ f f .  
From the properties mentioned between (B.10) and (B.11), it follows 
that 

£2(~) = ~ .  (B. 15) 

For any set A r e  g',_ 1 given in (B.3) we add the elements 13 and G', 
and we determine by (B.14) its maximal nest N which we decompose 
into ~ ,  ~ ,  and Yr. Since 5°, ¢ A/', then 5°, does not belong to ~q, otherwise 
Y -  and ~4r should form a nest with 5~ which contradicts (B.3). Let us 
partition the set of forest ~ e g' ,_,  into groups which have the same N, 
and consequently the same d(( and 3(f satisfying (B.t5). The sum on the 
left hand side of (B.3) restricted to each group can now be written 

2I-1  

i=n+ l  Y" ~X-  -{0,O'} 

(-~'~('~')) l-[ (1 - ~2~(R')) Z(~),  
(B.16) 

where I4;_ 1 is the set {&Pl . . . .  ,50, - 1}- Let us remind the reader that, 
because of the property of the function Z(:0, all operators ~ to the right 
of'cs~ in (B.16) commute. By virtue of (A.9), we can complete the product 
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over W. We obtain 

2t--1 
l ~  (1 "r - 2/(Sg0] [ "r- 2/(Sg")'l ]~[ ( "-- 2 I(5~% 

, _ _  , 
i = n + l  5~'~W - -{0 ,G'} 

(1  - -  G ,  
R ' e , ~  

(B.17) 

We now prove that the expression (B.t7) is zero for every group 
of forest as described above. Let us study the property of 

1 ]  • (B.t8) 
St' ~.Yg'-- {~,G'} R'~gf" 

The nest obtained by 5~'E J r - G '  and R 'e  W can be written by (B.15) 

~ !  t ! , CR~ C ~  C... C3°" C~m (B.t9) 

Note that in the above nest, if J ;  = 0, then R; = 5~c~5e,, and, if 5~ ' q= 0, 
then 5~a'c~SP,=0; on the other hand R~,=SP,~u~,. The number of 
lines of the nested subgraphs in (B.19) satisfy the topological relation 

l (R~)-  ~ I(,~')= 1(5°,). (B.20) 
i= 1  i= 1  

Let us dilate the ~'s in Z(a) in the following fashion: If the line a ~ St,, 
then ~a-+a2~,; if a E R '  i, a a ~ Q ~  a and if a ~ ' ,  ~a--+a~a. If 5~,'=0 
the dilated Z function does not depend on al, but for sake of simplicity 
we keep the variable al  in what follows. Now, if a does not belong to cog, 

~a '''+O~a I'I 0"2~2" (B.21) 
i,aeS~[ 

If a belongs to 5P~, let 5t~ ' be the minimal element of oU containing a, 
then it is easy to see that 

O~a-~O~a F I  2 ~ .o-2¢2_, (B.22) 0"j ~ j  
j = I  

Hence, under this dilatation operation 

Z ~ Z'  (~r Oi, a jO j) (B.23) 

with 1 <i<_m and 1 < j < m .  Since Z' can be expanded in a common 
Taylor expansion in 0~ and o-~ (but not a priori in o-) once common 
powers of 0i and ai have been extracted, we find 

Z t =  f i  (~jO'j) 13"j f i  (0"~i) vl-/** E (aOi) a' (aj~j) bj C{a,b}, (B.24) 
j = l  i=1  a~+b~>O 

hi>-0 
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where #~ is the power extracted for the variable aj and v, the power 
extracted for the variable 0i; these powers may be complex numbers. 
Note that in the sum, the power a~ is not bounded from below and a 
priori preclude a common Taylor series with a. Also #1 = bl = 0  if 
~=~.  

From the discriminating properties of (A.2) and (A.3) generalized 
to a set of commuting z operators, and applying the z operators of 
(B.18) on (B.24), we reduce the sum over only those a's and b's satisfying 

R e # j +  b i n  - 2/(~')  for 1 < j N m ,  

R e v j + a j + b j >  - 2/(R)) for t < j ~ m .  

From (B.25) and (B.20), we find 

Consequently, 

(B.25) 

Rev i -  ~ R e p j +  ~ aj>-2/(6P~).  
j = l  j = l  j = l  

(B.26) 

~ a j  is now bounded from below and (B.18) has a 
j = l  

Taylor series in a apart from a possible complex power. The effect of the 
z operators, relative to elements of ~ -  {0} in (B.17) can only increase 
the minimum power of o-. It is clear now, that the application of "r~e 2t(z') 
makes (B.t 7) vanish. This completes the proof of the nested forest formula 
(B.1). The left hand side of (B.1) is then independent of the ordering. 

2. The Forest Formula 

We shall generalize the nested forest formula for those functions 
Z(~) which have Taylor series in the dilatation variables corresponding 
to the subdiagrams of some forests in addition to the forests of nested 
elements, after all common factors have been removed. 

Let us note that any forest which is not a nest has some disjoint 
elements. Given a forest, a set of disjoint elements of this forest is said 
to be maximal if any element of the forest that does not contain all of them, 
is contained in one of them. If no such set exists, then the forest is a 
forest of nested elements. We group all forests which are not a nest 
into pairs of the form 

{5el . . . . .  5~,, rest} and {5el w..-wS~,, 5~1 . . . . .  ~9~,, rest}, (B.27) 

where {5el . . . . .  5~} is the maximal disjoint set of elements and where 
of course 5e 1 w...wS°, does not belong to the rest of the forest. Either 
Z(a) has a Taylor series property with respect to both forests of the pair 
or with respect to none. If Z(e) has a Taylor series property, the z's 
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relative to the elements of these forests commute and we can form the sum 

l l ~.- 2/(u~i)~ t ~ -  2 l(~°lh • -. ~ - ~,~s~, , t -  -~, l - . -  ( -  z } 2  i(9'.)) Z(~) ,  (B.28) 

which vanishes by virtue of (A.2) and (A.3). Summing over all such 
pairs of forests and adding the result to the nested forest formula (B.1), 
we obtain 

2z-1  

17 (t-~.71,2t(~°)Z(°0 = [1+ ~. 1~ (-z~2z~))]Z(~),  (B.29) 
i = i  ,~- ~e ,~  

where the sum runs over all forests which have the Taylor series property. 
Then, again, the left hand side of (B.29) is independent of the ordering. 

If Z(a)= e-Pd-~(~)P p(~)D/2 , the sum runs over all possible forests. If 

[pd-1(a) p]~/2, the sum also runs over all possible forests in the Z(~) = p(ot)D/2 

case of non-exceptional momenta. Otherwise, forests containing non- 
essential elements whose union is essential are not included in the sum. 
However, in the case of convergent Feynman graph, any z operator 

[_pd- ' (~) p]X/2 
relative to a nonessential element annihilates Z(a)= p(~)D/2 

Consequently, in the case of convergent Feynman graph, the sum in 
(B.29) runs over all forests even for exceptional momenta. 

3. Theorem 

Theorem. I f  Z(~) has Taylor expansions in the dilatation variables 
correspondin 9 to the subdiagrams of any forest of nested elements, 
after all common factors have been removed, then 

a) 1-[ (-z~21(Z))Z(~) has the same property for any nest ~,, and 

b) [1+ E l~ (-'~7~z'(~))] Z =  l~ ( l-z)2'(~)) Zhasa Taylor series 
1. .#" 5~ e.//" J 5~c 6: 

with respect to any nest R 1 . . . .  , R m after common factors have been 
removed and the real part of the common power of the dilatation variable 
corresponding to R ~ is >-21(Ri).  

Proof. This proof is a direct generalization of Part 1. 
Let us consider a set of nested elements R 1, ..., R". For any nest 

To = 0C T1 ( . . . (  T~C T~+ a = G', where 0 and G' are definined in (B.4), 
we define the cd operation relative to one R i as 

coi(Tj, Tk) = Tkw(R'n Tj) = T~n (Rq, a T~), (B.30) 

where j runs from 1 to r + t  and k from 0 to j - 1 .  We note that 
coP(Tj, Tk) __C coq(Tj, Tk) if R p C R q. 
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A nest ~ of elements To=0C T1C ... C TrC Tr+l = G ' i s  said to be 
maximal in regards to R 1 . . . . .  R m if coJ(T~, T/_ 1) belongs to f~ for all j 
and all T/+ 0, T~_ l e c~. Then coJ(Ti, ~_ 1) is either Ti-1 or Ti. There 
exists for each i =  1 . . . .  , r +  1 a number p(i) such that O<p(i)Nm and 

coJ(T/, T/_ 1) = T/_ I for j<=p(i) 
(B.31) 

coJ(T~, T~_ 1) = T/ for j > p(i). 

Let us map f# into the oriented positive real line by mapping each T~ 
to the integer i. To the interval [i - 1, i], we associate p(i) arrows pointing 
towards T/_ 1 and m-p( i )  arrows pointing towards T i. Each arrow 
corresponds to an J operation and points towards the image of this 
operation. We define ~X r to be the set consisting of G' (=  T~+ 1), of T/if 
p(i) > p(i+ 1), and of 0(=To) if at least one arrow points away from it. 

Similarly, we define ~ as the set of T's in ~ such that p(i)<p(i+ l), 
and ~ as the set of the remaining elements in f¢. The elements 0 and G' 
are never in ~cf. We define JV'- as 

~Ar- = S u N = fq - ~ .  (B.32) 

If f2J(Jl r - )  is the set of elements obtained by performing the ed 
operation upon two consecutive elements of Y -  and if 

f2(~hr-) = 0 0 J ( V ~ - )  then J f ' -  is the minimal nest such that 
j = l  

f 2 ( / d - ) u Y -  = fq. (B.33) 

Every nest ~ '  such that JV- C ~Ar' C ~# satisfies 

o ( y ' ) u x '  = (¢, (B.34) 

and is obtained by adding to ~ / ' -  some elements of ~,vf. 
If N is maximal in regards to the f2 operation (Off#)C (9), it is clear 

that f# is also maximal for all f2 i operation separately. Thus, we can as in 
Part 1 define respectively s f  i and ovf i relative to the element R i. 

Then, by construction 

0 ~ f i = X  

i=1 (B.35) 

0 ~ i = y f .  
i=1 

Although ~ and Jg are disjoint, the s f ' s  may overlap among them- 
selves for different i, and so do the ~gP's. 

In the nested forest formula, we group all forests of nested elements 
with the same ~f. Then, they have the same ~,  ~ ,  ~,, ~£i's, and ~4pi's. 
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We denote the elements of ~ i  by {Se~, 5e~ . . . .  5~[, = G'} and the elements 
of j f i  by {H~ ... . .  H[~ _ ~ } where 

H~ --- ~9~j w(~gaj+ ~ c~ R~) . (B.36) 

With this notation, several ~ i  may represent the same subgraph, and 
so do Hi, but of course no subgraph can be a ~ and a Hj. By hypothesis 
Z(e) has a simultaneous Taylor expansion property in regards to the 
elements of ~. This Taylor expansion property will be used later after 
performing dilatations in regards to the elements of N, S ,  and ~ .  Any 
subgraph which has several names (~i  or H )  will have its variables 
dilated by several factors, one for each name. To be precise, let a be a 
line in the graph G; if a belongs to B s e M ,  ea~e,(2~)2; for every pair 
{i,j} such that a is in 6 ] ,  ea~e,(a})2; for every pair {i,j} such that a 
is in Hj, c~,--* c~(Z})2; if a E R  i, c~a---~o~a(fli) 2. We also dilate in that scheme 
the empty element 0 because 0 may be 5e[ for some i; however in that 
case, the dilated function Z remains (r] independent. We do not need to 
dilate the element G' and we might set 0-~, = 1. 

If the line a ~ R i for all i but a ~ ~ i  for j < r~, then a ~ H} and c~, is 
dilated by 

~ a ,  I~ (a}Z}) 2. (B.37) 

Ifa e R ~ and a ~ R ~- ~, let 6 e be the minimal element in X which contains a, 
then a e ~.ck and a e H~ for ~k  ~= 6e, j < rk. For any k such that i < k < m, 
we can determine a number J(;T, k), 1 <J(6e ,  k ) < r k - 1 ,  such that 
~S~.k) is the largest element in ~fk but not equal to ~ .  Then a is also in 
Hak(S~,k). Obviously, a is also in W for j >  i. Then no other R, 6 e and H 
elements contain a, except G'. 

Hence 

O~a-'~ O~a H k k 2 (~rjZj) 1~ k k 2 (fl XJ(s~,k)) , (B.38) 
k = l  .... ,m k=i 
j =  1 ..... rk-- 1 

so that 

(B.39) 

where k runs from i to m, and j from 1 to r k -  1. 
By hypothesis Z has a simultaneous Taylor expansion in the 

dilatation variables of the elements of ~ ,  W, and :¢; after the common 
powers have been extracted, and, consequently, Z' has the same property 
in regards to the variables )os, a} and Z~. Let (2s)% (a~) ~) and ~)~J be the 
common powers which we extract from Z' to obtain a Taylor expansion. 
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Then, 
m r i -  1 m n -  1 

z '  F I  (&)~ F I  1-I ' ' ~ " = (,~)z~) 17[ 1-[ (/~'z~) "~-~ 
s i = I  j = l  i = 1  j = l  (B.40) 

z G i . . i ~ a } ~ t  / o i  ix  

a j = O d s = O  i = 1  j = l  

i =  a~ = 0  if ~ = 0, and where we have used only the Taylor where v 1 
property in regards to the elements of ~ and ~ .  To use the Taylor 
property in regards to the elements of ~ ,  we have to take into account 
the variable Z} grouped in (a}Z}) a) in the above equation. Let us define 

i i Ata,al(fl Zs) by 
m r i - 1 

i i __ A{a,a}(fl Z ) ) -  ] - [  H (fliz~)a~ ' i i A~d ' ~} ([3 Z)), (B.41) 
i = 1  j = l  

then i~ A~a,a}(fl )0  has a Taylor expansion in i i fl Zs. Equation (B.40) is now 

m r ~ -  1 m r i -  1 

z ,=  FI (,~,)"~ Fl 17 (4z~; ~ FI FI (,8'z~) '~-~. 
, i=l s=l i=i s=i (B.42) 

• £ 
o~=o,,,=o ,=, j=,  \ 7 - ]  &~,o~(/~'z}). 

It is then clear that a priori we do not have in addition a common 
Taylor expansion with the variable fl's. 

Any forest of nested elements J~  belongs to a group characterized 
by a maximal nest ff and it can be decomposed into J V - ( = N w J ( )  

' C and 3/f ( = ~ ) .  It is certainly possible to duplicate the z operators for 
the graphs with several names in X or for the graphs with several names 

i i in ~¢~' so that to each variable a s or X) corresponds a z operator, and so 

IV[ (- ~)2"~b z(/~) 
SPEW 

1-[ (-zJ-, 2"B-)) 1[-[ " _-2,~}~ Z' z=~=z=l (B.43) = t - ~ j  , [-[ ( -~"~) )  
s {./43 {i,s] 

6Qe~T" H ~ e ~ '  

Substituting Z' from (B.42) into this equation, and applying the %'s, 
we obtain zero if - 2 / ( ~ i )  - E'(v})<0 for any (i,j); otherwise we obtain 

i is bounded an expression similar to (B.42) except that the sum over a s 
from above by 

a~ < - 2/(~!) - E'(v~). (B.44) 

Hence, the proof of part a) of the theorem is now completed. 
If we sum over all forests of nested elements which belong to the 

same group characterized by a maximal nest if, we obtain an expression 
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of the form 

Xe Group 5eeA/" 

aj 
s {i,j'} {!,j} 

(t - , ; . j2.~j)) Z '  

12=~r=Z= 1 

(B.45) 

r i -  1 r f  - 1 

= 13 E E VI (¢ )  - '  
i= 1 @=0 d~=O i= 1 

{U} o {,,j~ m}! \g--/~T] l A{d,~}(/?i~} ) (B 46) 

m)__>o ,.}_>o ~j=~,,.j<o 

where 
m~ = - 2/(Hi) - E'(#}), (B.47) 

and where -2t(5~])-E'(v})>O for all (i,j), otherwise (BA5) is zero 
for that group. The integral in (B.46) exists in a neighbourhood of the 
fi's = 0 and has a common Taylor expansion in the ~q's. The real part 
of the common power of ff so obtained is larger or equal to 

r~ - 1 

Z (Re#}- Rev}-  a} + rn} + 1). (B.48) 
j = l  

Using (B.44), (B.47) and the topological relation 

r i - - 1  

[ / ( ~ )  -- 1(~i)] = -- t(R ~) for i = 1 . . . . .  m, (B.49) 
j = l  

the real part of the common power of/~ is found to be strictly larger 
than -2/(R~). The second part of the theorem is then proved. 

Appendix C 

a) Two Estimates about the Function ~p(2) 

the convergent scalar Feynman amplitude ~o(2) where all Given 
external momentum are scaled by 2, 

q~(2) = ~ drze-~'2e-;~2Pe-l(~)P P(oO -D/2 , (C.1) 
o 

a trivial bound is obtained since 

q~(2) < q~(0). (C.2) 

On the other hand, let us decompose the domain of integration in (C.1) 
into sectors [73. Given a permutation g = (il . . . .  , iz) of the integers 
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1 . . . .  , l, we define a sector dependent on g to be 

~fO = {0~[0 ~ ~il ~ ~i2 =<("" --~ 0~i,}' (C.3) 
Then, 

~o(2) = Z %(2).  (C.4) 
g 

In each sector ~¢o, we define a sequence of nested subdiagrams 

R j = {il, ..., i j}, (C.5) 
for j =  1 . . . . .  I. 

Let us introduce the change of variables 

2 2 
% : flj f l j+ 1 .../~,~ 

for j = t , . . . ,  I. The domain  of integration in fl is now 

(C.6) 

I 
p d -  1(o 0 p ~  1-I f l iapAo(f l )  P 

i = k  

1 

P ( a ) - *  1-[ fl 2L(R') po(f l ) ,  
i=1 

(c.s) 

where R k . . . . .  R ~ are essential subdiagrams. The functions Po(fl) and 
p A g ( f l ) p  are strictly positive in the domain  of integration and are fit 
independent. 

Then, 

[ ] 
%(2) = 2 ~ I dflz dfl,  fl~- , , (R,)-I  e J : '  

o ~ o i = 1  i = ~  ( C . 9 )  

_,~2 I1 B~pAg(13)p 
. e ' =~ Po(fl) - D/2 . 

After the fit integration, we have 

1 I - 1  
~o0(2) = 2 t - 1 F( -- co(Rt)/2) S Y[ [dfl i f l i-  o~(R,)- 13 Po(fl)-D/Z 

0 i=1 (C. 10) 

j ""  f i t -12rob  2 + 22 1~ f l i2pAo(fl)  
j = l  i = k  . 

(C.7) 
0__<fl~<l, j < t ,  

1 
and the Jacobian of the t ransformation is 2 t 1~ f12i-l .  In this change 

i=1 
of variables, the Symanzik functions become 
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[ /~2/-ltni, i=k P] 
In (C.10), the bracket [ ] is larger or equal to mi, 2 1 + ~ H fl2pAo(fl) , 
and we also have " = 

.z= , f j  t~,(R,)a ( ;~ ]o,,+~ 
t + - -  fl~ p Ao(fl) pj < ~--~iz / 

mil  2 i=k  

where 
coo= Sup co(R i) and 

ie{k . . . . .  l} 

Consequently 

1-1 

I-I fl~" +~[P Ao(fl) p](O,,+~)/2, 
i=k  

(c. 1 l) 

O < e < l .  

%(2) <2~"+" 2'-IF(-c°(R')/2) i '-~ ~-I H [a/3,/3/-°'(~')-'] H/3~ '"+~ 
m~ ~-'o(R')+~ o i=1 i=k (C.12) 

po(fl)-D/2 [pAo(fl ) p](% +~)/2 . 

The integral in (C. 12) is convergent. 
Using (C.4), we obtain the estimate 

q~(2) < const x 2 °, + ~ for 2 large enough,  (C. 13) 

where co = sup % = sup o (g : ) .  
g 5 p essential 

b) 
We consider the integral given in (III.15) 

If.},s(m 2, p, x) 
1 

= ~ H [d~,~; ~(~')-I] 11 ~? 
0 t+S t~S 

R t essential 

Convergence and Estimate of the Integral (III.15) when I lmxl~  oo 

• O~,,},~(m 2, p, {/3i" t ¢ s},  x) .  

H (i- r~?) 
t¢s 

t ~ { k , . . . l -  1} 

(c.14) 

,g g where the Q{.}.s function is the Q{.},s function with the fit's for t ¢ S, 
but R t essential, dilated by ~. 

H (i - Te~) Of,~,~(m 2, p, {~, : t ¢ S}, x) 
t ¢ s  

t<k ..... t-l~ (C.t5) 
1 [ (1--¢,)~' { ~ t  ~'÷1] ,g 

,+s o ,+s L q,! \ a[3g, / 1 O{,~,s(~,{,,~,) 
R t essentiM R t essential 

Then, using the remainder formula for the Taylor expansion, we have 
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Now from (III.11) and (III.13) we see that any number of derivatives 
of Q°(m2, p, r, x) in regards to any subset of fl's is a finite sum of terms 
of the form 

Polyn (x) Polyn (fl's) C(fl, x) (C. 16) 

where Polyn means a polynomial, 

C(fl, x) = mi, 2 + flj2 2 2 • "" f i t -  1 m 0 l 
i 1 

• po(fl)-n/2-~2[pAo(fi ) p]X/z-~,  (C.17) 
J 

and vl, v2, v3 are non negative integers depending on the number of 
derivatives which has been performed. The terms C(fl, x) are continous 
in the fl's for f l>0.  Consequently, the ¢ integral in (C.15) is analytic 
for all x and continous for the fl's in the domain of integration. 

1 

II~n},s(m 2, p, x)l ~ • IPolyn(x)l ~ I ]  [dfltfl;-~,(R,)- 1] 
finite 0 t ¢ S  

(C.18) 

t C s  o t4~S q t  ! 
R r essential R t essential 

. IPolyn(¢,flt, flt)l C(¢,flt, fit, Rex).  

l(,},s(m2, p,x) is analytic in x for R e x >  Sup [co(Rt)-qt - 1] and 
t ¢ S  

R t essential 

is polynomially bounded in /Imxl when IImxl~oo. For any finite 
interval in Rex inside the region of analyticity of I, °~.},stm" .2, p, x), the 
boundedness is uniform in Rex. 

c) Properties of the Integral ~ d~g(m(x, ~) 
0 

In the region ~ o - N < R e x < c o - N + l ,  the function g(m(x,~) of 
(III.20) may be expressed as 

gm)(x ' ~)= e-~m2 [1 + ~ , ~  (__ z~a,~))] {[pd-i(~)p]xla p(~)-D/2} , 
(C.19) 

For a given sector (C.3), and its sequence of nested subdiagrams R's in 
(C.5), we gather all forests of nested elements into groups according 
to the R's as in Appendix B. 

Let 
Z(~) = [pd- 1(~) p]X/2 e(a)-°/2 . (C.20) 
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Then, adopting the same dilatation scheme of Appendix B, we find that 
i in (B.42) are now given by the common powers q~, #}, and v i 

I x -  DL(Bs) if B~ is essential (C.21) 
~ = [ -DL(B~)  if B s is non-essential 

[x - D/~(~ ') if ~ '  is essential 
v} = I - DL(SP]) if ~ is non-essential and + 0 (C.22) 

tO if ~ i =  0 

, _ t ~ - D L ( / t )  if H~ise~sential 
# J -  [ - D L ( H )  if H} is non-essential. (C.23) 

band co-  N < R e x < c o -  N + l Because g(m(x,e) is defined in the 
we have 

E'(x) = co - N + 1. (C.24) 

Then in a way analogous to (B.46), the partial contribution to the right 
hand side of (C.19) from such a group of forests can be written in a 
given sector 

-•{ ,n~,~ + j~mlfl j  2. ,  ,ill - 1217~i 2 Z (#~-- V}) e)(Bs)--to+N-- 1 o~(Bs) ~,J=' Z Z e 
i= 1 ds=O ds =0 

Bs essential Bs nonessential 

c~(~) -~o + N -  1 o)(~}) 

o~ 2 H ~i -a} H fl imj+l (C.25)  
• =o a)=O {i,~3 (i,3 

@i essential 5~j~ nonessentlal 5a~*0 rnJ>0 

m}->_O 
where 

, 4  = fco(H})- co + N -  J 
tco(H}) 

if/-/~ is essential 
(C.26) 

if H} is not essential, 

and where we have performed the change of variables (C.6). If there 
exists a nonempty o~i such that c0(~ i) - co + N - t < 0 for ~ essential 
or co(5] )<0  for 5 j  nonessential, then the corresponding group of 
forests contributes nothing to (C.19). 

The same remark holds for the elements of N. The expression (C.25) 
may now be analytically continued to the region 

Re x > co - N (C.27) 
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(the variable x in (C.25) appears in some #}, v}, and in A~a -3)" Indeed from 
the definition of A and (C.20) the function A~a,a)(ft~)) ' is nothing but 

A{d,a}(ft~} ' f i ) =  U ~fsl. I ~ s s  ) H ~ \  (~0.5] ( C . 2 8 )  i,j u j .  

• {[PA(;~s, a~/flt, flt~, f,) p]X/2 p,(~. ffi/~t ~i~i ~i~-~/2~ j lI"~H"~j~H] J Z = o ' = 0  ~ 

where the functions pAp and P' are similar to the functions in (C.8), 
and are strictly positive and ft independent. 

Any derivatives of i t i fill. is of the same A~a.al(f ~j, f )  in regards to j 
A ta~:i form as (a,.~te s j, fix), that is a finite sum of terms of the form 

Polyn (x)- Polyn (fi ¢}, flit) C(ft ¢}, flit x), (C.29) 
where 

C(fl' ¢}, f', x)= [pA(flt ¢}, f~) p]~/2-~ p,(f, ¢}, f t ) -m2-~ , (C.30) 

Polyn means a polynomial, and where v~ and v2 are nonnegative integers. 
i ~ 0 .  Note that the fit's coming from a}/ff are cancelled by (if)") and aj 

The function C is analytic for all x and continuous in ff and ~. in the 
region of integration. 

Substituting (C.28) into (C.25), using (C.29) and integrating over the 
sector J0, we have for each sector and for each group of forests 

d°:e-~'m~ ~, H (--z~21(~))[Pd-l(°OP]x/2 P(°O -D/2 
,Jra W ~  G r o u p  J ~ W  

(B~) - o + N - 1 o~ (B~) o ( ~ )  - o + N - 1 o ( ~ } )  

<= 2 2 ~ 2 2 IPolyn(x)l 
ds=O ds=O a J = 0  . a ) = 0  f i n i t e  

Bs es sen t i a l  Bs n o n e s s e n t i a l  SPj / e s s e n t i a l  ~cjt n o n e s s e n t l a l  

[ ] 1 l--1 oo --fit2 mif + Y~ flJz'"fll-'2m52 (C.31) 
• I H df,f,"'S a f t f t " e  ' = ~  

O t = l  0 

• H 
o (!,~3 

m)->O 

In (C.31) the integer ff's are 
r~ -- 1 ri - 1 rl -- I 

P t = 2 / - l +  Z Re(#}-v})-  Z a~+ ~ (m}+l). (C.32) 
j=l j=l j=l 

m)__>o 

From (C.22), (C.23), and (C.26), we have 

pt > 21(R ~)_ / + X { R e x  - co + N - 1 - 2I(Hj)} + 
J 

ttj ~ T i 

- ~ { R e x - c o + N -  1 -21 (5 ] ) } -  
2 J 

5aj ~ T i 5 j  C T i  

[-2/(H~)] 
HjC T ~ 

(C.33) 
E- 2t(~')] + ~i -  1, 
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where T i is the smallest element of Yg~iw._,~i defined in Appendix B, 
to be essential. Using the topological identity (B.47) 

p i > r i - 2 +  ~ { R e x - c 0 + N - 1 } -  ~ { R e x - c o + N - i } .  (C.34) 
J J 

From (B.36), i i r , fi H}. Then if belongs to Y{'~, the brackets { } cancel 
each other and since r~ _>_ 2, Pl > 0. On the other hand, if T ~ belongs to 
Ygz, there is one more essential H} than there are essential 5 j  and 

p ~ > R e x - o o + N -  1. (C.35) 

For R e x >  co -N,p~> - 1. 
In view of the continuity property of C(]/i~}, ~i, Rex) the integrals 

over ~} in (C.31) exist and are bounded for all ]~ in the domain of the 
remaining integrations, whose convergence is then insured by the bound 
p ~ > - i  for R e x > c o - N .  

Summing (C.31) over all groups of forests of nested elements and 
then over all sectors, we conclude that the integral S~ de9(m( x, c~) exists 
for Rex>c , ) -N  and is polynomially bounded in lImxl as [Imxl---,oe. 
Furthermore this boundedness is uniform in Rex in the interval 
co - N + e < Re x < 6, where e is any positive number and ~ any number. 
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