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Abstract. We consider a large class of models which share the essential 
features of the Kondo model. Bounds on the susceptibility of the impurity 
spin are derived as consequences of general inequalities for quantum correla- 
tion functions. We also obtain bounds for the spin polarization in the presence 
of an external field. 

1. Introduction 

The Kondo model for the interaction of the conduction electrons with localized 
magnetic moments, in its most idealized version, concerns an isolated spin 
immersed in an electron gas. The purpose of the present work is to investigate 
the behavior of a single spin coupled to a heat bath and, in particular, to place 
lower and upper bounds on the susceptibility g as a function of the temperature T 
and the coupling constant J. From these bounds it is seen that, as J~0 ,  the 
deviation of )~-1 from the Curie taw tends to zero uniformly in T. This result 
refutes the singular T-dependence of Z -1 obtained from the Kondo model in 
perturbation theory [1, 2], but it does not contradict z(T--0) being finite. 

First, we clarify terminology and notation. Let <-)¢H denote the thermal 
average with respect to the hamiltonian H and the inverse temperature t =  1/kT. 
For any two operators A and B, Bogoliubov [3] introduced the inner product 

(A, B) = ~ d2(e~nA*e- XnB)~n 
0 

with the remarkable property 

(A, B) = (B*, A*). 

The physical significance of this inner product becomes apparent if A and B are 
chosen to be selfadjoint and if by chance the hamiltonian contains a term - x B .  
Then 

d/dx( A ) ~. = (A, B ) -  fl< A ) ~n< B ) ~ u . 

A similar formula valid in classical statistical mechanics suggests to call t -  I(A, B) 
the canonical correlation [4J between A and B. In accordance with this notion, 
the observables A and B are said to be uncorrelated (for fixed fl and H) if 

t -  t(A, B) = <A)aH<B)a" 

meaning that the thermal average ( A ) a  n is invariant under an infinitesimal 
change H--. H -  xB. 



254 G. Roepstorff 

As a response to an external magnetic field B =  {B,, B 2, B3}, a term - B . M  
is introduced into the hamiltonian, M being the vector operator of the magnetic 
moment. The simplest, although by no means trivial, system is that of a magnetic 
moment generated by a single spin, in which case the Hilbert space naturally takes 
the form of a tensor product ~ @ l ~  2s+l and 

M = #11®S (1) 

where S stands for the conventional spin operator pertaining to the spins. Note 
that the Kondo model provides a specific example of this general structure. We 
are free to choose # = 1 which we shall use in the sequel. 

Macroscopic observations refer to the magnetization (M)fl(H_B.M) or, if 
merely the first order response is considered, are concerned with the susceptibility )~ 
given by 

)(5ik= (Mi, Mk) = ( ~3/ OBk) ( M i )  #(//- 8./)] ,  = o (2) 

where rotational invariance and continuous differentiability with respect to B 
is assumed. In the case of no coupling, we have [H, M] = 0  and consequently, if 
we adopt (1),)i = 1/3 s(s+ 1)fl which is the Curie law. 

2. A Convexity Argument 

Our main objective is to control the positive quantity (A, A) as a function of fi 
with the example ~®$3 for the operator A in the back of our mind. In order to 
fix our ideas and to simplify the discussion, we shall assume that, throughout this 
section, the hamiltonian H acts on a finite dimensional Hilbert space. For  any 
operator A in this space we shall write 

A(x) = (Tr e - #//) - 1/2 e (x- #)m4 A e - (x + # )///4. 

Then, Bogoliubov's inner product may be rewritten as 

# 
(A, B )=  ½ S dx TrA(x)*B(x)  (3) 

- fl 

showing that (A, B) is a positive hermitian nondegenerate form. In addition, it 
satisfies: 

(A, B) = (B*, A*) 

(11, B) = fl(B)#n = fl Tr e ~nB/Tr e - #n 

(A, [H, B] )=  <[A*, B])#n .  

(4) 

(5) 

(6) 

Indeed, (4) and (5) are immediate consequences of the definition, while (6) follows 
from the identity 

fl fl 
5 d2e(a-#)u[ H, B] e-*~ = ~ d2(d/d'q.)(e(~-#mBe-~U) = [B, e-e~~]. 
0 0 
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By virtue of the basic properties of the trace, we obtain two relations 

Tr A(x)*A(y) = Tr A((x + y)/2)*A((x + y)/2) > 0 

ITr A(x)* A(y)l z < Tr A(x)* A(x) Tr A(y)* A(y) 

which, if taken together, prove the inequality 

f ( (x  + y)/2) =< ½(f(x)+ f(y)) 

for the real valued function f given by 

f(x) = log Tr A(x)*A(x). 

Since the function f is continuous, the inequality (7) states that f is convex. 

(7) 

Fig. 1 

° 

b 

f(x) 

In particular f is convex for -fi__<x <fl  and hence stays inside the triangle 
(Fig. 1) given by the vertices (fi, f (fi)), ( -  fi, f (  - fi)), and (a, b), where the coordinates 
a and b are to be calculated from 

f (fi) + ( a -  fl) f'(fi) = f ( -  fi) + (a + fi) f ' ( -  t3) = b . 

We emphasize the fact that, given fl, the triangle is completely determined by the 
following four expectation values 

(A*A)~H=e f(~), ~ A A * ) ~ = e  f(-p) 

([A*, HJA)pH = (A*[t t ,  A])~ ,  = 2f'(fl)e I(a) (8) 

([A, H]A*)  ~H = ( A[H, A*])~H---- -- 2 f ' (  -- fi)e ¢(-~) (9) 

and the geometrical assertion is adequately represented by the following bounds 
on f(x): 

(fl + x)(2fl)-1 f (fi) + (fi_ x)(2fl)- 1 f (_  fl) ~ f (x) 

I f ( f i ) + ( x -  fl) f'(fl) a<-x<=fi 
f(x)> [ f ( -  fi) + (x= fl) f ' ( -  fi)-- fl < x <_a . 

Let us first concentrate on the upper bound. Taking the exponential and carrying 
out the integration we are lead to the inequality 

dx/(: ') < 2Ne sC~)- / ( -  e))/(f(fi) - f (  - fi)), 
-/~ 
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thereby proving the first desired relation 

(A, A)< [~/2( {A*, A })~xr/tanh-1 r (10) 

where 

tanh-  1 r =  ½ log((1 + r)/(1 - r)), r = ([A*, A])an/(  {A*, A})¢n 

and {A,B}=AB+BA. Since r-1 tanh i t >  1 for real r, a weaker statement is 
also implied: 

(A, A)~f l /2  ( {A*, A })aH 

which was previously derived and used to obtain Bogoliubov's inequality [5]. 
Next, we turn to the lower bound for f(x). By a simple integration, 

S dxeS(X) > ( eb-  ey( P))/f '(-  ,B) + (e f(a)- eb)/f'(fi) 

which, after a little algebra, can be brought into the form 

( A , A ) > - I / c { a ( A A * ) a n + ( 1 - c ~ ) ( A * A ) a n - ( A A * ) } n ( A * A ) ~ e  -p~} (11) 

where c~ and c may be obtained from the equations 

c~([A, HJA*)~ n = c(AA*)~ n 

(1 - e) ( [A*, H]A>p n = c(A*A>a n . 

If A =A*, the inequalities (10) and (11) specialize to 

(A2)#~l(1 -- e-PC)/c <= (A, A) < f l (A 2)a n (12) 

where c now satisfies 

4c(A2)an = ([[A, H], A])an = ([A, H], [A, H]) (13) 

and therefore c > 0 and c = 0(/~) as /?~0.  

3. Infinite Systems 

The next problem we encounter is to give meaning to various expressions like 
(A,B) and ( [A ,H]A*)p~  in the thermodynamic limit, i.e. if we pass from finite 
to infinite systems. Here, we must refrain from considering global observables and 
restrict ourselves to quasilocal operators accommodated within a C*-algebra 
which we always assume to be simple (i.e. it has no nontrivial two-sided *-ideals). 
As a substitute for Gibbs' formula 

(A)a  n = Tr e-anA/Tr e -ar~ 

we characterize the equilibrium state by the KMS condition [6; Chapter 7.6]: 
For A, Be N there exists a function FAs(Z), analytic in the strip 0<  Imz < fl and 
continuous for 0 ~ Im z__< fl such that for real t 

FaB(t)=(BAt>an and FAB(t +ifl)=(AtB>a H 
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where 

At = eiHtAe - m t .  

Apparently, this function serves to define a scalar product on 91: 

(A, B )=  ~ d x F  A.8(ix ) 
0 

which, for finite systems, is easily shown to coincide with the previously defined 
product (3). Let us now assume that the infinite system under consideration 
emerges as a limit of suitably defined finite systems. Then the function f ( x ) =  
log FA,A(i(fl + x)/2), being a limit of convex functions, is itself convex for - fi < x < fl- 
It may or may not be differentiabte at the endpoints of that interval. If it is, then 
([A*, H ] A ) ~ n  and ([A, H ] A * ) p  n exist and are given by (8) and (9) respectively. 
All inequalities derived for finite systems then also hold for the infinite system. 
We now turn to the susceptibility of a single spin in a heat bath. Abstractly 
speaking, by a "heat bath" we mean a tripel ( ,3(¢~o, 910, Ho) consisting of a Hilbert 
space ~'4~o, a concrete C*-Algebra 91o of operators on o;/f0 and a hamiltonian H 0, 
such that time translations act continuously on 910 and that there exists a KMS 
state (.)~uo on 91o. The total system, spin +hea t  bath, may then be represented 
by a tripel (.3f, 91, H) where 

W = ~/aO @ l ~  2s+ l  

91= 910®M2, + ,(~) 

H = H o ® I  + H k ® S k  . (14) 

Here, Mn(~) stands for the algebra of all complex n × n-matrices and, as for the 
hamiltonian, summation over k = l ,  2, 3 is tacitly assumed. The interaction is 
linear in S and therefore, except for s=  1/2, it is not the most general Ansatz. 
However, it underlies the Kondo model [7]. Intuitively, if the operators H k are 
sufficiently "gentle", the total system will admit a KMS state as well. 

From now on the crucial, although by no means compelling, assumption will 
be made that the operators H k belong to 91o. This assumption, phrased in a more 
physical language, means that the perturbation is local which is the key assumption 
of the Kondo model. 

To establish the existence of an equilibrium state for the locally perturbed 
system we first observe that the uncoupled system (~Jf, 91, H0®~) admits a 
unique KMS state such that 

(Ao®a)puo®~ = ( A o ) a n  o (2s + 1)- 1 Tra  

for Aos910 and aEMzs+I(C).  By assumption, the interaction part of the 
hamiltonian, 

V = H k ®  S k 

is an element of the algebra 91. Thus, appealing to a general result of Araki [8], 
we conclude that (~f, 91, H) admits a KMS state 

( A ) ~  H = F(A)/F(11) A t  92 (15) 
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where the positive functional F on 9,1 is defined by the perturbation expansion 

fl Xn X2 

F(A)=(A>~tto®~+ ~ ( - 1 ) n S d x ,  5 dx ,_ , . . .  ~d2qfA(xl  ..... x,) 
n = l  0 0 0 

where fff  is the unique analytic function in n variables satisfying 

f a(_ iq ..... - its, f l -  it,, + 1  . . . . .  [J-- it,) = (Vt~+~... V,A Vt,... V~m)Buo®, 
Vt = eimOHke- itHo ® S k  ( 1 6 )  

for m = 0 ..... n and any real tx ..... t,. The domain of analyticity is known to contain 
the tube Ts= {z~ ~2"; Re ze S} with basis S (IR" given by the inequalities 0< x~ < 
x z < . . . < x n <  fi [9]. It should perhaps be stressed that the perturbation series 
converges absolutely for any fixed temperature fi-1. This conclusion can be 
drawn from the estimate 

i f ff ( z)l < II A 11 i[ VII" (17) 

valid for ze Ts, implying that F(A) is entire analytic with respect to the coupling 
constant 

J =  ]jvjl 

and that it is of at most exponential growth: tF(A)I < ItAIl expfiJ. We shall now 
give the details of the proof of (17) for finite systems. On writing K = H o ® l l +  
l]Holl~ we have 

fff(z) = Tr Ae-ZlKVe(Zl -z2)~V... e (~. ~-z,ar(Ve(~,-¢)I(/Tr e-PK 

which is entire analytic. Since K>O, Ifff(z)] is bounded in the tube ~ and by an 
extension of the "three lines theorem" to several complex variables [t0; Chapter VI, 
Theorem 2] the function 

FA~(x) = sup ] f~ (x -  it)l 
tE~ n 

is logarithmically convex on the convex set S;={xe IR";O<xl< . . .<x ,<f l }  
assuming its supremum in one of the extreme points of S. Since S is a n-dimensional 
simplex, its extreme points are the vertices x °, x 1 ..... x" with coordinates xT'=0 
if i<  m and x~ = fl if i>m. It is quickly realized that f f ( x - i t )  assumes the value 
(16) for x = x  ~. Therefore, [f~(x"~-it)f<rlAH [tV[t" which proves (17). It seems 
hopeless to apply the perturbation expansion in the limit fi= oo; i.e. at zero 
temperature. The worst models in this respect are those satisfying [H0, H k] = 0, 
where the nth order corrections to (A)  and (A, A) in general grow like fin resp. 
fin+ 1 There are better behaved models, e.g. of the Kondo type, where the second 
order correction to the susceptibility grows like fl logfl instead of f13. However, 
this does in no way reveal the true behavior of the quantity under study. 

A second remark concerns the denominator in (15). We have 

F(~) => 1 (18) 



Kondo Problem 259 

and so it never  becomes  small. To  prove  this result, we start  f rom Klein 's  in- 
equali ty [6; Chap te r  2.5J 

Tr  {e-A--e-B +(A--  B)e-B} >O 

valid for a rb i t ra ry  hermi t ian  n x n-matr ices  A and B. 
On put t ing A = f i H  and B=fiHo®:I1 in a finite system we obtain  

Tr  e - as _ Tr  e - ' n °  ® ~ > _ fi/(2s + 1) Tr  e -  atl°Hk Tr  Sk = 0 

as a consequence of  Tr  Sk = 0. 
Therefore,  

F(11) = ( e  PHe~/t° ® ~ )~Ho ® ~ = Tr  e - a~/Tr e - ~ o  ®~ > 1 

and (18) is still valid for infinite systems appear ing  as limits of  finite systems. 

4. Bounds on the Susceptibility 

We are now in the posit ion to apply  the correlat ion inequality (12) to the opera to r  
A = 1[®$3, thereby obta ining bounds  for the susceptibil i ty 

;g = (A, A) 

The crucial p roper ty  of A is [A, H i E  92 though  H~92 in all cases of interest. No te  
that, in any rota t ional  invar iant  theory, ( A 2 ) a n =  1/3s(s+ 1) and 

0 < ( [ [A ,  H i ,  A ] )  an = - 2/3 ( V)an  

which simplifies the result: 

1/3 s(s + 1) (1 - e -  aC)/c < Z < 1/3 s(s + 1)fl 

c =  - [2s(s + 1)3 I(V)aH~'O. 
We see that  in general the susceptibility is smaller  than the Curie law predicts but  
exceeds some positive quant i ty  involving the thermal  average of the interact ion 
energy which is negative. If  this energy is small as c o m p a r e d  to kT, the suscep- 
tibility is close to its Curie value. 

Note  that  c - 1 ( i -  e -ac) is a m o n o t o n e  decreasing function of c. This suggests 
to look for upper  bounds  on - ( V ) a  H. The obvious  bound  - ( V ) a H  < l[ V II = J 
is not  the best possible for all temperatures .  A more  refined analysis yields 

- ( V ) p  H < J tanh  fiJ. (19) 

This way we get a result which no longer involves the details of  the dynamics:  

1/3 s(s + 1) (1 -- e ~a)/e__< )(_--< 1/3 s(s + 1)fl (20) 

e = J tanh  fiJ/2s(s + 1). 

In order  to p rove  (t9) we consider  the thermal  average ( V )  with respect to the 
hami l ton ian  H o ® l l  + 2 V  and  obtain  

~(v5 ~-d(V)/d,~=(v, v)<__[~(v25 <=~j2. 
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Upon setting f ( 2 ) =  t a n h - l ( - j - l ( V ) )  we have f ' ( 2 ) <  fiJ and f ( 0 ) =  0 implying 
f(2) <flJ2 which, for 2 = 1, is the assertion (19). It has become common practice 
to plot Z -  ~ against T. The allowed area for such a plot is shown in Fig. 2. As a 
measure for the deviation from the Curie law, we introduce the quantity 

6 = sup ()~ - 1 _ 3 k r/s(s + t )) 
T 

which not only proves to be finite but also tends to zero for small J because 

__< d sup (1/(1 - e - x) _ 1/x) = d = 3J/2s2(s + 1) 2 . (21) 
X : > 0  

It should be stressed that this behavior of ~ cannot be inferred from perturbation 
theory. 

l 

x 4 

Fig. 2 

5. Nonzero External Field 

Our next problem concerns the mean polarization caused by a homogeneous 
magnetic field in the direction of the 3-axis. We shall restrict the discussion to the 
simplest case which is s =  1/2 and write 

1®Sk= ½a~. 

The total hamiltonian now reads 

H ' = H - - x a 3  x>__O 

where we introduced a variable x proport ional  to the magnetic field. Thermal 
averages are taken with respect to H'. However, we shall shorten the notation 
and omit the subscript fill', writing for instance 

d(0.3)/dx = (0-3,  0-3)  - -  f l ( 0 " 3 )  2 ' 

Since t(o-3)1 < 1 for all x, we may set ( a 3 ) - - t a n h y ( x )  and thus obtain 

y'(x) = (1 - ( 0 - 3 )  2 )  - ld(0.3)/dx --- (A 2) - I(A, A) 

where A=0.3 - (a3) l l .  In particular, 4Z=y'(O ). From the conclusion reached in 
Section 2 we know that 

o<__y'(x)<=~. 
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Since (o-a)=0 for x = 0  assuming rotational invariance, we may write 

(o.3) = tanh i d~y'(~) 
o 

thereby establishing the following results: 
(o-3) is a monotone function of the magnetic field variable x and is majorized 

by the Brillouin function for a free spin, i.e. 

O~ (0-3) ~ tanh fix. 

In order to improve upon the lower bound, we obviously need, with regard to (12), 
and upper bound for 

c=  ~([A, H"IA)(A 2) -1 

the problem being that there can be no estimate uniformly in x, since (A 2) tends 
to zero as x increases. In this situation the best general result is obtained by 
applying Cauchy's inequality: 

c< ½(A 2) - ~ ((il-A, H'])2) ~< ½ II [o.3, v ]  11 (1 - (o.3)2) -½ 

< J coshy.  

Then the essential content of (12) is the differential inequality 

(1 - e - ~J c°shO/J cosh y < y' N fl (22) 

to be supplemented by y(0)=0. Because y(x) is monotone, we may pass to the 
inverse function x(y), thus obtaining the inequality 

x'(y) < J cosh y(1 - e-  ~s co~hy) - 1 

Integrating both sides and introducing the function 

y 
qS~(y) = ~ dt cosht(1 - e-~¢°sht) -1 e > 0  

o 

we get 

y 

x(y)= S dtx'(O <= J¢~b'). 
o 

We emphasize that both x and qS, are monotone functions of y. Therefore, 4~ 
exists and ¢isl(J- ix) < y(x). Summarizing: 

tanh qS~-j 1 (J-  ix) < (a3)  < tanh fix. (23) 

For small fl these bounds are very tight, they fall apart if fl becomes large. Still, 
at zero temperature we get an interesting answer. Since q~(y)=sinhy,  we con- 
clude that 

x(jZ + x 2 ) -  1/2 ~_ lim (0"3) ~ 1 (24) 
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a s s u m i n g  tha t  the  l imi t  exists. A l t h o u g h  for any  f ini te fl 

l im (o.3} = 0 
x--~O 

i t  is feasible  t ha t  

l ira l im (o-3) 4 :0  
x~o ~ 

a n d  cons i s t en t  wi th  (24). 
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