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Abstract. The response, relaxation and correlation functions are defined for any vector state co 
of a yon Neumann algebra ~1~, acting on a Hilbert space ~gt °, satisfying the KMS-condition. An oper- 
ator representation of these functions is given on a particular Hilbert space ~gt ~. 

With this technique we prove the existence of the static admittance and the relaxation function. 
Finally we generalize the fluctuation-dissipation theorem and other relations between the above 
mentionned functions to infinite systems. 

I. Introduction 

In conventional statistical mechanics an equilibrium state of a finite system 
is given by a Gibbs state. It is well known that the states of infinite continuous 
systems are no longer of this type. It has been suggested and now widely accepted 
that an equilibrium state of an infinite system should be described by a state 
satisfying the KMS-condition [1]. This is also the point of view of this paper. 

The problem of non-equilibrium statistical mechanics is to explain the oc- 
currence of an equilibrium state. This problem can be tackled in different ways. 
There is a direction where people study the problem by placing the system in 
a larger one. This leads to the study of open systems, where topics like the master 
equation are widely studied [2, 3], some aspects of the theory have recently been 
made rigorous [4-6]. Also a lot of rigorous work has been done on models, such 
as harmonic oscillators and lasers (see e.g. [7]). Another way of studying the 
problem is to consider small perturbations of the system and to wait for the 
behaviour after a long time (see e.g. [8, 9]). Linear response theory must be 
situated in this direction and the principal purpose of the present paper is to 
prove and generalize to infinite systems rigorously some aspects of linear response 
theory, as introduced by Kubo [10] and Mori [11]. 

In Section II we introduce a new scalar product on the set of observables and 
define a new Hilbert space ~ ,  and construct explicity a unitary operator from 24 ~ 
to the KMS-Hilbert space. We prove that it is equivalent with the scalar product 
of the Kubo-Mori theory, and we give some other characterizations of this 
scalar product. 
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In Section III we define the correlation, response, relaxation and admittance 
functions of linear response theory. We give an operator representation of this 
functions on ~ .  This technique enables us to prove in an easy way the existence 
of the static admittance and the relaxation function for all pairs of observables, 
and also to give their explicit forms. Other results which we want to mention are 
the proof of the fluctuation-dissipation theorem for infinite-system equilibrium 
states, and the proof of other relations between the above-mentioned functions. 
Finally we mention the proof of the Bogoliubov inequality for infinite system 
equilibrium states, as a straightforward application of the techniques, which are 
used. 

The formalism developed here, for linear response theory is applied in a sub- 
sequent paper [19], where the importance of this theory is indicated in the study 
of cluster properties. 

II. The KMS-Condition and the Hilbert Space 

Let 93l be a yon Neumann algebra on a Hilbert space ~ ;  let t--, Ut be a strongly 
continuous map from the real numbers IR into the group of unitaries on J r ,  then 
there exists a self-adjoint operator H on g f  such that Ut=expi tH and let 
xt= UtxU*; furthermore let co be any vector state on 93~ i.e. co(x)=(O, xO) for all 
x e 93l with O a cyclic element of ~¢f; the state co is an equilibrium state if it 
satisfies the following definition. 

Definition II.1. The state co on 93l satisfies the KMS-condition at inverse tem- 
perature fl = 1/kT if for any pair (x, y) of 93l, there exists a complex function Fx,y(z), 
defined, bounded and continuous on the strip -fl__< Im z__< 0, and analytic inside, 
with boundary values: 

Fx, , (O=co(x~y)  , 

F:,~,(t- ifl) = co(yx3 . 

Let us first quote some consequences of the KMS-condition [12]. If co satisfies 
the properties of Definition II.1, then the vector O is also separating for 9~, 
furthermore O is Ut-invariant i.e. UtO = O for all t ~ IR. 

There exists an operator A = exp(-flH),  given by 

A = exp( -  fill)= ~o~ e-'ZE(d2) 

where E(2) is the spectral family of H [12, p. 69]. 
This operator is called the modular operator. It can be written as A = F S  

where S is the closure of the conjugate linear operator, mapping xO into x'f2 
with domain 93lO and F the adjoint of S. Let S = JA 1/2 be the polar decomposition 
of S then J is an anti-unitary operator and F = A -  1/2j; furthermore JA it= A itj 
for all t s IR and U~ = A", JO = 0, A O = O. 

Finally we quote the following property which is used afterward: 

F~.y(flz)=(x*O,W~yO) if 0 > I m z > - - l / 2 ,  

Fx.~,(flz)=(y*O,A ~-~xO) if - 1 / 2 > I m z ~ -  1. 
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In the following we will always assume that co is a KMS-state and for notational 
convenience we put f i= t. 

Define the unbounded operator T by 
/1 e-;~\ 1/2 

As is easily checked T is a positive, self-adjoint operator, and as, for 2 + - o o  

{1--e-Xll12 (--e-Zl li2 
Ix~J k~J <(e-~) 1/2 

the domain ~(A 1/2) of A 1/2 is contained in the domain ~(T) of T and ~IJtOC~(T). 
We define the following sesquilinear form on 9J/: 

(x, y).= ( Tx£2, Tyf2) x, y e 931. 

Lemma II.2. The sesquilinear form (., .), on g)l is non degenerated. 

Proof. Let (x, x),= 0 then TxO = 0. If we prove that zero is not an eigenvalue 
of T, using the fact that O is separating for ~Jl, it follows that x = 0. 

Let W(2) be the spectral family associated with the operator ( -  T). Then [18]. 

w(s )  = f , ( , ; -  l(s)), 

for any Borel subsets of the real line, where tp-1(S) denotes the inverse image 

o f S u n d e r t h e f u n c t i o n t p ( 2 ) = - ( l ~ 2 - ~ ) l l 2  

In particular W((-  e, O])= E((b, oe]), where e>0, and b is the inverse image 
under ~p of - e .  Clearly 

lim b(e) = oe, 
e~0 

then 

lira ° W(( -  ~, 0]) = lim E((b, co]) = O. 
0 b~c~ 

So that, 0 is not an eigenvalue of T, because it is not an eigenvalue of ( -  T). 
Q.E.D. 

It follows from this Lemma that the closure of 9~ with respect to the sesqui- 
linear form (,, .)~ is a Hilbert space, which we denote by ~ .  

Following Ref. [12] let 8 be the linear space spanned by elements f , 9 ,  where 
f and 9 are continuous functions of a real variable with compact support, and 
where 

( f , g )  (t)= ~ ~ f(s)g(t-- s)ds 

is the convolution product. 
Denote by ~B the subalgebra of ~ generated by the set 

{ f (H)x l f  e g, x e gJ~}, 

f (H) = I ~_ ~ f(2)E(d2) [12, p. 67]. 
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~3 is called the set of analytic elements of g31 and has the following properties 
(i) ~3 is invariant under A ~, e E ~ (complex numbers), 

(ii) ~3 is dense in the Hilbert space ~(A'), a e IE. 

Theorem II.3. The operator U from 2,@ into ,3tf, defined by Ux = Tx£2 for all 
x ~ 931, extends to an unitary operator from 2/f to ~¢'. 

Proof. From the relation 

]l gx[I = [I Txf2N = [txl[- for x ~ 93l 

it follows that U has a continuous isometric extension from ~ into ~ .  We 
denote this extension by the same symbol. If we prove that the range, R(T), of T 
is dense in J f  and that R(T)C=R(U) where R(U) is the range of U, the theorem is 
proved. First we prove that the range, R(T), of T is dense in 3(f. 

As T is selfadjoint 

(R(T))± = N(T)  [14, p, 267], 

but N(T)= {0}; hence (R(T)) ± = {0}, i.e. R(T) is dense in ~ .  Now we prove that 
R(T)C_R(U): let v e R(r) ,  then v= Tu for some u e ~( r ) ,  as ~3£2 is a core for f (H),  
where f(2) is a continuous function of a real parameter [12, p. 67], there exists 
a sequence {x,} belonging to ~3 such that l imx ,O=u  and lim Tx,~2=v. 

Hence ]lrx,f2-Txmf2l[=llx,-xmll~ tends to zero for n and m large enough. 
As .9~ is closed there exists an element x s ~ such that x = limx, and v = lim Tx,~2 = 

lim Ux, = Ux. The last equality is valid because U is bounded. Q.E.D. 

Theorem II.3 describes completely the Hilbert space ~ .  We notice finally 
that the algebra ~3 of analytic elements of 99l is dense in ~t ~. This can be seen as 
follows: let x be any element of ~ ,  then there exists a sequence {x,}, in 9)l such 
that limx,,=x. As g31f2C~(T), there exists a sequence {y,,~}~ in ~3 such that 

(i) limynfi2 = x.~?, 

(ii) lim Ty.fl2 = Tx.O. 

Let e > 0 be any positive number, choose n such that ffx- x.lf.< 5/2 and I such that 

IIx,-  y,3ll-<e/2, 

then 

IIx-y..,L_- < Ilx-x.ll-+ IIx.- y.,,ll-< 

In the following theorem we prove that the scalar product which we introduced, 
is equivalent with a scalar product widely used in linear response theory (see 
e.g. [11]). 

Theorem II.4. Let F(y, x) for x, y ~ 93~ be defined by 

F(y, x)= atr , (it) 
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where Fv,x(it ) is defined in Definition II.1 then: 
(i) F(y, x)= S~/2 dt {(yfL A+xQ) + (x't2, A'y*~2)} 

= S~/2 dt{(y~, a ' ~ )  + (A ,/2y~, A -'A'/2 x~)},  
(ii) F(x, y) = (x, YL. 

Proof. Take F(y, x) as above, from a consequence of KMS-state and per- 
forming some substitutions we get subsequently 

o F(y, x)= S- 112 dt Fy,x(it)+ j-11"- 1/2 dtFy,x(it) 

= S °- ,/2 dt(y~, A - ' x a ) +  S- I/2 dt(x*O, A 1 +'y'a)  
-- j0fl/2 dt(y~2, A tx~?) + SI/2 dt(x* ~2, A 1 - ty.f2 ) 

_ 012 dt{(y~?, A'xf2)+ (x't?, A'y*t?)} 
- -  J 0  

The second equality of (i) follows from 

(x'f2, Aty*~2) = (J A ll2xC2, At JA 112y~) 

= ( jA tJA  llZyQ, A I/2x~Q) 

= (A -tA 1/2yQ, A 1/2x(~). 

Now we prove (ii). For any element x e ~,  one easily checks that 

A 112- 1 
$1dl2 dtAtxf2 = l n ~  x(2, 

1 - A  -1 / z  
S~/2 dtA -txf2= l n ~  xf2. 

Hence for y e 9J~ and x E ~3 from (i) 

F(y,x)= y(2, ln A xQ + YEL ln A xf2 

( A - 1 ) = ( T y E L  Tx~?)=(y,x)~. 
= y~,Tn--n-n-n~X~ 

Now we prove the equality for x and y in 9)l. 
As ~f2 is dense in ~(A 1/2) for any x e991 there exists a sequence {x,}, in ~3 

such that x,~2 tends to x~  and A~12x,~ tends to All2x~?, hence x'f2 tends to 
x'g2. We show that limF(y, x,)=F(y, x). By formula (i) 

limF(y, x , )= lira S~ i2 dt{(AtyfL x,(2) + (x*~?, A ty * ~2)} 

_ 012 dt{(A'yQ, xf2) + (x*fL Aty*O)} 
- -  J0 

= F(y,  x ) .  

Finally 

F(y, x)= lim F(y, x ,)= lim (y, x ,L= (y, xL, 

because T is relatively bounded to A t/2. Q.E.D. 
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In the following theorem we give another characterization of the scalar prod- 
uct, by establishing a differential equation for it. 

Theorem II.5. For all x, y ~ 9~ we have 

.d 
,37 (x, y,).= - co(Ix*y,]). 

Proof. For x, y ~ 9)l by definition: 

(x, y,)_= (TxQ, Tyf2) 

= (T (1 1 (I+A)'/ZxQ, T +-l)a/2-(l+A)l/2ytf2) +A) 1/2 (1 " 

Define: 
{ 1 - e - ~  ~ ~/2 

A : ~  \;~(l+e_~)j E(d~). 

A is a bounded operator, hence 

(x, y,)_= (A(1 +A)l/2x(2, A(1 +A)l/2y,~2) 

= ((1 + A)l/2x(2, e~'nA2(1 + A)X/ZytO ) . 

It is clear that the range of A 2 is contained in the domain of H, hence 

1 d 
T -~(x, Y)-=((I + A)I/2x£2,(ll~+AA)(I + A)I/Zyt(2) 

(_ A ~/~ a~/~ ) 
= (xf2, y f2)-  ~(l+A)a/2 (1 +A)~/2xf2, (1 +A) ~/2 (1 +A)~/2y,f2 

/ 

= (xO, y,O)- (A t/Zxt2, A 1/2yf2) 

= co([x*, y,]). Q.E.D. 

HI. Operator Representation of Linear Response Theory 

Linearized non-equilibrium statistical mechanics, usually called linear re- 
sponse theory, is studied in terms of the following functions: 

- -  the correlation function 7txy(t): where for x, y ~ 9J~, t E IR 

~x,(t )  = co({x,, y} +) ,  

- -  the response function ~xy(t); where for x, y e gJ~, t e IR 

~, , ( t )  = co(Ix,, y ] ) ,  

- -  the relaxation function ~b,y(t); where for x, y e ~'l, t e IR 

• xy(t) = lira i ~[~o ~xy(t,)e-~t, dt,, 
~--+0 + 

if the limit e ~ 0  + exists, 
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- -  the admittance Zxy(z); where for x, y ~ ~cJt, Imz%0 

Z,~.(z) = i [~ dteTi=*~x~.(t). 

All these functions not only depend on the time but also depend on the observ- 
ables x and y, and as some properties, in particular the ergodic properties, of the 
system are reflected in particular properties of these functions valid for all ob- 
servables, it is natural to look for the basic quantities behind these functions. 
Especially we associate an operator on the Hilbert space J(~ with each of these 
functions. This is what we call the operator representation of linear response theory. 

Once done this, the study of linear response theory is reduced to the study 
of these operators. Moreover all this operators are functions only of the Hamil- 
tonian on Yt ~, whose spectrum is, in view of Theorem II.3, unitarily equivalent 
with the spectrum of the original Hamiltonian H on Yr. Another advantage of 
this operator representation is an easy proof of some known and unknown 
relations between the functions of linear response theory. Maybe, however, the 
most interesting result is the proof of the existence of the relaxation function and 
the static admittance and their explicit form. 

We constructed in Section II, the Hilbert space ~ .  It was proved that ~ is 
unitarily equivalent with Yf, and the unitary operator U is defined by 

U x =  T x ~  for all x ~ 9)l. 

Consider the orbit {xt[ telR} in ~ with xeg) l  then 

x, = U - 1 Tx f2  = U -  1 Teitnx~2 

= U - l e i m T x f 2 =  U - l e i t n U x ,  t e lR .  

L e t / ~ =  U - 1 H U  then 

X t ~ e i t I I x  

hence / ]  is the Hamiltonian on ;,@. The action of the new Hamiltonian is deter- 
mined by the following theorem. 

Theorem III.1. The set 23 is contained in the domain ~(IYt) o f  121 and I2Ix = H x  
for  x ~ 23. Moreover 23 is a core for  121. 

Proof. A s / t =  U - 1 H U ,  x e  ~(/4) is equivalent with U x =  Tx(2~ ~(H).  

Now let x 6 23, then xf2 ~ ~(T) and as xf2 belongs to the domain of the operator 

then [13, p. 1199] 

23~2 C @(HT). 

Analogously 23YJC~(TH), hence for x ~ 23 : H T x O =  THxYJ. If we prove that H x  
belongs to 23 for all x of 23, then 

_f-Ix = U -  1HUx--- U -  1HTxY~ = U -  a T(Hx)Y2 = H x  . 

Now we prove that x ~ 23 implies H x  ~ 23. 
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If x ~ ~B, then there exists an element y e ~ and a function f ~ d ° such that 
x = f(H)y,  where f(2) = S~ + fl(s) f2(2-  s)ds for some continuous functions f l  and 
fz  with compact support. 

As 2f().+) = j" fl(s) (2 - s) f 2 ( 2 -  s)ds + ~ s fl(s) f z ( 2 -  s)ds also 2f(2) belongs to & 
As f(2) and 2f(2) are bounded functions 

H f ( H )  = S~_oo ).f()c)E(d).) [14, p. 358] 

and Hx belongs to ~3. 
Finally x s ~(/ t)  is equivalent with T x Q s  @(H) i.e. x Q e  ~(HT) .  As ~30 is 

a core for H T  there exists a sequence {x,Q},, x, e ~3 such that x,O tends to xf2 
and HTx ,O tends to HTxQ. But as T is HT-bounded we have also that Tx,O 
tends to TxO. 

Hence Itx,-xJI-tends to zero and tlFtx,-I21xtl_ tends to zero, i.e. ~3 is a core 
for H. Q.E.D. 

Theorem III.2. (i) For x ~ ~(H)  and y ~ gJl we have 

(y, Ox).= co([y'x-I). 

l + e  -z 
(ii) Let C(2), where 2 is a real parameter, be given by C(2)= 2 1 -  e- z, then 

for all x ~ ~(C(/¢)) and y ~ 9X : 

(v, c(~)x).= co({y*, x}). 

Proof. (i) As x¢= e"~x for all x e N(/4) and y e ~J~ by Theorem II.5 one gets 

l d (y, xt).=(y, IYtx).=co([y*,xt] ) . 

(ii) Remark that x e ~(C(/~)) is equivalent with TxO ~ ~(C(H)). Then 

C0({y*, X}) = (y(2, X(2) + (A 1/2y(2, A 1/2xQ) 

= ( T -  ~ TyY2, T - 1 T x O ) + ( A T y f L  A Tx(2) 

where 

A = I ~  \ l _e_Z}  E(d2). 

Because TxOsN(C(H))= ~(Ag)c~ (T  -2) for all xeN(C(IYI)) and y~fO~:co({y*x})= 
(y, C(/q)x).. Q.E.D. 

In Theorem II.2 we prove that the response function qb*,.(0) for t = 0  cor- 
responds to a self-adjoint operator H on the Hilbert space J4 '~. Then for t4:0 it 
corresponds to the operator e-/'~/4, such that for each pair of observables (x, y) 
we have q~y, x(t) = (y, e-it[ft~x)-. 

We call the operator e - " ~ / t  the response operator. It is clear now that the 
study of the response function is reduced to the study of the response operator. 
As by Theorem II.3 the operators/~ and H are unitary equivalent we proved, 
how directly the study of the response function is related to the study of the 
Hamiltonian H. 
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Also, we proved that the correlation function ~0,, 0(t) corresponds to the 
operator e-"~C(It), called the correlation operator, such that for each pair of 
observables 71y, ~(t) = (y, e-~dI c(IYI)x).. 

In the following theorem we give the operator representation of the admittance. 

Theorem III.3. For Im z # 0 and x, y ~ ?Ol : 

z,,x(z) = (y*, H R ( -  z)x)_ 

where R ( -  z) = (171 + z)-  1. 
The operator t l  IR( -  z) is called the admittance operator. 

Proof. By Theorem II.5 for Im z X 0 

. ~ i z t  d Z,,:,(z) = - S~ ate ~ (y*, x). .  

By partial integration: 

Zy,~(z) = (y*, x ) .T  iz ~ dt(y*, x).e ~ izt 

= (y*,  (1 - z & -  z))x). 

= (y*, I f R ( -  z)x).. Q.E.D. 

In physics the so-called static admittance, i.e. lim z~ y(z) where the limit is 
z - - * 0  ' 

taken in some sense, is widely used. In the following theorem we prove the exist- 
ence of the static admittance operator as the strong limit of the admittance 
operator, where the limit is taken in a sector of the complex plane. 

Theorem III.4. Let Eo be the orthogonat projection on the null space of  121, then 

1 - / ~ o  = s- l im/4/~(-  z) 
z ~ O  ~: 

zeC~, 

where + C; = {z ~ GlImz~0,  co=< ]argzl =< n-o~, 0<co< ~}. 

Proof. The proof is based on the proof of Lemma 1,9 of Ref. [ 15]. As/4/~(- z)= 
1 - zR( - z), we have to prove that lim zR( - z) = E o. We give the proof for Im z > 0. 

z - - ~ O  ± 

zEC~ 

By the spectral theorem for ~ ~ 

ce Z 

For z tending to zero, the integrand z/2 + z tends to the Kronecker g-function c~;.,o. 
The convergence of the integral is dominated since 

2 - ~ z <  . 1 for z ~ C ~  
s ln  co 

and by the Lebesgue dominated convergence theorem 

lim z/~(- z)~= ~ 6z, oE(d2)=/~o~ • 
z ---~ 0 + 

z e C ~  Q.E.D. 
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Remark now the explicit form of the static admittance, as defined in Theo- 
rem III.4 and denoted by Zxy(0); it is given by: for x, y ~ ~ :  

Zx, y(0) = (x*, (1 -/~o)y).= (Tx*O, (1 - Eo) TyY2) 

where Eo is the orthogonal projection on the null space of the Hamittonian H, 
hence also 

)~,y(O) = (Tx*f2, Ty~2)-- (x'f2, Eoyf2 ) . 

We stress here the fact that this quantity is always finite, for each pair of ob- 
servables x, y of ~IJt. 

As the last function in the series we treat the relaxation function. 

T h e o r e m  III.5. The relaxation function exists ,for all x, y of  93~, and is given by 

~x'Y(t)=( x*' lim ie-t(~+if~) e+ ilTty)- 

= ( x * ,  e - i t n ( 1  - / ~ o ) Y L  • 

We call e-Urn(1- Eo) the relaxation operator. In particular ~bx.y(0)=Z~y(0). 

Proof. By Theorem II.5 

~ d  
q~,y(t)= - lim St ~ ((x*, y)_)e-~t'dt' 

e--*O + 

= l i m  * -~t , ~-~ o + [(xt' y).e - ~(x , St e- i t ' i l l -  et' y).] 

= lim (x*,e-~,~+igI) it7t ). 
~-~o+ ~ + ilYt y " 

And analogous as in the proof of Theorem III.4 we get 

• ~y(t) = (x*, e-~t~(1 -/~0)Y)- 

= (Tx*t~2, (1 - Eo) Ty(2). 

It follows now from this and Theorem III.4 that 

~y(0) = Z~y(0 ) . Q.E.D. 

In Theorem III.5, we derived a first relation between two functions namely 
the relaxation function at t = 0 and the static admittance. In the following theo- 
rems we generalize other relations between the functions to infinite systems. 

Theorem 111.6. For all x, y of  ~J~ and t ~ IR, we have 

i d 

Proof. By the previous theorem 

• = ( x * ,  - e o ) y ) -  
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o r  

4Pm,(t ) = (X~, y)~ -- (X, Eoy)~ 

hence 

d d (x*, y) = ~ (t) 
i dt e~,(t) = i dt ~ ~' 

where Theorem II.5 is applied. Q.E.D. 

Theorem III.7. (Fluctuation-Dissipation Theorems), (i) For all y of ~.R and 
x ~ ~(I?I) we have 

1 -  3x~ (y, C(tZl)]-~ ) =(y, I71x)- 

where 3 = e- ~. 
(ii) For all x, y of g)l we have 

2 
Oxy(O) = - iP ~_ ~: dtgJxy(t) e~,_ e- ~' 

where P stand for the principal values of the integral. 

Pro@ (i) is an immediate consequence of the definition of the correlation, 
and is an operator representation of the well-known fluctuation-dissipation 
theorem [10]. 

To prove (ii) use the following formula [16, Lemma 2.3] 

. A - 1  2 - it 
t A + l = P . [ _ ~ e ~ t _ e _ ~ t A  dt 

where the integral and the principal value are taken in the strong sense on ~ .  
For any pair x, y of 9Jl we have 

i((l + A):/2yf2, ~Q+ i (l + A)l/2xf2 ) 

2 
= P ~ ~ e ~ ' -  e- ~' ((1 + A)I/2yQ, A - i ' (1  + A)l/2xQ)dt. 

Furthermore, 

((I + A)I/2yQ, AA~I (I + A)I/ixQ ) 

( A I/2 A 1/2 ) 
= iA + 1) 1/2 (1 +a)l/2yQ, (A + 1) 1/2 (1 +A)l/2x~2 

- ( y Q ,  x f 2 )  

= (A 1!2 V~, A 1/2 x/~) -- (yQ, xhQ) = ~y,x(O) 
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and 

((1 + A)l/2yf2, Ai+(1 + A)t/2xf2) 

--((1 +A) 1/21+A yQ, Ait(I + A)llZxf2 ) 

= (y~, A - i, xQ) + (A 1/2 yQ, A -"A ~/2 xQ) 

= %+x( t )  

and the theorem follows, Q.E.D. 

As a by product we give a proof of the Bogoliubov inequality for infinite 
systems. For finite spin systems the proof can be found in Ref. [17]. Here we give 
a proof of this inequality tbr KMS-states, in order to point out that this inequality 
corresponds to Schwartz's inequality applied to the scalar product of ~(f, con- 
structed in Section II. 

Theorem III.8. For all y of gYi and elements x such that xf2~ ~(H)  and 
x ' f2 ~ ~(H), we have 

(.0 * I ([Y , x])la<½co({Y, y*})~o(EEx, H], x*]) 

ProoJ~ First we prove that x~ ~(t)): x * Q = J A J / Z x Q ,  and JA1/Zx~Qc= ~@(H), as 
H J =  - J H  this implies that xf2~ ~(HA1/2)C+@(HT) i.e. x ~ @(/q). 

From Theorem tII.2 

co(D*, x]) = (y, HxL. 

By Schwartz's inequality 

I~o([y*, x])12_-< Ilyll. 2 II/qxll~. 

Now 
[[YN 2 = l[ Ty(2 [[ 2 __< ½ it(1 + A)~/ey(2]i 2 

where we used the inequality 

1 - e  2" 
2~ <½(1+ e - ; ) .  

Hence 

I{yll~ __< ~o({y, y*}). 

Also 

11ITIxll 2 = HHTxa]] 2 = j 2!1 - e -  a)dHE(2)x[2]l 2 

= (xf2, H x f 2 ) -  (A 1/2x( L HA 1/2 x~)  

because xf2 e @(H)c~(HA 1/2). 
Finally I]ITtxll 2 = (xQ, Hxf2) + (Hx*Q, x'Q) = co([[x, H], x*]), where we denote 

co([[x, H], x*]) = (£2, [[x, HI, x*]f2). Q.E.D. 
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