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Although quasi-Newton algorithms generally converge in fewer iterations than conjugate 
gradient algorithms, they have the disadvantage of requiring substantially more storage. An 
algorithm will be described which uses an intermediate (and variable) amount of storage and 
which demonstrates convergence which is also intermediate, that is, generally better than that 
observed for conjugate gradient algorithms but not so good as in a quasi-Newton approach. 
The new algorithm uses a strategy of generating a form of conjugate gradient search direction 
for most iterations, but it periodically uses a quasi-Newton step to improve the convergence. 
Some theoretical background for a new algorithm has been presented in an earlier paper; here 
we examine properties of the new algorithm and its implementation. We also present the 
results of some computational experience. 
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I. Introduction 

W e  will  c o n s i d e r  the  p r o b l e m  of  c o m p u t i n g  a po in t  x = (x~ . . . . .  xn) T wh ich  is a 

good  a p p r o x i m a t i o n  to a loca l  ~ninimum of  a non l inea r  func t ion  f (x) .  I t  will be 

a s s u m e d  tha t  a sub rou t ine  is ava i l ab le  for  c o m p u t i n g  bo th  f (x )  and the g rad i en t  

v e c t o r  g = g(x), given x. S e c o n d  de r iva t i ve s  will  no t  be used.  

To so lve  a pa r t i cu l a r  p r o b l e m  of  this  type ,  one  c o m m o n l y  uses  e i the r  a 

c o n j u g a t e  g r ad i en t  (CG) a lgor i thm or  a va r i ab le  met r i c  or  q u a s i - N e w t o n  (QN)  

a lgor i thm.  E a c h  has its advan t ages .  In gene ra l  t e rms ,  a CG a lgor i thm requ i r e s  

more  i t e ra t ions  than  a Q N  one  to ob ta in  an equa l ly  good  x, but  on the  o the r  

hand  a CG a lgor i thm requ i r e s  l i t t le  s to rage  for  i m p l e m e n t a t i o n .  Spec i f ica l ly ,  it 

does  no t  r equ i re  s to rage  of  a ma t r ix  as in a Q N  a lgor i thm.  

W e  will p r e s e n t  an a lgor i thm which  c o m b i n e s  the  CG and Q N  m e t h o d s  in a 

m a n n e r  b a s e d  on the  t h e o r y  p r e s e n t e d  in B u c k l e y  [3]. W e  a t t e m p t  to p r e s e r v e  

the a d v a n t a g e s  of  bo th  k inds  of  a lgor i thms .  Thus ,  our  a lgo r i thm will  run  wi thou t  

s to rage  of  any  ma t r i ce s  bu t  it will use  more  s to rage  than  the  3 or  4 v e c t o r s  

r equ i r ed  b y  an o r d i n a r y  CG a lgor i thm.  I ts  i n t ended  a u d i e n c e  is t h e r e f o r e  those  

peop l e  w h o  have  more  than  4n loca t ions  ava i l ab le ,  bu t  who  still c a n n o t  hand le  

the O(n  2) l oca t i ons  r e q u i r e d  for  Q N  me thods .  The  ac tua l  a m o u n t  o f  s to rage  used  
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is variable and is determined by the availability of space, but as few as 8 vectors 
of length n will suffice. 

In terms of the number of iterations required by the new algorithm, experience 
indicates what one would perhaps expect. Because more storage is available to 
hold information about the function, generally fewer iterations are used than in a 
CG algorithm, but a few more are required than in a QN algorithm. 

For purposes of our description, it will be assumed that all line searches are 
exact. This point will be further elaborated upon in Section 5. 

2. Background and motivation 

The new algorithm, which we will dub 'CGQN', has been developed from four 
main observations. 

First, QN updates consist of a sequence of rank 1 or rank 2 corrections to a 
matrix which normally begins as the identity. Therefore, if one limits the number 
of updates allowed and stores the vectors defining the rank 1 corrections 
explicitly, then far fewer than n: locations are needed to define and record the 
updated QN matrix. This is an idea which has appeared in Allwright [1] although 
he did not exploit it in the way which we are about to present. The QN updates 
to be considered are those rank 2 corrections which are members of the Broyden 
[4] class 

where 

H *  = U(Xk, H ,  ak) (1) 

r.  ~y~ ] [ i  YsT ] 68a" U xk, H, + 

8 =- 6k = Xk -- Xk-t is the step taken, 

y = Yk = gk -- gk-~ is the change in gradients, 

Hy  8 
W ~ W k -- ~ ' ~  yTHy 

and where a is a scalar which determines the update formula. 
Second, the conjugate gradient algorithm may be applied with an initial step 

which is not along the usual (see Fletcher [7]) steepest descent direction. In 
particular, let us follow the approach presented in several places (for example 
AUwright [1], Hestenes and Stiefel [8], Nazareth [10] and Powell [12]) and define 
a transformation of variables y = H-112x, where H is a positive definite sym- 
metric matrix. We may then apply the CG algorithm in the transformed coor- 
dinates, and we obtain a sequence of points and search directions satisfying the 
standard properties of the CG algorithm in those coordinates. This sequence of 
points and directions may be transformed back into the x coordinates, and what 
is important is to realize that we may obtain these same x coordinate points and 
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directions by applying a modification of the normal CG algorithm (call it TCG) 
directly in the x coordinates as follows: 

Given x0, define 

d i  = - H g o ;  

then, for  k = 1, 2 . . . . .  iterate: 

(2) 

Xk = Xk-~ + Akdk, (3a) 

flk = g ~ n ( g k  -- gk- l )  
g ~ - l H g k - 1  ' (3b) 

dk+l = - - H g k  + flkdk. (3C) 

For  the TCG algorithm, notice that the initial direction d~ is not in the steepest 
descent  direction. Naturally it reduces to the normal CG algorithm when H = L 

And of course termination in at most n steps is still obtained for the TCG 
algorithm because it is equivalent to the normal y coordinate CG algorithm. 
Observe that we are following Powell [12] and choosing the Polak-Ribi~re form 
of CG algorithm. 

Third, restarting is an essential part of CG minimization algorithms. This is 
discussed at some length in Powell [12 and 13]; however  there are some 
comments we would like to include here. In considering a general smooth 
function f ( x ) ,  we know it is approximately quadratic near the minimum, so, in 
order to get good ultimate convergence,  we must be able to solve a quadratic 
problem well. In particular, when f is quadratic, this normally means that we 
must have a steepest descent  starting step dx = - g o .  However ,  in the general 
case, quadratic behavior is only local, so this starting step must be near the 
minimum. In other words, a restart strategy is demanded. Now a key point is 
that the TCG algorithm (3) also gives finite termination for a quadratic, so a 
restarting step of the form 

ds+l = - H g ,  (4) 

at the point xs is quite acceptable, provided we continue with the algorithm (3) 
from that point on. Of course, if we restart  with (4), we should certainly at tempt 
to choose H meaningfully. If we have arrived at xs with some matrix H defined, 
this suggests that we update H to H *  using a QN formula as in (1) and replace H 
by H *  before computing (4). If nothing else, this ensures that the so called QN 
formula 

H~, = $ 

will hold at xs. 
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Now,  before  we consider the fourth observat ion,  we feel we should describe 

the new algorithm. The added notation should clarify the discussion of point 

four. 

3. Description of the CGQN algorithm 

The fundamental  s trategy we wish to present  is the following. It  is based on 
combining QN restarts  of the form (4) with subsequent  TCG steps. 

From a given initial point x0, begin the normal  CG algorithm described by  

Polak  [11]. As long as progress  is sat isfactory,  continue the CG algorithm; what  
is " sa t i s fac to ry"  progress will be discussed in Section 5. When this is no longer 
the case,  say at xe, construct  a QN update  based on function information at xE-1 

and x~. This defines a matrix HI  = U(xE,  H0, 0) which is a rank 2 update  of H0 = I 

and which is stored by recording the values of the vectors  81 = x E - x E - 1  and 

~h = H0yl = gE - gE-~ which define the update.  
Now suppose we are at a point xe at which a posit ive definite matrix Hi has 

just  been  computed.  We now rename xE as x, and restar t  the conjugate gradient 
algorithm. (Note that initially x, = x0 and i =  0.) Specifically, we define a QN 
search direction 

d,+l = - H ~ g ,  (5) 

and we do a line search along d,÷l to x,÷~. For  further  steps we generate TCG 

steps as defined by (3) with H = Hi. 
Excep t  when x, = x0, we note that, provided the line search along d, is exact ,  

eq. (3c) with k = s in fact  reduces to (5), for  in this case it follows f rom (1) that  

H i ( g , - g , - 1 )  = Hi'y = ~ and so /3, = 0. H o w e v e r  we retain eq. (5) because  in 

pract ice line searches will not be exact  and at a restar t  we wish to be sure to 
begin with the QN direction d,÷l defined by  (5) so that the propert ies  of the 

subsequent  TCG steps are not lost by  a poor  restarting step. 
Using the directions (3c), these CG steps again continue until a point xE is 

reached where it is decided that progress  in reducing the function value is not 
sat isfactory.  Then a new matrix Hi÷~ is defined by storing a new update  using 

8i÷1 = xE - xE-i  and ~ii+1 = Hiyi+~ = Hi(gE - g~-O. We then repeat  f rom (5) with i 
replaced by i + 1 and with xE again renamed x,. 

Not ice  that the QN updates  are only done intermittently,  so that  the goal of 
reducing the storage needed for  storing the QN update  matrix has been 
achieved. 

Before  continuing, note the following regarding notation. The sequence of 
points generated by  the algorithm will be denoted by  x0, x~ . . . . .  When a quasi- 
Newton  update  is computed,  a subscript  Q will be added. Thus we will have 

numbers  0 = Q0 < Q~ < Q2 < • • ", and the matrix Hi will be computed  when the 
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point xoj is reached. In the notation above,  xs denotes a point xo, and x~ denotes 

xo~+~. The numbers  Q1, Q2 . . . .  are not set in advance,  but are determined 
dynamically,  as explained in Section 5. 

4. The fourth observation 

Let  us now examine the concept  of intermittent updates more closely. For  this 

discussion we will replace the local quadratic behavior  of a general function f 
with a hypothetical  example  in which the function f is precisely quadratic in 

some neighborhood N of the minimum. Once a restart  is done within N, at most  

n steps of the TCG algorithm will give the exact  minimum. 

In order to obtain finite termination once we enter  N, a restart  is needed, and 

preferably  soon. Since we do not know when N is entered, f requent  restarts  are 
desirable. On the other hand, if we have restar ted at xoi E N, and we restar t  

frequently,  there is a possibility that we will restart  again at xoi+~, this being 
before  terminating. It  is essential that we do not have to count n more steps 
from xo~÷~ before achieving termination, for  then the same difficulty could arise 
again. In one case we know that a full n-count  f rom xoi . is not needed. If  the 

algorithm of Section 3 is applied with a restart  every step, we simply have a QN 

algorithm and it is well known that in at most  n steps after  entering N, we will 

terminate. Thus in at least one case, restarts  of the form (5) with an updated H 

are worthwhile.  

Now,  we have already indicated that we only wish to update intermittently, so 

we must  ask what  effect this will have on termination. This is exact ly the 
situation covered by the result in Buckley [3]. There it is shown that if we update 

intermittently at x~, xo2 . . . .  (without loss of generality, all in N) ,  and if we stick 
to the idea of updating H at each restart  as in Section 3 (using (1) with a = 0), 
then we do not affect our finite termination propert ies by doing unneeded 

restarts.  That  is, we terminate in at most  n steps after  the first restar t  in N at xo,. 
It  is this result which makes  the use of intermittent updates sensible. The result 
in [3] also suggests only the use of the BFGS update,  for otherwise,  finite 

termination is affected by later restarts.  

5. Implementation of the algorithm 

In order to implement  the algorithm described in Section 3, there are a number  
of important  details which can not be overlooked.  We will look at these now. 

Positive definite Hi: It  is clear f rom the derivation of the TCG algorithm that 
we require the matrices H; to be positive definite. Now,  it is well known that 
many  QN updates generate a sequence of posit ive definite matrices Hi. In the 
present  situation however ,  an update does not take place on every  step and 
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therefore it must be verified that positive definite matrices are still obtained. 

But this is straightforward, for proofs of positive definiteness of H*  in (1) 
depend only on the fact that H is positive definite and that ~T 1, > O. In particular 
then, providing that 8~1, > O, as it is for an exact line search, the proof that H*  is 
positive definite is the same as that in Fletcher and Powell [5] when a = y T H y  
(the DFP formula) and is the same as that in Fletcher [6] for other a -> 0 (this 
includes the BFGS formula). We will confirm shortly that in the practical case 
where the line search is not exact, we may still ensure that the condition STy > 0 
is obtained. 

Downhill directions: Since Hi is positive definite, ds+l = -Higs in (5) is down- 
hill. Consider k > s. If the line search from xk-1 to x~ along dk is exact, then from 
(3c), 

aTk+lgk = --gTHigk + flkd~gk =- --gTgHigk < 0 (6) 

and dk+~ is downhill. And of course it is imperative that the case of an inexact 
line search be considered, so let us do that now. 

The line search: We require each line search to satisfy certain conditions of 
exactness.  We have noted in (6) that the CG direction dk+~ given by (3c) is 
downhill provided that the line search leading to Xk is exact, but it is also clear 
from (6) that we will obtain a downhill direction whenever  

g~Hi(gk - g k - l )  
(dT gk)flk = (d~gk) g~-lHigk-1 < g~Higk. (7) 

In addition, when we do a QN update at Xk = Xoi, we insist that 

~ T y  = ( X  k __ X k _ l ) T ( g k  - -  gk-l) > 0 

in order that Hi will be positive definite. This condition may clearly be replaced 
by the requirement that 

dTkgk-1 < dfgk. (8) 

But we note that, although (8) is required only when an update takes place, we 
will not actually know if a QN update is required at Xk until after the line search 
is complete (as explained below). Thus we must insist that every  line search 
satisfies both the conditions (7) and (8). Since these conditions are satisfied for 
an exact  search, they may be attained in practice for any smooth function. 

To conclude this section, we observe that we really require somewhat  more, 
for it is generally accepted that one must take steps to ensure that each line 
search makes " reasonable"  progress towards the one-dimensional minimum and 
that dk÷~ is not nearly orthogonal to gk. One way of accomplishing this is to 
replace (7) and (8) with the stronger conditions 

[dTgk[ < K,[dT gk-,I, (dT gk)flk < K2(g~H~k) 

where K~ and K2 are some small positive constants, say 0.2. These new 
conditions still hold for exact  searches and hence are attainable. 
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The restart criterion: We now wish to ask: When should we update Hi? If the 
CG algorithm is applied to a quadratic, it is well known that successive gradients 
are orthogonal, i.e. g~gj = 0 for j ~  t. Using the algorithm given by (3) the 

corresponding result is that 

g~Hgj=O f o r i n t .  

For  a nonquadratic this relation certainly does not hold, but its deviation from 0 
can be taken as an indication of how well the matrix H = Hi is simulating the 
local quadratic behavior of f. This suggests comparing the value of g~Hgj to 0 
for  certain t and j and restarting if the difference is deemed substantial. 

In the test results of Section 6 we have used the test 

g [ - , H i g k  l _ 

to determine if a restart should be done at Xk. Here  p is a predefined constant,  
and the denominator is included to eliminate scaling effects. Tests indicate that 
performance of the algorithm is not particularly sensitive to the choice of p and 
any value such as 0.1 or 0.2 will do. 

In a personal communication, Powell has suggested that in certain situations 
the test (9) may not be satisfactory because g[-1Higk could be 0 even when a 
restart is desirable. This has not occurred in tests done so far by the author, and 
restarts are in fact  done reasonably frequently.  (We recall from Section 4 that 
this is desirable and that there is no danger of restarting when we should not.) 
But nonetheless,  in certain situations it may be desirable to find an alternative 
test for  (9), and Powell suggests comparing the value 

g TQ i Higk 

to 0 for k > Qi, for in theory this is also 0 for a quadratic. We remark that this 
can be done only at the price of some increase in the storage required for the 
algorithm. 

Storage of the updates: First observe that (1) can be written as 

H . = H + ~ I [ _ ~ , _  f l ] t  [b+(1-fl)a ~ jT 
a ~ + 8 b~ 8 -  ~ (10) 

where 
a = ' y T H ' y ,  b = 8T'~, It~ = H~,. 

It is clear then that for  each update we require 2n + 2 locations in order to keep 
a, b, r / a n d  8. (This takes into account  the fact that we do not wish to recompute  
H y  each time it is needed.) If the number of updates is small this represents a 
substantial storage saving, as for example in the 5 th problem of Table 1, Section 
6, where we have n = 60. Here storage of H in matrix form would require 1830 
locations for the more difficult to manage symmetric half, or 3600 in full. Now 
this example reached the minimum using only 14 updates, thus requiring a 
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comparable 1708 locations to store all of the updates. But what is important is 
that the new algorithm will still operate when this amount of storage is not 
available, and that it will not  require a significant increase in the number of 
iterations needed for convergence. In the corresponding example of Table 2, we 
see that this is indeed the case. Here only 1 update is ever stored so only 122 
locations are required, and a substantial improvement is still noted over the 
performance of the CG algorithm. 

Computing with the factored form: To compare the computation required for 
the linear algebra when Hi is stored in factored form, we note the following. 
Suppose we are at xk. A standard QN algorithm must update Hk-1 to Hk and then 
compute dk÷~ = --Hggk. For the commonly used BFGS update, this requires about 
7n2 operations. In the new algorithm there are 2 cases: (a) where an update to Hi 
is done at Xk; (b) when a CG direction (3c) is used from Xg. In either case, the 
only significant computation per iteration is in finding Hgk (providing Hgk-t is 
stored, but that is required anyway for other reasons). In particular, no work 
(except O(n)) is required to update Hi to Hi+t, and even computing Hi+tgk in the 
event of an update is just an O(n) operations modification to Higk. Now, using 
(10), each term of H~gk is formed by computing 8xgk and rlxgk and then adding 
scalar multiples of ~ and 8. For each update recorded this means 4n multiplies, 
so the i updates definingHi use 4ni operations. Clearly then the new algorithm 
requires less work unless i is nearly n, and, with the philosophy behind this 
algorithm, that is most unlikely to occur. 

Dropping update terms: Since one of the basic properties of this algorithm is 
that it will run in limited storage, one must decide what action to take when the 
allotted storage limit is reached. In particular, in order to store further QN 
updates, one must discard some of the old ones. There are several criteria which 
suggest themselves for picking the discards. However computational experience 
of the author has indicated none that is superior to the simple strategy of 
discarding all current updates and starting afresh. 

One argument to support this choice concerns the matrices Hi. It is 
fundamental that they should be positive definite. When some of the rank one 
terms defining Hi are deleted several iterations after they were constructed, 
experience indicates that H; almost always becomes non-positive definite. This 
may not however be immediately detected and can lead to nondownhill or poor 
search directions and numerical difficulties. These can be handled, but it seems 
best to simply avoid the problem. 

6. Test results 

We now give test results which indicate that the algorithm does display the 
behavior discussed earlier. The test problems are well known and can be found 
for example in Himmelblau [9], except for the 60 dimensional extended Powell 
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Table 1 
Using unlimited updates 

Number of Function Number of QN 
Number of function value updates computed 

Function n iterations evaluations reached (CGQN algorithm) 

Rosenbrock 2 31/22/24 1 0 3 / 6 4 / 6 5  3-s/9_9/3 l0 12 
Helix 3 33/20/19 8 3 [ 5 1 / 4 5  2-J4_~0/3 l0 10 
Powell's 
Singular 4 35/18/16 86/39/35 4_6/1_7/5_ 6 10 
Woods 4 79/64/62 186/152/140 8-1f16-n/4-9 27 
Powell's 
Extended 60 55/21/15 1 3 0 / 4 9 / 3 5  2-5/3-7/7-5 14 

function given in Boland, Kamgnia and Kowalik [2]. In all cases termination was 
when gTg <__ 10-6. In the tables, a-b means a × 10 -b. 

First, in order to confirm that the idea of intermittent QN updates is indeed 
reasonable, we exhibit in Table 1 results comparing an ordinary CG strategy 1 
(Polak-Ribi~re form), the mixed algorithm of Section 3 which does intermittent 
updates, and a standard QN update procedure 2 (BFGS update form). The figures 
in the table are in this order. For purposes of this test, no limit was placed on the 
storage available for the mixed algorithm. Clearly in most cases intermittent QN 
updates improve the convergence to nearly that of the standard QN procedure 
where an update is made every step. Although we note that in one case the 
mixed algorithm is even better than QN, all we wish to conclude is that the 
intermittent updates do tend to significantly improve the performance of an 
ordinary CG algorithm. 

Of course the object of the new algorithm is to operate in limited storage and 
so in Table 2 we give the figures obtained by limiting the storage available to the 
new algorithm and repeating the computations of Table 1 for the mixed al- 
gorithm (these are the first of each pair of figures). Comparing the leading entries 
in Table 2 to those in Table 1 we see that generally little is lost. A substantial 
improvement over the CG algorithm is still obtained. Note that the final example 
is included to illustrate the behavior of the algorithm on a medium sized 
problem, which is of course where we hope this algorithm to be beneficial. 

In each entry, the second of the pair of figures provides a comparison to the 
routine VA14A. This code is from the Harwell library and it implements a 

1 These figures were obtained using an implementation of the algorithm CGQN. By setting p = ~, 
no updates are ever done. The normal steepest descent restart was done every n iterations. These 
figures are entirely comparable to those of well-known CG implementations such as VA08 in the 
Harwell library. 

2 These figures were obtained by setting p = - 1, thus forcing a QN step on every iteration; they are 
entirely comparable, for example, to Fietcher's VA13 variable metric algorithm in the Harwell 
library. 
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Table 2 
CGQN using limited storage vs. VA14A 

209 

Number of Number of 
Number of Function QN updates updates 

Number of function value computed stored 
Function n iterations evaluations reached (CGQN algorithm) 

Rosenbrock 2 22/23 72/62 3_9/2-8 15 1 
Helix 3 21/23 49/56 4_9/3_10 12 1 
PoweU's 
Singular 4 24/21 57/49 3_6/9-7 11 1 
Woods 4 74/a 178/a l_9/a 32 1 
Powell's 
Extended 60 28•27 68/67 1_6/3-7 12 1 

a VA14A failed to reach the minimum in this case. 

modified conjugate gradient algorithm with restarts which is due to Powell [12]. 
Powell has indicated that his algorithm performs substantially better than 
ordinary CG implementations; here we see that the proposed CGQN algorithm is 
comparable in its performance with VA14A. 

7. Conclusion 

We have designed an algorithm which combines a CG algorithm with inter- 
mittent QN updates and we have demonstrated that this idea does indeed lead to 
improved convergence over the standard CG algorithm, even when only very 
few (e.g. 1 or 2) updates may be stored at any one time. 
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