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Abstract. Starting from the basic postulates of local relativistic quantum theory, the asymptotic 
incoming and outgoing collision states of massless Fermions are constructed. The corresponding 
Hilbert spaces have Fock structure and thus allow the usual definition of an S-matrix. In contrast to 
the massive case, there are geometric relations between the local nets of the underlying field algebra 
and the asymptotic fields. 

1. Introduction 

In this paper  we establish the existence of collision states for massless Fermions 
in the framework of local relativistic quantum theory. It is amazing that a proof  
of this fact has not appeared before now - more than ten years after Haag  and 
Ruelle developed their famous collision theory for massive particles [1,2]. 
But it might be that their intuitively appealing ideas have turned away the atten- 
tion of the experts from the simple facts allowing the construction also in the 
massless case. 

The methods of Haag  and Ruelle are based on two essential features of massive 
theories: absence of long-range forces and existence of almost local operators 
which create one-particle states from the vacuum. These facts make it possible 
to construct the spaces of incoming and outgoing collision states and to establish 
their Fock structure 1. Only in a second step can one then define the asymptotic 
fields of  the particles. But in order to be sure that they act as operators on the whole 
Hilbert space of states, one needs the additional assumption of asymptotic 
completeness of the theory. 

It  is very unlikely that this technique can successfully be carried over to the 
massless case. Therefore, we apply a completely different method which takes 
special care of the peculiar kinematics of massless particles. A basic ingredient 
of our proofs is the trivial fact that these particles move with the speed of light. 
So they have - loosely speaking - one degree of freedom less in configuration 
space than their massive counterparts.  Imagine, for example, a massless particle 
which sits at the tip of a light cone in Minkowski space. This particle can never 
reach interior points of the cone. In fact all interior points of the cone become 
ultimately space-like to the position of the particle at asymptotic times. This 
naYve picture may be carried over to quantum theory if the number  of space 
dimensions is odd. It  is nothing else but the Huyghens principle [5]. 

* On leave of absence from II. Institut fur Theoretische Physik, Universitgt Hamburg. 
1 Hepp [3] and Herbst [4] observed that actually only one of the above-mentioned properties 

is needed for a proof. 
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Using extensively this fact and microcausality, it is possible to construct 
directly the asymptotic field operators for the incoming and outgoing massless 
Fermions. These operators turn out to be bounded as a consequence of the Pauli 
principle and they have all the properties expected from a free field. They can 
therefore be used to construct in a canonical way the Fock spaces of the incoming 
and outgoing collision states. 

The restriction to the case of massless Fermions has two reasons. The first 
is a purely technical one, stemming from the fact that in the Bose case the asymp- 
totic field operators are unbounded. The difficulties connected with this are 
probably removable 2. On the other hand, we start from the assumption that single 
particle states of the massless particles can be sharply defined. If the only massless 
particles in the theory are Fermions then one may expect, due to the Pauli prin- 
ciple, that no infinite numbers of them are produced in collisions and hence that all 
particles in the theory correspond to single particle states with precise mass. 
There should be no problems with infra particles. One then will have a usual 
collision theory and the present study shows how to construct the asymptotic 
fields and collision states for the massless Fermions. In the case ofmassless Bosons 
one may still hope to construct these quantities in the vacuum sector by the same 
method, but the infrared problem in other sectors remains and is not touched 
upon by this study. 

Let us now brieflylist our assumptions. Since we want to avoid all unnecessary 
complications, we shall formulate the postulates in terms of the field algebra 
instead of the field operators themselves. ~ is assumed to be the global algebra 
of a net (9 --. ~((9) of local algebras (attached to the open, bounded regions (9 C IR 4) 
and to act irreducibly on the Hilbert space ~ of physical states 3. In order to 
distinguish between Bose and Fermi operators, it is convenient to assume that 
there exists an automorphism 7 of ~ which acts like the identity on Bose operators 
and which changes the sign of Fermi operators, hence ~2 = ~. Each F • ~((9) can 
then be decomposed into a Bose part F+ • ~((9) and a Fermi part F_ • ~((9): 

F+ = ½(F + ~/(V)). (1) 

We suppose that these operators have the usual commutation relations at space- 
like distances: 

F + F'+ - F'+ F + = IF  +, F'+ ] = 0 

F + F L - F ' F + = O  F e  ~((91), F' • ~((92) (91C (9~. (2) 

F_ F "  +F'_ F_ = {F_, F ' } = 0  

We furthermore assume that Yf carries a continuous unitary representation 
L--, U(L) of the covering group of the Poincar6 group ~ .  The operators U(L) 
induce automorphisms of the field algebra 

U(L) ~((9) U(L)- 1 = ~(L(9) L • # ,  (3) 

z As a matter  of  fact it turns out  that the asymptotic fields exist in the Bose case as closable un- 
bounded operators. With some technical assumptions on their extensions, one could easily prove that 
these operators are free fields. 

3 The reader who is not  familiar with this approach may regard ~((9) as a set of botmded operators 
which are generated by the field operators localized in (9. 
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which leave the Bose and Fermi part of ~ invariant 

U (L) q~ +_ U (L) -1 = 5_+- (4) 

There is (up to a phase) exactly one unit vector ~2 in r i ,  the vacuum, which is 
invariant under U(L), L ~ ~. The spectrum of the generators of the translations 
x ~ U(x) is contained in the forward light cone and there is a subspace ri~ C r i  on 
which the U(L) act like a representation of N with mass m = 0. riga is the subspace 
ofmassless one-particle states and we suppose that it exclusively contains Fermions; 
it is thus orthogonal to [~+ f2]. 

2. The Asymptotic Fields and the Collision States 

In order to establish the e~stence of asymptotic fields for massless Fermions 
we proceed in three steps. First we define certain sequences of operators which 
are suitable candidates for an approximation of the asymptotic fields. Then we 
show that these sequences are uniformly bounded and strongly convergent. 
Finally we prove that the limit operators are indeed free fields with all the required 
properties. 

To begin with let us briefly repeat some simple facts about solutions of the 
wave equation [6]. It is well known that these functions can be represented as 
follows: 

f (tl x) = (2n)- 3/21 d3p eipx ( eilplt /+ (P) -b e-il~'tt f_ (p)). (5 a) 

We are mainly interested in solutions which have compact support in IR 3 at finite 
times t and require 

f+_(p)= fl(p)++_ilplf2(p) with fl(x), f2(x)~N(]R3). (5b) 

If fl(x) and f2(x) have compact support in O CIR a, it follows from the Huyghens 
principle that f(t] x) has support in {O + [tl" n :In[ = 1 } and this is again a compact 
set. The above ansatz also guarantees that the functions f+_(x) are absolutely 
integrable. 

Now let lp ~ 5 -  be a local Fermi operator such that x ~ p ( x ) =  U(x)~p U(x)-1 
is twice norm-continuously differentiable with respect to x = (t, x). (Such operators 
exist and can easily be constructed by smearing any local Fermi operator with 
a suitable test function.) We then define, with f ( t l  x) as above and 9(x)~ LI(IR3), 

~ps(t)=(2n)-a/2Sd3xf(tlx)~p(t,x ) and ~po=(2n)-3/2Sdaxg(x)~p(x). (6) 

Since we want to use ~f  (t) for the construction of the asymptotic fields, we require 
that ~Pl- ~ has a non-vanishing component in ri~, the space of massless one- 
particle states. This is again no restrictive assumption. In fact the set Y~ of vectors 
P1 v2f_ O (where P1 denotes the projection onto r i l  and ~p, f_  are, respectively, 
operators and functions as above) is dense in ri~ as a consequence of the irre- 
ducibility of 5. We want also to point out that 5¢a is invariant under Poincar6 
transformations. 

To conclude this list of definitions, let us denote the set of non-negative 
functions h e NORa), which are normalized according to ~dth(t)= 1 by N~(IR1). 
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In the course of our analysis we shall integrate t--+,py (t) with such functions: 

l p f ( h )  = ~dth(t)tpy(t) ,  h E ~(lR1).  (7) 

The following lemma is then a simple consequence of the commutation properties 
of Fermi fields at space-like distances and the fact that the integration with func- 
tions h e @~(IR 1) is a completely positive mapping from the set of operator-valued 
functions into the set of operators on a((. 

Lemma i. For ~p, f and h as above, we have 

0 <= {tpy(h)*, Wf'(h)} < c .  (llf+ II z + tlf-112). 

The constant c in this inequality neither depends on f nor on h. H f+_ 1t2 stands for  
Idaxlf+_(x)l 2. 

Proof. Since h is a non-negative function, it is obvious that the operator 

h(t) h(t') " (tpy (t) - ~py (t'))* . (tpy (t) - tpy (t')) 

is non-negative for arbitrary t and t'. One gets, therefore, after integration, bearing 
in mind that Id th( t )  = 1, 

0 <= tpI(h)*tpy(h ) < Idth(t) ,py(t)*,py(t) .  

In the same way one shows 

0 < ~pf(h)tpy(h)* < ldth(t)lpy(t)~py(t)* 

and this gives altogether 

0 ~ {lily (h)*, 1fly(h)} ~ ~dth(t)1[ {lflf (t)*,/fig(t)}[[. 

Now one can exploit the fact that local Fermi operators anti-commute at space-like 
distances. Taking into account that 2[ f ( t {x ) f ( t [y ){<=l f ( t l x ) ]2+l f ( t ]y ) [  2, one 
checks easily that 

}[ {Wy (t)*, roy (t)}ll < Idax  [f(t[x)[ 2" Id3z  II {W*, W(z)}l[ 

and since ll{,p*,~(z)}ll has compact support in z and 5d3x{ f ( t lx ) l  2_-<2(11f+ II 2 
+ ]If-  {12), the statement of the lemma follows. []  

Let us next consider sequences of functions hT e N~(IR1). If h is any element 
of N~(1R 1) we define 

hr( t )=  tTl-~h(lZl-~(t  - Z)), T4:O, 0 < s <  I .  (8) 

hT is obviously again an element of N~(1R1). The support OfhT increases for large T 
like Irl  ~ and the distance of the support from the origin like ITI since e <  1. The 
Fourier transform of h T has the form 

~/T(~.) = (2n)- 1/2 f dt e ixt hT( t) = e i )" T ]./(1 r r 2 ) .  (9) 

It thus converges pointwise in the limit ITI ~ oe to 0 for 2 :t:0 and to (2re)-,/2 for 
2 = 0. We need hr to define the approximating sequences tps(hr) of the asymp- 
totic fields. The next lemma tells us that Nc(hT) converges strongly in the limit 
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of large Tif  applied to the vacuum vector ~2. For  the proof we use standard measure 
theoretic arguments. 

Lemma 2. Let ~p, f, and h r be as above. Then 

s-tim l p : ( h T ) Q  = P1 tp:_f2 ~ d: i . 
T - + _ +  oo 

Proof. Because of the translation invariance of f2 one gets 

l p f ( t ) Q  = e fro+ Iel)'t~Of+ Q + e i ( t l -  IPl)"t Ipf_ Q ,  

where H denotes the Hamiltonian and P the momentum operator. The operators 
(H + IPI) ~ are self-adjoint with the states of finite energy as a core and we shall 
show in the Appendix that the discrete spectrum of both operators consists only 
of the single point 0. The eigenspaces of (H + IPI) ~ corresponding to this point 
are {c.f2} and {c" ~2}OJgl, respectively. Both operators are non-negative and 
have therefore the spectral decompositions 

co 

(H + IPI)'= 0. Po + ~ 2E+ (d2) 
o 

(H  - lVl) '=  o. (no + P1) + ~ 2E_ (d2). 
o 

Po projects onto [2, P1 onto d f  1 and the projection valued measures E+ (d2) are 
continuous (yet not necessarily absolutely continuous). Using these representa- 
tions, Eq. (9), and the fact that (f2, ~ O)=  0, one arrives at 

Ip: (hr )  Q -- PI ~pf_O 

= (2n) 1}2 ~ flzrh(ITl=~)E + (d2)~¢+ f2 +(2~) 1/2 ~ dzrh(ITl=~)E_(d~)~o~_ O. 
o o 

The right-hand side of this equation tends strongly to 0 in the limit of large T 
because 

ll(2~z) ~/2 7 fl~rh(ITl=2)E+_(d2)~f, (212 = 2re ~ I~(ITI=,~.)Iz (~:~ [2, E+_(d2)~:~ [2) 
o o 

IT] -~/2 

< I 
o 

0Ps, f2, E_+(d2)~Os, f2) + sup 2~l~(,bl ~. It~s~ Oil z 
~> Frl~/2 

and this finishes the proof of the lemma. []  
After having established the convergence of ~p: (hr) on the vacuum, it is now 

fairly simple to prove that ~py(hr) converges strongly itself. To abbreviate the 
argument we introduce some geometrical notions: we call the open cone of all 
points which have a positive time-like distance from a given compact region 
(9 CIR 4 the future tangent of (9. The past tangent of (9 is defined analogously. 
Assume now that ~p:(t) is localized in (9 for small t. As a consequence of the support 
properties off( t  I x) and hr(t), ~p:(hr) is then localized in a region which is space-like 
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separated from any given compact set in the future tangent of (9 for sufficiently 
large positive T. Because of the commutation relations of local operators at 
space-like distances, there exists the}efore a natural domain for lim ~p,(hT): 

T--* oo 
the set of vectors FO which are created from the vacuum O by operators F localized 
in the future tangent of (9. 

Lemma 3. Let ~p, f and h T be as above. Then 
a) s-l~m~f(hr)=~p °utf exists and H~p}utll < oe. 

I f  ~p, f ,  and h r vary within the above restrictions ~p}ut is uniquely determined by the 
one-particle state which it creates from the vacuum. 

b) For all F i localized in the future tangent of (9 the equations 

~ t  F+ T F+ ~p}~t = 0 

hold. I f  (pf (t) is localized in ~ for small t then we have also 

l~°u t tpou t (x ) f  f "~y ~)°Ut(x)1~°utf  f = 0 

provided ~ + x lies in the fi~ture or past tangent of (9. 
c) ~v}Ut(x) is a solution of the wave equation: E]x~v}Ut(x)=0. 4 

Proof. 
a) Since tps(hr) is uniformly bounded in T (Lemma t) it suffices to establish 

the strong convergence on a dense set of vectors. We shall show in the Appendix 
that the set of all Ff2, F being localized in the future tangent of (9, is dense in ~ s .  
If one decomposes F into its Bose and Fermi parts and takes into account the 
preceding remarks as well as Lemma 2, one gets 

s-lim ~Pr (hT)" (F+ + F_)f2 = s-lim (F+-F_) .  Ff  (hT)~2 = (F+-F_)"  P1Ff_ f2. 
T - ~  c~ ~ T o m  

Therefore pout exists and is bounded as a limit of uniformly bounded operators. f 
Assume now that there is another operator @ut which creates the same one- 
particle state out of the vacuum as ~p}ut. If @ut(t) is for small t localized in (} one 
concludes that for all F localized in the future tangent of (9 u (} 

OUt ~ OUt (~p~ - ~py )- Ff2 = s-lim (lpy(hT) - -  @ f ( ~ t T )  ) " (F + + F_)f2 
T--~ oo 

= s-lira (F+ - F_)'(wy(hT) - @(hT))O = 0 
T--* o0 

and this proves ~,j;°ut--tpf" out. 
b) The first part of the statement needs no further explanation. The second 

part is a simple consequence of the first one, if one realizes that @Ut(x) can be 
approximated by operators F_ localized in the future tangent of (9 whenever 
(9 + x is a subset of this cone. 

[ ]  ~ oUt/x ' ,  c) The operator xqJf t ~ is bounded, since ~(x) is two times continuously 
differentiable with respect to x. It annihilates the vacuum and therefore all states 
Ff2 with F localized in the future tangent of (9 + x. [] 

'~ This and the subsequent propositions have been formulated for the out-operators. It needs no 
extra explanation that they hold in an analogous manner if out is replaced by in. 

This has to be verified since we did not assume the Reeh-Schlieder property for the vacuum. 
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Since the operators tp} ut are uniquely determined by the one-particle states 
£e 1 which they create from the vacuum, it is evident that the above construction 
of/p}ut does not depend on a special Lorentz frame. Moreover, the set of all lp} ut 
is invariant under Poincar6 transformations. In the next lemma we shall show 
that the anticommutator of any two such operators is a c-number. For the proof 
we use a (slightly modified) argument due to Pohlmeyer [7]. 

Lemma 4. Let ~p}ut and fp~ut be two operators with properties specified in the pre- 
ceding lemma. Then 

{%u', C F }  = (o, {~F ,  q'F} o) • ~t. 

Proof. Since {@u,, ¢),t} commutes with all operators F localized in the future 
tangent of ~0w(9 is suffices to show that 

~p/ } O = c . f 2 .  

Now take any vector ~ which has in momentum space compact support K~ in the 
interior of the forward light cone and consider the function 

F~(x, y) = (~, {tp•t(x), ~3}"t(y)}f2). 

Since V}"t(x) and t~}"t(y) are solutions of the wave equation and because of the 
restrictions on the energy-momentum spectrum of ~, the Fourier transform 
Pe(p, q) has support (in the sense of distributions) in the compact set 

{p, q :p~ - [pl z = q2o - Iql z = 0, p + q e ge}  

and therefore F~(x, y) is an entire function. It follows from part (b) of Lemma 3 
that Fe(x, y) vanishes in an open set of IR 8 and thus it vanishes for all x, y. Hence 

OUt {I]3) ut, 1]Jr }~c~ can only be a superposition of f2 and massless one-particle states. 
Yet the one-particle component of this vector must be zero since {tp} ut, ~3} ~t} is 
a Bose operator and there are - by assumption - only masstess Fermions in the 
model. [] 

Although it is not necessary for the construction of the collision states, it is 
worth mentioning that the set of operators ~p}ut possesses a local structure which 
one may call asymptotic locality following Landau [8], who introduced this 
notion in the massive case. 

Lemma 5. I f  V~ (t) and 6p/(t) are for small t localized in two space-like separated 
double cones (9 and (9 respectively, then 

O U t  ~ o u t  {~ ,~/1=0. 

Proof. If follows from Eq. (5) and the fact that the Hamiltonian H acts like IPI 
on ;/f~ that 

P~ f2 = PI(Vf, -- i[H, Vyz])f2 = el F_ f2 

where F_ = Vy, - i[H, ~y2] is a Fermi operator localized in C. In the same way 
one shows 
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and/~_ is localized in (}. If one applies the techniques of the Jost-Lehmann-Dyson 
representation to (O, {F_ (x), F_ } Q) one can conclude that 

(~2, F_ P(m = O) P _ ~2) + (~2, P_ P(m = O) F_ ~2) = 0 

where P(m = O) = Po + P1 denotes the projection onto the zero mass states [-8, 9]. 
From this relation, Lemma 4 and the fact that 

(O, {~c,~ "t, ~b~ut} Q) = (Q, F_ P(m = O) F'_ O) + (f2, F_ P(m = O) F_ ~) 

the statement then follows. [] 
We are now in a position to construct the collision states for the massless 

Fermions with the help of the operators ~py, t Since these operators have all the 
properties of a (smeared) free field, we can proceed as in the free field case. First 
we define the creation part Op~t) {+) of ~v~ "t. For this purpose we take a uniformly 
bounded sequence of functions h.(p)~N(IR*) which are zero in the half space of 
negative energy Po_-__ 0 and which converge uniformly to 1 on each compact 
subset of the half space of positive energy Po > 0. Then we integrate ,p}ut with these 
functions 

~p}.t (h,) = (2 To) - 2 ~ d4x h.(x) ~}Ut(x), 

Applying Lemma 4 we get 

lltpT'(h . - h.,)[{ < {Itp}U'(h. - h,.)OII 

and from this inequality and the properties of the functions h. the existence of the 
uniform limit 

(lp~ut) ( + ) :  ]ilTl lp}Ut(hn) (10) 

follows at once. In the same way one establishes the existence of the destruction 
part OpTt) (-) of ~p}.t 

(~;ut)(-)= ~im ou,- V)I (h.) = (~}ut,)¢+~, (11) 

It is clear that the operators (~p}~t)(_+) do not depend on the special choice of the 
sequence h. within the above restrictions. Bearing in mind that W~.=t(x) is a solution 
of the wave equation and therefore has in momentum space its support on the 
forward and backward light cone, one can also easily verify that 

U(L) 0p}"t) (+) U(L) - 1  = (U(L) q;o,t U(L)-  1)(_+), L s ~ .  (12) 

Finally it follows from Lemma 4 that the operators (~,}.t)t_+) have the commutation 
relations 

= ( % = 0 
0 3 )  {(~/)~ut)(-) (l~}ut)(+)} = (~'~, l~ut  l~}ut ~-~). ~ .  

Now let out out ~ . . . . .  ~p, be n operators of type ~ . t  which create one-particle states 
4~ 1 . . . . .  ~b, ~ 2¢a from the vacuum. We define the outgoing collision states of these 
particles by 

out  out  

(~1 X " " "  X (~n = (lplut)(+)...(1D°ut)(+)O . (14) 

The following main theorem is then a simple consequence of the algebraic pro- 
perties of (q~]ut)(+_) and (~p~ut)t-) f2 = 0. 
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o u t  o u t  

Theorem. The states ~1 x ... x q>, have the properties: 
out  OUt out  OUt 

a) ~ i  x ..- x ~ , = a e .  q~pm x ... x q~v(,), where P=(p ( t )  . . . . .  p(n)) is any per- 
mutation o f  the numbers (1 . . . . .  n) and a p =  4- 1 i f  P is an even or odd permutation, 
respectively. 

o u t  ou t  ou t  out  

b) U(L)(q~i x- . .  x q~,)= (Ui (L)@l)x . . -x  (UI(L)q~,),L ~ ~ and UI(L ) denotes 
the representation o f  the Poincard transformations in ~,~f l. 

Ol;It o u t  o u t  ot l t  
l / 

c) (~ i x ... × (P~, q~'l x ... × q~',)= 6m, " ~ a , ( ~  ~, qSp(1))...(q~,, q~p(,)) and the sum 
P 

extends over all permutations P o f  the numbers (1 . . . . .  n). 

The theorem implies that the Hilbert space yfo% which is generated by 
ou t  ou t  

~l x-.. x~,,n~ N and O is a Fock space over the one-particle space J/fi of massless 
out  o u t  

Fermions. Thus the vectors ~ x ... x ~,  can be interpreted as outgoing configura- 
tions of non-interacting particles ~ . . . . .  ~b, and this allows the usual definition 
and interpretation of an S-matrix for the massless Fermions. 

3. Concluding Remarks 

The Huyghens principle is not only responsible for the existence of collision 
states in the massless case, but it reflects itself also in some geometrical relations 
between the basic net ~ and the net of the asymptotic fields. To illustrate this fact 
we construct the asymptotic algebra ~out which is generated by the free fields 
~p~ut Let tpy(t) be any operator which is for small t localized in some double cone 
C~ and put 

~v sout _- s-limT_~oo lpf (hT). 

We denote by ~°ut(C1) the yon Neumann algebra which is generated by all such 
operators ~o~ u*. For arbitrary bounded regions we define ~out((9) as the yon Neu- 
mann algebra which is generated by the algebras out ~o~t (00, (91C (9. is then the 
global algebra of all ~out((9). It can easily be checked using the results of the 
preceding section that (9 ~ ~o,t((9) is a local, covariant net with all the properties 
usually required from a field algebra. 

It follows now from part (b) of Lemma 3 that for all F °~t ~ ~out((9) and arbitrary 
F' ~ ~ which are localized in the future tangent of (9 the following remarkable 
commutation relations hold: 

rFom [F~Y t, F'+] = L + ,  F'_] = 0 
(15) 

[F °ut, F'+ ] = {F°_ ut, F'_ } = 0. 

These relations are the field theoretic version of Huyghens principle. They say, 
for example, that the influence coming from an asymptotic field put  ~ ~out((9) does 
not disturb any measurement in the future tangent of (9. Analogously a field 
Fin ~ ~n((9) cannot be disturbed by any measurements in the past tangent of (9. 

One might get the idea that in a model describing exclusively massless particles 
relation (15) should also hold for all F' localized in the past tangent of (9. (This 
would be, for example, the case if the commutation relations (2) for the basic net 
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hold for space-like and time-like separated regions (01 and (92 ") But this would 
imply that 

FOPs ~p}'), F'+ ] = o,t i. , o.,  _ {0P) - ~PS ), F _  } = 0 

for ~p~ut ~ ~o,t((9), ~¢~ e ~in((9) and arbitrary F' localized in the past tangent of (9. 
Since (v?} u t -  ~p~")(2 = 0, one could then conclude that Ip~t = ~p~. Hence there would 
be no scattering in the model. 

Appendix 

Here we give the proofs of two statements which were made in Section 2. 
First we calculate the point spectrum of the operators (H +_ [P])-. As one expects 
from the continuity of the Poincar6 transformations, the only possible eigenvalue 
of both operators is 0. 

Lemma. The discrete spectrum of the self-adjoint operators (H + IPD~which act 
like (H + [P]) on the states of finite energy consists of the single point O. The cor- 
responding eigen spaces are {c- (2} and { c ' ~ } 0 ~ t ,  respectively. 

Proof. Let qJ be an eigenstate of (H + IP[)-. Since (H + IPI)~commutes with the 
spectral projections of (H, P), one may assume that • is a state of finite energy, 
hence (H + IPI)~= Etb. If one multiplies this equation by (H-JP[ )  one gets 
(with M 2 = H 2 - [PI 2) 

M2 # = E(H -IPD4~ = E(2H - E)~ . 

Now let A be a Lorentz boost in the A-direction and #a  = U(A)#. If follows from 
the preceding equation that 

M2 ~}A = E(2(1 + 1512) 1/2. H -  2 ( A P ) -  E)~ A 

and this gives for the scalar product with 

E'(#,  (2H - E)#A)= E'(*, (2(i + IAI2) I/2. H - 2(AP)- E)#a). 

For E ~= 0 one gets therefore 

((t + tAI2) 1/2 - 1)- (qb, H~A) = (q~, (AP)~)A)- 

If one now puts A = 2" n and takes into account the continuity of ~)a in 2 it follows 
from this equation (after dividing by 2 and going to the limit 2 ~ 0) that 

= 0 .  

The same equation holds if ~b is replaced by E(A)cb, where A is any Borel subset of 
the spectrum of (H, P) and E(A) is the projection onto the corresponding subspace 
of ~ .  Consequently, ~ = c" (2 and this implies ~ = 0 because of E + 0. Therefore 
the only eigenvalue of (H + t P f i s  0 and it is then obvious that {c" f2} is the cor- 
responding eigenspace. The statement for ( H -  IPI)-can be verified in the same 
way. [] 

In the second lemma of this Appendix, we shall show that the set of vectors 
Ff2, F localized in the future tangent (or past tangent) of a compact set (9, is dense 
in ~ .  For the proof we exploit only the spectrum condition and the transformation 
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proper t ies  of  the  net  ~ under  t rans la t ions .  Hence  the s t a tement  is also t rue in 
mode l s  where  the  vacuum does  no t  have the Reeh-Schl ieder  proper ty .  

Lemma.  7he vectors Ff2, F localized in the future tangent of 6o are dense in J¢'. 

Proof. Let  G be any local  o p e r a t o r  and  • be any vector. As a consequence  of  the  
spec t rum condi t ion ,  the funct ion x--, (~, G(x)f2) is ana ly t ic  in the forward  tube  and 
thus canno t  vanish in an  open set of 1R 4 unless it vanishes for all x. Since the  
vectors  GO, G local  form a dense set in 240, and  since every local o p e r a t o r  G can 
be shifted by  a t ime- l ike  t r ans fo rma t ion  into  the future tangent  o f  (9, it is obv ious  
tha t  there  does  n o t  exist any  vec tor  • + 0 which  is o r t hogona l  to all  Ff2, F local ized 
in the fu ture  t angen t  of  (9. [ ]  
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