
Annals of Combinatorics 3 (1999) 385-415 
Annals of 
Combinatorics 
© Springer-Verlag 1999 

Symmetric and Nonsymmetric Macdonald Polynomials 

Dan Marshall* 

Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3052, 
Australia 
danm@ maths.mu.oz.au 

Received December 2, 1998 

AMS Subject Classification: 33D80 

Abstract. The symmetric Macdonald polynomials may be constructed from the nonsymmetric 
Macdonald polynomials. This allows us to develop the theory of the symmetric Macdonald 
polynomials by first developing the theory of their nonsymmetric counterparts. In taking this 
approach we are able to obtain new results as well as simpler and more accessible derivations of 
a number of the known fundamental properties of both kinds of polynomials. 
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1. Introduction 

The symmetric Macdonald polynomial P~: :=  PK(x; q, t) is a polynomial of  n variables 
x = (xl , . . .  ,xn) having coefficients in the field Q(q, t) of  rational functions in inde- 
terminants q and t. The symmetric Macdonald polynomial P~(x; q, t) is labeled by a 
partition of  length < n and can be defined as the unique eigenfunction of the operator 

n t X i  - -  xj 
Dl(q't) = E E x i_x j  ~:i' 

i=1 i•j 
(1.1) 

which is of  the form 

PK(x; q, t) = m~(x) + ~ u~mp(x). (1.2) 
//<1~ 

In (1.2), m~ (x) is the monomial symmetric function in variables Xl , . . . ,  Xn and the sum 
is over the partitions p which have the same modulus as •, but are smaller in dominance 
ordering. The q-shift operator'ci in (1.1) acts on functions so that 

('cif) (Xl...  Xn) = f (Xl , . . . ,  qxi,... Xn). 

* Supported by an APA scholarship. 
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The symmetric Macdonald polynomials have been the subject of much recent study, 
both for their mathematical properties [5,20,28] and their applications to the the trigono- 
metric Ruijsenaars-Schneider quantum many body model [22]. They can be viewed as 
a t-generalization of the symmetric Jack polynomials, the latter being obtained from 
the former in the limit t ~ 1 with q = t a and c~ fixed. In this paper we will develop the 
theory of the Macdonald polynomials by generalizing the approach taken by Baker and 
Forrester [6] towards the Jack polynomials. 

The strategy is to first develop the theory of nonsymmetric Macdonald polynomi- 
als. These polynomials were first introduced [12, 25] some time after the seminal work 
of Macdonald [24] on the symmetric Macdonald polynomials. The symmetric polyno- 
mials can be constructed from their nonsymmetric counterparts. This opens the way 
to using the theory of the nonsymmetric Macdonald polynomials to develop the the- 
ory of the symmetric Macdonald polynomials. In taking this approach we will obtain 
new results as well as new and simpler derivations of known results. In the later case, 
references will be provided to the original contributors. 

2. Preliminaries 

In this section we will revise the basic definitions and results of the nonsymmetric, 
symmetric, and t-antisymmetric polynomials. Following Macdonald [25], the symmet- 
ric and t-antisymmetric polynomials will be constructed in terms of their nonsymmetric 
counterparts, rather than as an independent entity as would stem from making (1.1) and 
(1.2) the starting point. In addition, dual nonsymmetric Macdonald polynomials will 
be defined and related to the symmetric and t-antisymmetric Macdonald polynomials. 
The results presented on this topic are for the most part new. 

The nonsymmetric Macdonald polynomials are defined in terms of operators which 
generate a realization of an extended affine Hecke algebra (see, e.g., [19]). Let sij be 
the operator which acts on functions o fx  := (Xl , . . .  ,Xn) by interchanging the variables 
xi and x). The  Demazure-Lusztig operators are defined by 

7} :=t-~ t x i - x i + l  ( s i -  1), i =  1,.. .  , n -  1, (2.1) 
x i  - -  x i +  1 

and 

To := t +  qtxn - (so - 1), (2.2) 
qXn - xl 

where si := sii+l and so : =  S l n ' l ; l ' C n  1 . ]~  have the following action on the monomial 
~ + 1  for 1 < i < n - 1 (see, e.g, [19]): 

- 1  b + i  +1  - 1  1 txf.. x + + 1 t~.. ~ + ~  , ( - -  ) i i + I  " "  ( - -  ) i i + i  i i + l  a > b ,  

a b t.~/X~i+ 1, T i x i x i +  1 = (1 = b~ (2.3) 
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The operator o) is defined by 

(1) : ' ~  S n - 1  " " S 2  S 1 T 1  - ~  S n - 1  " " s f C i s i - 1  ~ " " S 1 .  

A realization :~[n(q, t) of an extended affine Hecke algebra is then generated by ele- 
ments 7}, 0 < i < n - 1 and co, satisfying the relations 

( T / - t )  (7)+ 1) = 0, (2.4) 

7} 7}+1 Ti = 7}+1 7} 7}+1, (2.5) 

7} Tj = Tj 7}, [i - j[ > 2, (2.6) 

co 7} = 7}-1 co, (2.7) 

where the indices 0, 1 , . . . ,  n - 1 are understood as elements of  Zn. From the quadratic 
relation (2.4), we have the identity 

T/-1 = t -1 - 1 -I-t-17}. (2.8) 

Given a permutation ~ with reduced word decomposition a := si~ ... sip, we define 

r o  : =  7 ~ 1 - . . 7 }  ~ . 

A composition of n-components is an n-tuple r I := (vii , . . .  ,Tln) of  non-negative inte- 
gers. Each rli is called a component  o f t  I. The Cherednik operators [10, 11] are defined 
by 

~ = t - n + i T i ' " T n - I  coT~-l'"Ti211, 1 < i < n .  

The fact that the Cherednik operators commute with each other, along with the trian- 
gularity of  their action on x n := x nl . . .x  T M ,  implies that they possess a set of  simulta- 
neous eigenfunctions. These are the nonsymmetric Macdonald polynomials E n which 
can be defined by the conditions 

E~ 1 (x; q, t) = x n + ]~  bnvx v, (2.9) 
v-<'q 

YiEn(x; q, t) = qnit-lq(i)En(x; q, t), 1 < i < n, (2.10) 

where 

l~(i) := #{k tk  < i, rlk > r l i ) + # { k l k >  i, rlk >r l i  }. (2.11) 

Let rt + be the unique partition obtained by permuting r 1. The partial order ~ is defined 
on compositions having the same modulus so that 

v --< r I if either v + < rl +, or v + = l] + and v < q. 

where < is the usual dominance ordering for n-tuples, that is, v < r I if and only if 
~ P = I ( r l i - v i )  ~ 0, for all 1 _< p _< n. 
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! Following [291, l~(s) := In(i) is called the leg co-length of the node s = (i, j)  in 
the composition 11. The arm length a n (s), arm co-length a~ (s), and leg length l n (s) are 
defined by 

an(s ) := r t i - j ,  

In(s) := #{klk < i, j _< Ilk + 1 _< Ill} + #{klk > i j  <_ Ilk <_ Tli}, 

aq(s) := j -  1. (2.12) 

The following associated quantities occur frequently in the theory of the MacdonaId 
polynomials. 

dll(q,t) := H (1-qan(s)+ltln(s)+l), 
sErl 

en(q,t) := I-I (1-qa'~(s)+ltn-ln(s)), 
s e n  

bn(q't) : :  l ~  (1-qa'n(s)t'~-zn('~)). 
sETI 

d~l(q,t) := H (1 _qan(s)+ltln(s)), 
sen 

e~(q,t) := H (1-qdn('s')+ltn-l-l~l(s')), 
sen 

(2.13) 

All these constants are equal to unity if 1] = 0. We also have the constants 

l(il) := ~I(s ) ,  I'(ii) := Et'(s) .  (2.14) 
sen SErl 

For future reference, some properties of these quantities, easily derivable from [29], are 
listed. 

Lemma 2.1. Letq~r I := (ii2, II3,... ,tin, IlI + 1) andfin(q, t) := q(ni-ni+l)t(I~(i+U-l~(i)). 
We have 

doq(q, t) = eon(q, t) = 1 -qnl+ltn-l~O), 
dn(q, t) ell(q, t) 

d ~  (q, t) _ e~q (q, t) 

d~l (q, t) d n (q, t) 

l(¢rrl) = l ( r l )+/~(1) ,  

- -  = 1 -qnl+ltn-~-In(l), 

I'(q)rl) = l'(rl) + n  - 1 - /n (1 ) ,  

where I~1(1) = #{ klk > I, Ilk <_ I"11 }. I f  rli > rli+ b we have 

dsin(q, t) _ 1 - tS i ,  rl(q, t) 
drl(q, t) I - 5i, n(q, t) ' 

esiq(q, t) = en(q, t), 

l(s~il) = l(1]) + 1, 

d.l~in(q,t) - 1 - ~ i , n ( q , t )  
d~l(q , t) 1 - t - t S i ,  rl(q, t)' 

e~.in(q, t) = e~(q, t ) ,  bsol(q, t) = bn(q,  t), 

z ' (sm) = l '(ii).  
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Define a q-shifted factorial by 

f (a,  b) . -  (a; q)~ (ab; q)=' 
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where (c, q)oo := H ( 1  - cqi). 
i=0 

The q-shifted factorial f(a,  b) is an analytic function provided Iql, lal, Ibl < 1. It can 
then be identified with the formal series associated with its series expansion about a = 
b -- q -- O. Given polynomials h and h' of indeterminants a l , . . ,  am, the formal Laurent 
series f (h (a l , . . .  ,am),ff(al,. . .  ,am)) is fixed by substituting a ~+ h(al,. . .  ,am), b F-+ 
h'(al , . . . ,  am) into the formal series identified with f (a,  b). If b = qk, we can write 

(a; q)~ 
(a;q)k .-- (aqk ;q) • 

The q-gamma function is defined by 

Fq(x ) :=(1 -q )  1-x(q;q)~ O < q < l .  (qX;q) , 

We remark that with the generalized factorial defined by 

[qX](q,t): : H (tl~(s)-qa~(s,+x) 
sE~q + 

n 1 , + 
tt,(n+>( I , .  r-r Fq(X- -~(z - 1) +rli ) 

= - q Y " l l  - - - - f - Z . - - - -  , (2.15) 
i=l r q ( x -  -~(t- 1)) 

we have 

en(q,t) = t-l'(n+)[ql+~]q'~, 

e'n(q, t) = t - l l ( 'q+)fnl+~(n-1)]q ' t  

b~l(q,t) t-l'Ol+)F ~]q,t = tq J11+. (2.16) 

For any Laurent formal series f ,  let CT(f) denote the constant term of that series with 
t~FX :~1 ,X~ 1] by  respect to x. We can define a scalar product on Q(q, jL 1 , " .  

{f,g)q,t:=CT(f(x;q,t)g(l;q 
where 

W(x) :=W(x;q , t ) :=  1-I (~ ;q )~  (q~;q)~ x/ x'  " 
l<i<j<_n (t xj;q)~ (qt~; q)~ 

The nonsymmetric Macdonald polynomials have the following orthogonality property, 
which can be deduced from (2.10). 
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Proposition 2.2. [24] The polynomials E~ 1 (x; q, t) form an orthogonal set with respect 
to (', ")q,t" 

A consequence of this is that the nonsymmetric Macdonald polynomials are able 
to be constructed by means of a Gram-Schmidt procedure. Let rl (1) -< .. .  -< rl(P) be a 
chain of compositions satisfying: 

If Tl(i) -<p -<1] (I+1), t h e n p = r l  (i) o r p = l i  (i+1). (2.17) 

The nonsymmetric Macdonald polynomial E~(pl can be determined as the unique poly- 
nomial satisfying (2.9) which is orthogonal to all En(il with i < p. 

The nonsymmetric Macdonald polynomials are elements of the ring of n variable 
polynomials with coefficients in the field Q(q, t) of rational functions in q and t. Let the 
hat symbol ^ denote the involution on the ring Q(q, t)[xl~l,... ,xf] which sends xi H, 
xn-i+l, q ~-~ q-1 and t ~-+ t -1. Extend this operator to act on operators so that for any 
operator T and polynomial f ,  iPf = (T'f). This operator is an involution on the extended 
affine Hecke algebra ~ (q, t) since (5 = 03-1 and T/= Tn- ~. for all i E Zn. These relations 
follow from the respective definitions and (2.8). We define the dual nonsymmetric 
Macdonald polynomial by/~q (x; q, t) := E n (x; q-  1, t -  1 ), where x_ := (xn, . . . ,  Xl ). These 
polynomials are uniquely determined by the conditions 

Eq(x; q, t) =x~-+ ][~ C~lvX v, (2.18) 
v:<n_ 

YiEat(x; q, t )  = q-rlitfh(i) P-~q(x; q, t ) ,  1 < i < n, (2.19) 

where ]?/= tn-iTn_li ... T 1-103-1Tn- 1"'" Tn-i+ 1 and the partial order -2 is defined on com- 
positions so that 

v-2r I if either v + < ri + or v + = rl + and v > r 1. 

Equivalently, v-~q if and only if v__ -< r 1. 
The dual nonsymmetric Macdonald polynomials are simply related to the nonsym- 

metric Macdonald polynomials by means of the Demazure-Lusztig operators. We re- 
quire the following lemma which provides the action of Tcr on the monomial xn. 

L e m m a  2.3. For any composition r 1 and permutation cy, we have 

T~x n = c ~ x  ml + ~ cvx ~, (2.20) 
v-<o N 

for scalars cv E Q(q, t). 

Proof We can write c~ as a reduced decomposition cy := tn"" tl := sk~ "'" ski, where 

f Sj'" "S6-1(j)+Kj(rj-1)_I, (y - l ( j )  _~_ Kj((y-1) _ 1 ~ j ,  
tj t 1, else, 
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with Kj(6) := #{iti < j,t~(i) > O(j)}. Application of each t /moves i to the required 
position, that is, for each p E Nn, (tp. " .q)- l ( i )  = o-1(i)  for all i _ p. Since m 1 := 
(ll~-*(1),. •. ,ll~<(n)), we have 

t p " ' t l r l = ( l l o - l ( 1 ) , . . .  ,lla-t(p), p ,. . .  

for some eS? ) > O. It follows from (2.3) that 

T~xn = y" c~nxm + ~" c,x ~, 
0)EA (G, Y1) Ut't)+ <rt+ 

where co E A(o, 1]) if and only if co has a reduced decomposition. 

(1) If  (co'i-1 "'" coklll)ki < (¢Oki_l"" cokl]])ki+l, then coki = Ski or coki = 1. 

(2) If (coki-l "" coklll)ki >-- (coki-i "" cokl'q)ki+l, then cok, = ski. 

To prove (2.20) it suffices to show that, if co E A(o, ll), then ~ _ on 1. Let co E 
A(o, ll) and cokz • "" cokl be a reduced decomposition of co satisfying (1) and (2). If ti is 
the word & . . .  sk,, let co(i) be the word cok~ • '" cok, SO that co = co(n) ... co(I). For p E Nn, 

let p(P) := tp...ti11 -co(P)..-co(1)T I. Suppose p(P) _ 0 and pj(.P) < 0 for all j > p. Let 

• ' =p5 p) for j <  while (Pp+l .. d-{n) fit : :  t p+l . . . t l ,  q _ tp+lco(p ) ..0)(1)1]. Then ]./j . _ p r , . 

is an arrangement of "(pp+ (p)i,... ,p(P)). Hence, p' _>" 0 and p} _< 0 for j _> p + 1. Let 

i/It : =  tp+ico(p). ,.0)(1)1,1 _ co(p+I)co(p) , . . (0(1)1 .1 .  Then by inspection,/.{j' = 0 for j _< p 

while Pp+l ->- 0 and p~ < 0 for all j > p + 1. Let p(p+l) := tp+l.., till - (o(p+l)... co(1)rl. 

Since p(p+l) = p, + p , ,  it follows that p(p+l) ,2 0 and kt5 p+l) _< 0 for all j < p + 1. By 
induction, it follows that c0ll ~ o'q. | 

L e m m a  2.4. 

Z(n,... ,i)/~rl (x; q, t) = t#{(i,j)li<j,ni>-nJ}En (x; q, t). (2.21) 

Proof Using Lemma (2.3) and noting that (n, . . .  ,2, 1) = tn.. . t l  with ti = Si'" "Sn--1, it 
is simple to verify that 

T(n,... ,2, l)  xrl = t#((i'j)ti< j'Tli>-nJ} x~ -}- E arlp ~4., 

for some a ~  E Q(t). It follows that 

T(n ..... 1)En(x; q, t) = t#{(i'j)li<j'ni>nJ} (xn +u~naqp_~ ) . (2.22) 

It suffices then to show that, given a chain ll0) _< ...  _< q(p) = rl satisfying (2.17), 
T(n ..... l)Entp) is orthogonal to En(i / for all i < p. This will be done by induction. I f p  
is a minimal composition under the partial ordering 4,  then Eu(x; q, t) = x ~. It follows 
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from (2.22) that (2.21) is true for the composition ~](0 Suppose (2.21) is true for 
q(I) ... ,rl(r-a). Then for any k < r, 

(Ell(k), T(n,...,1)~#Tl(r))q,t -~- t--#{(i'j)li<J'l]Ik)>l]~')} <T(n ..... 1) ETI(k), T(n,... ,1)Elq(r)>q,t. 

Since Ti -1 is the adjoint operator of 7~ with respect to (., ")q,t and (f ,  g)q,t = (f, g)q,t, 
we have 

= 

= 0 .  II 

Next, we revise the construction of the symmetric and t-antisymmetric Macdonald 
polynomials from the nonsymmetric Macdonald polynomials. This requires t-analogs 
of the symmetrization and antisymmetrization operators defined by 

v+ := E To, U - : =  E (-t)- '(") r,,, 

where l(cy) := #{(i, j) l i < j, ~i > oj} is the length of the permutation or. These opera- 
tors have the following properties: 

Ti±U + = U+Ti ± = t±U +, (2.23) 

~ ± u -  = u - ~  ~ = - u - ,  (2.24) 

The operators U + and U -  are able to be factorized in terms of the antisymmetrization 
operator A [13]. 

(a) U+f(x)= A(A~-~(x)f(x)) (At-l(X) f x ) A(x) - S y m  ~ ( ) , (2.25) 

At (x) .9tf(x), (2.26) (b) U - f  (x)= A(x) ' '  

where A := F.a~s, ( -  1 )t (a) cy and At (x) := IIi<j (xl - t -  l xj). One consequence of (2.25) 
is that the operator U + sends the symmetric monomials onto the Hall-Littlewood poly- 
nomials. We have 

P~:(x; t) = U+ mn(x), 

where Pn(x; t) is the Hall-Littlewood polynomial associated with the partition ~z (see, 
e.g., [24]). A further consequence is that 

U-si = - U - .  (2.27) 
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Now, when acting on symmetric functions, the Macdonald operator Dtn(q, t) can be 
decomposed in terms of the Cherednik operators according to [19] 

n 

D (q,O . -1  =t  EYi .  
i = 1  

Since the operator U + commutes with ~=1 Y/, it follows from (2.9) and (2.10) that there 
exist unique symmetric polynomials indexed by partitions which satisfy 

n 

f i ( 1  + uYi)P~:(x; q, t) = I~(1 + uqKit -t'~(i)) Pc(x; q, t), (2.28) 
i = 1  i = 1  

Pc(x; q, t) = m~(x) + ~., uwmv(x). (2.29) 
ta<l~ 

From Section 1, these are the symmetric Macdonald polynomials. The symmetric Mac- 
donald polynomials can also be determined as eigenfunctions of a generating func- 
tion of symmetric functions in t~. This implies that P~: is an eigenfunction of any 
f (Y1, . . . ,  In) for which f is symmetric. One has the relation 

1 
Prl+(x; q, t) = ~ U + E r l ( x ;  q, t), (2.30) 

for some scalar )qn (q, t). We can also define the t-antisymmetric Macdonald polyno- 
mials [25]. The t-antisymmetric monomial m~, indexed by the partition ~: with non- 
repeating components, is 

mtK := U-x  K. 

There are no t-antisymmetric monomials associated with partitions with repeating com- 
ponents as it follows from (2.27) that for such partitions U-x  K = 0. It follows from 
(2.25) that 

/ = zx,(x) 

where s~_ 8 is the Schur polynomial associated with the partition • - 8. When ~: = 8, 
we then have 

m~ = At (x). (2.31) 

A function f is t-antisymmetric if Tif = - f  for all i = 1, . . . ,  n -  1. The t-antisymmetric 
monomials are a basis for the analytic t-antisymmetric functions. The t-antisymmetric 
Macdonald polynomials S~:(x; q, t) are indexed by partitions with non-repeating com- 
ponents and can be defined by the following conditions: 

n n 

I-I(1 + uYi)S~(x; q, t) = l-I(1 + uq~it -l~(i)) sK(x; q, t), (2.32) 
i = 1  i = 1  

Sr(x; q, t) = m'~(x) + IF., vr~m'~(x). (2.33) 
11<~C 
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Analogous to the derivation of (2.30), we have 

1 
Sn+ (x; q, t) - q, t), (2.34) y~ (q, t) U-E~ (x; 

The symmetric and t-antisymmetric Macdonald polynomials can also be expressed as 
linear combinations of the nonsymmetric Macdonald polynomials. 

Lemma 2.5. [25] 

(a) d'~l+ (q, t) E~I(x; q, t) (2.35) PK(x;q,t)= E d'q(q,t) 
1]:11+=K 

- --1(~) d~(~) (q, t) _ , . 
(b) S~(x; q, t) = ]~ t - t )  d - ~ , t i  lz~(K)kx, q, t). (2.36) 

~ESn 

Proof A simple generalization of the derivation of the analog results in the case of the 
Jack polynomials [8]. | 

It immediately follows from the orthogonality of the nonsymmetric Macdonald 
polynomials and Lemma 2.5 that 

Proposition 2.6. [25] Both the symmetric Macdonald polynomials {PK(x; q, t) ) and 
the t-antisymmetric Macdonald polynomials {S~(x; q, t)} form orthogonal sets with 
respect to (., ")q,t. 

It follows that both the symmetric and t-antisymmetric Macdonald polynomials are 
able to be constructed by means of a Gram-Schmidt procedure similar to that in the 
case of the nonsymmetric polynomials. 

The dual nonsymmetric Macdonald polynomials share many properties with the 
nonsymmetric Macdonald polynomials. In particular, they are equally able to serve as 
building blocks for the symmetric and t-antisymmetric Macdonald polynomials. This 
is explained by the following results, the first of which follows from (2.26). 

Lemma 2.7. 

(a) 

(b) 

Lemma 2.8. 

(a) 

(b) 

Cf + n(n-l~ 
= t -  ~ - ~  U +, (2.37) 

n(n-1) 
U- = t T U - .  (2.38) 

PK(x; q, t) = P~(x; q, t) = P~:(x; q - t  t - t ) ,  (2.39) 

n(n-ll ^ 

S~(x; q, t) = ( - t  )--~-~ S~(x; q, t ). (2.40) 

Proof We shall consider only the second identity as (a) is well known and is proven 
in a similar way as (b). It follows from Lemma 2.7 that m'~(x) = (-t)n("-l)/Zm'z,(x). 
Using the defining property (2.33), we then have 
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Since {(--t)-n(n-1)/2g~c(X; q, t)} is orthogonal with respect to (., ")q,t and posseses the 
triangular structure (2.33), (b) must be true. I 

Using the above two lemmas in conjunction with (2.30), (2.34), and Lemma 2.5, we 
obtain the following two temmas. 

Lemma 2.9. 

(a) 

(b) 

Lemma 2.10. 

(a) 

(b) 

n(n- 1) 
eft+ (x; q, t) = t -  z U+E'rl (x; q, t) 

~/~(q-1, t-1 ) 

( - - 1 ) n ( n - l ) / 2  _ ^  . . 

Sn+(x;q,t ) - ~ U  En(x,q,t  ). 

d'~l+(q-t, t-1) ^ . 
P~(x; q,t) = n:n~+_~ d,n----(q-@--~,t-2~ En(x; q,t), 

d / -1 t-lx ( .~l(m o(~)£q , ) S~(x; q, t) = ]~ , - , )  . . . . .  Eo(K)(x; q, t). 
o~s,, dK(q -1, t - l )  

where for any permutation o, ~ := (On,... ,01). 

3. Nonsymmetric Macdonald Polynomial Theory 

In this section we will derive some of the basic properties of the nonsymmetric Macdon- 
ald polynomials independently of the theory of the symmetric Macdonald polynomials. 
A required preliminary result is the Cauchy-type formula for the nonsymmetric Mac- 
donald polynomials. 

Proposition 3.1. [26] Define 

then 

n (qtxiyi; q)= 
I2(x, y; q, t) := 11 

i=I (xiyi; q)~ 
(txiYj; q)= (qtxjYi; q)= 

H (xiYj; q)= (qxjYi; q)=' l<i<j<n 

1 
I2(x, y; q, t) = ~ u~ (q, t) &l (x; q, t)E n (y; q- l ,  t - l ) ,  Url(q, t) e Q(q, t). 

(3.2) 

Applying this property to (3. t) shows that the scalars u n (q, t) are independent of n. 

E~a(xl,... ,Xn-1,0; q, t) = [ E(~ll ..... ~l~_~)(Xl,... ,xn-1; q, t), rln -- 0, 

t O, Tln> O. 

(3.1) 

The nonsymmetric Macdonald polynomials have the following stability property: 
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Dunkl has introduced a family of multivariable polynomials which allow a workable 
treatment of some important constructions and has a close relationship to the theory of 
the nonsymmetric Macdonald polynomials [ 14]. The t-analog of these polynomials are 
the polynomials q~ (x; q, t) defined by 

l'Z(x, y; q, t) := ~_,qq(x; q, t)y ~. 
n 

Corollary 3.2. Let 5vn be I i f  v = r I and 0 otherwise. Define a scalar product by 
(Ev(x; q, t), Ev(x; q - 1  t-1))q := u~(q,  t)~wl.  We have 

(qv (x; q, t),xT1)q = ~V n . 

Hence, q~(x; q, t) are a basis for  the multivariable polynomials with coefficients in 
Q(q, t). 

Proof From the triangular structure of the nonsymmetric Macdonald polynomials, 
{ ~ E q ( x ;  q, t)} and {Eq(x; q- l ,  t - l )}  are a basis for the multivariable polynomi- 

als. The scalar product (., .)q is then well defined. An argument similar to Macdon- 
ald's [24, p. 310, 311 ] can now be used to show that (3.2) is equivalent to (3.1). II 

The nonsymmetric Macdonald polynomials can be computed recursively by just 
two kinds of operators. The first are the Demazure-Lusztig operators Ti, 1 < i < n - 1. 
The second is the raising-type operator [5, 21]: 

dpq := xnT~-_11. .. T21Z1-1  = t i -nZn_l  .. . Tixi T/-I1... Z1-1" 

These operators have the following action on the nonsymmetric Macdonald polynomi- 
als [5, 26]: 

dPqErl(x; q, t) = t-#{ili> l'~i<-Th } Eci~q(X; q, t) (3.3) 

and 

t - 1  
(1' 5~ l (q , t ) )En+ tEs lq ,  q i < ' q i + l ,  

Ti E~ = t E  n, ~]i = "qi+l, 

( t _ L 1 ) E _ f ( 1 - t S i q ( q , t ) ) ( 1 - t - 1 5 i ~ l ( q , t ) ) E s i ~ , r l i > r l i + x "  
1 - ~ l ( q , t )  (1 - ~i~l(q, t ) )  2 

(3.4) 

Using these operators, it is simple to derive the following two identities by verifying 
that the respective quantities satisfy the same recursion relationships. 

Proposition 3.3. [12] Let t fi := (1, t , . . .  , t n-t). We have 

En (tfi; q, t) = t l(n) en(q' t) 
drl (q, t) '  (3.5) 
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Proof Noting that, for any function f = f(x),  

(7~f) (t fi) = t f ( t  fi) (3.6) 

shows that 

( ~qErl(X; q, t) ) [x=t~ - = (tl-nTn_l ' ' '  TlXlEII(x; q, t) ) [x=tfi 
(3.7) 

= El(tfi; q, t). 

Using (3.3), we then obtain 

E~q (tfi; q, t) = t#{ili>l'Tli<-rh}El(tS-; q, t). (3.8) 

Supposing 1]i > qi+l and applying (3.6) to (3.4) and rearranging, we also obtain 

Es, l(tfi; q, t) = t ! - 5i,~(q, t)_ El(tfi; q, t). (3.9) 
1 - tfi,n(q, t) 

The relations (3.8) and (3.9) uniquely determine E 1 (tfi; q, t) given E0(tfi; q, t). Since 
Proposition 3.3 is obviously true for the case r I = 0, all that remains is to show that the 
right-hand side of (3.5), RHS(T1) say, obeys these relations. Using Lemma 2.1, we have 

R H S ( ~ ] )  __ t # { i [ i > l , l i < l l }  
m~s(~)  

Supposing Tli > 1]i+1 and again using Lemma 2.1, we have 

1 - 5 i , n ( q  , t )  
~IS( s ;q )  = t • m-Is(~l). 

1 - tSi,~(q, t) II 

Proposition 3.4. Write N(e) (q, t) := (E~, Ea])q,t. We have 

N~e)(q, t )  _ d ' l ( q ,  t)eq(q, t) 
Y~(0E) (q, t) dl(q,  t)e'l(q, t)" (3.10) 

Remark. Macdonald [25] and Cherednik [12] have derived (3.10) although in a different 
form. 

Proof Using (3.3) we have 

(Earl, E~rl >q,t = (t #{ill> 1,1i<rh }dPqE1, t#{iti> 1,~i<11 }dPqE~ > q,t 

= CT ( t#(ili>l'"i<-ll}xn (Zt~-l l  . . .  T;  IE~(x; q, t)) 

× t-#{ili>l'ni<-nt}x~ 1 (Z~--ll"" Zl-lEn(x; q , t ) ) l !  1_ ~ W(x; q , t ) )  
x~ q~ 

= (Tn_ll .... T{-1E~(x; q, t), Tn_ll ' ' '  T{-1ETI(x; q, t))q,t 

= <El, ETI)q,t. 
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In the last line, we have used the fact that T/-1 is the adjoint operator of Ti with respect 
to (., ">q,t [251. 

Supposing Ili < Yli+t and using (3.4) we have 

1 - t  -1 1 - t  - t  
(Esirl, Esirl>q,t = (t-tTiErl 5_ 1 t-lTiE~l 5_ 1 t)E@q,t 

1 - i , n ( q , t )  En' 1 - i o l ( q ,  

= < ~ e ~ ,  ~ e n ) q , ,  - t - ~  1 - t 1 - 6i, n(q, t) (TiE,, E@q,t 

1 - t  -~ 
--t ~-1 (Erl' TiErl>q,t 

1 - i ,n(q ,  t)  

( 1 - t ) ( 1 - t  -1) 
Jr (1--Si, q(q~t)) ( 1 - - ~ ( q , t ) )  "(Erl'E@q't" (3.11) 

Consider the right-hand side of this expression. The first term simplifies by again using 
the fact that that Ti -1 and ~ are adjoint operators, while the second and third terms 
simplify by making further use of (3.4) and then noting that, for rli # vii+l, Erl and Esm 
are orthogonal. After rearranging, we obtain 

(1 - t6~ ,~ (q , t ) ) (1  - t-15 -l'i,@q, ) 
t )  (E'I, Ell>q,, <Esir I , Esir I > q,t = 

By replacing q by siq and noting that if rli # Tli+l , ~i,s~n = --~i,T1, we see that in the 
case rli > rli+l 

(1 - gi,n(q, t)) 2 
(Esin,Esiq)q,r = ( l_tSi ,r l (q, t ) )( l_t_15i ,r l (q, t ) )  (E~,E~)q,t. (3.12) 

Using Lemma 2.1, it is clear that the right-hand side of (3.10) satisfies both the 
recursion relations (3.11) and (3.12). Since (3.10) is true in the trivial case r 1 = 0, 
Proposition 3.4 is true by induction. II 

We shall now show that the multivariable q-binomial theorem involving the non- 
symmetric Macdonald polynomials can be deduced using Propositions 3.1 and 3.3. 

Proposition 3.5. [26] 

f i  (axi; q)~ .-~ [a]~'+ t 
i=l (xi; q)= -- ~ un(q , t -~(q ,  t) "Eq(x" q' t). (3.13) 

Remark. The expression on the right-hand side of (3.13) will be able to be simplified 
using (4.27). 

Proof In (3.1), first replace n by kn for some k E Z>0 and then substitute yj = t kn-j 
and let xn+a . . . . .  Xl~n = 0. Since Eq(cx) = clnlErt(x), we can use Proposition 3.3 to 
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obtain 

n ~_tknx.~ 

_ , q  

t(kn- Ol~l-l(~) eTl (1, "tl ~ 
un(q ' t)dn(1 ' n"+knls-q(Xl,... ,Xn, 0,... 
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,0; q, t). 

Making use of (2.16), Lemma 2.1, the stability property (3.2), and the identity 

ell (q- 1 t -  1)ln__~kn = t( l (r l )+lt( ,q)_(kn - 1)1~1) e~ (q, t)In-+kn 
d~l(q-1~ t -1) drl(q, t) ' 

(3.14) 

we obtain for k E Z >o 

_.knlq, t 
I-I (qtgnxi; q)= - V [q-' J"+ 
i=1 (Xi;q)~ Z'~u~(q,t)d~(q,t) Eq(x;q't)" (3.15) 

Both sides of (3.15) are power series in x, q, t and t g. Equating the coefficients with 
respect to q and x we can apply the following lemma to show that (3.15) is true for all 
k E ~. We then have (3.13) by letting a = qt ~n. 1 

Lemma 3.6. [30] Let F(z, q) and G(z, q) be formal power series in z and q. If  
F(q k, q) = G(q k, q) for infinitely many integers k >_ O, then F = G. 

4. A Generalization of the q-Seiberg Integral 

The q-Selberg integral, as formulated by Askey [2] and subsequently proved by Kadetl 
[16] and Habseiger [15], has been extended by Kadell [16] and Kaneko [17] to involve 
the symmetric Macdonald polynomial as a factor in the integrand. An equivalent for- 
mulation of this result is as a constant term identity which generalizes the q-Morris 
identity [18]. Here this result will itself be extended in that the symmetric Macdon- 
ald polynomials will be replaced by the nonsymmetric Macdonald polynomials. The 
derivation of this identity will also yield a new derivation of the q-Selberg integral as 
well as allowing us to specify the constant u~ (q, t) appearing in (3.1). The derivation is 
based on the multivariable q-binomial theorem (3.13). 

Using Proposition 3.5, we have 

n 1 I f~rlq't 
y i ~ , E n ( x ; q , t  ) = tq In+ N(E)(q,t). 

\ i = 1  ~, ,, ~llr /q,t un(q, t)dn(q' t) 
(4.1) 

Letting xi ~+ Xn~i+ 1 inside the argument of the constant term function, an operation that 
leaves its value unchanged, we obtain 

I [-rlq't 1 ^ Ltt Jrl+ 
CT i=1 f i  (x/l;  q)r En(x; q' t)W(x) = uq(q, t)dn(q, t) N(E) (q, t). (4.2) 
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Our first task is to manipulate (4.2) so that rI~=l (xi-1; q);-1 is replaced by 

We require 

Lemma 4.1. We have 

n 

1-I(xi; q)a(qXT1; q)b. 
i=I 

xPEq(x; q, t) = Eq+p(X; q, t), (4.3) 

where I ! + p = (~11 + P,... ,tin + P) andx p : (xl...Xn) p. 

Proof From the definition of I~, we have Yix p = qPxPYi. Using (2.10), we then obtain 

I~ (xPEll(X; q, t) ) = qlli+Pt-ln+p(i)xPErl(x; q, t), 

where we have used l~ (i) = l~l+p(i ). From the defining properties (2.9) and (2.10), we 
then have the required conclusion. | 

Corollary 4.2. 

xPE11(x; q, t) = i~11+p(X; q, t). 

Using the above proof, we can extend the nonsymmetric Macdonald polynomials 
to include Laurent polynomials. The defining properties of the Laurent polynomials E n 
are the same as for the ordinary nonsymmetric Macdonald polynomials except that they 
are indexed by n-tuples which can have negative components. The nonsymmetric Mac- 
donald Laurent polynomials can be expressed in terms of the ordinary nonsymmetric 
Macdonald polynomials by using (4.3). The dual nonsymmetric Macdonald polynomi- 
als can be similarly extended to include Laurent polynomials. 

Consider (4.2) with l 1 replaced by T I + a. Using Lemma 4.2, we can write/~l+a = 
xa/~q. Set r = - a  - b with a, a + b E Z_>o. A brief calculation shows that 

n n 
xa f l  1 = (-1)naq -~(2b+a+l) f l(x ' i ;  q)a(~l/; q)b, 

i=1 (X71; q)r i=1 

where x~i = q°+lxi. Substituting into (4.2), we obtain 

n q 

na 2 , T T ( b + a + l )  [~r lq ,  t 

l xna ~ t~2 ]rl++a m r ( E )  t : ( - )  ~ ~ - ~ ' ~ r l + a L q ,  t) • 
~ m 

~c(E), t" = 9~ E) Since E~l(cx) = clnl/~q(x) and "-%t+aLq, ) (q, t), we obtain 

,a q(-~(2b+a+l)+(bH)tnl) [qr]q~+ a 
= (--1) ~ ~ ~  N(e}(q,t).  
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The dependence on a in 1/Un+adll+ a can be determined using 

Lemma 4.3. We have 

En(1; q, t) = E_q_(x__; q, t). 

Proof Let the star symbol * denote the involution on the ring of n-variable polynomials 
with coefficients in Q(q, t) which sends xi --+ x7~ 1, q -+ q-l, and t --~ t -1. Extend this 
operator to act on operators so that, for any operator T and polynomial f ,  T* f* = (T f)*. 
It follows from the respective definitions and (2.8) that T/* = T/-1 and w* = w. Using 
these relations as well as T/= Tn- ~ and ~ = w- 1 we have 

From (2.10), 

(Y2_i+l) -1 = t l -nyi .  (4.4) 

y/-1Eq(x; q, t) = q-~ittn(i)En(x; q, t). 

Applying the * operator and replacing i with n - i + 1, we obtain 

(y*_i+l)-I E~(x-l; q-1 t - l )  : qrln_i+lt-l~(n-i+l) Erl(X-1 ; q-I, t - l ) .  

Using (4.4), we obtain 

~/GI(x-1; q - t  t - l )  = q~l,_i+Itn-l-l~(n-i+l)Eq(x-1 ; q-l ,  t - l ) .  

From the defining properties (2.18) and (2.19), it follows that E n (x- 1; q-  1 t -  1 ) is a dual 
nonsymmetric Macdonald polynomial. Since E n (x- 1; q-  1, t - l )  has the same leading 
term as/~_n (x; q, t), 

Eq(! ;  q- l ,  t-L) = E_~_(x__; q- i , / -1) .  

| The conclusion follows. 

Corollary 4.4. We have 

Now 

/~n ( i ;  q, t) =/~_n_(x__; q, t). 

n q ) 
CT (l-I(xi; q)a(~;  q)bE,~(x; q, t)W(x) 

\ i=l  t 

(~.~=1 q q : )  = CT (~/; q)a(Xi; q)bEq( ;q, t)W( ) 

= qtntCT (7/; q)a(Xi; q)b/?-n_(x; q, t)W(x) . (4.5) 
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To obtain the first equality we have used the invariance of the constant term identity 
under xi ~, q_X__, while to obtain the second equality, we have used Corollary 4.4 and Xn-i+ l 
W(~) = W(x). Applying (4.4) with r I replaced by - r  I and interchanging a with b gives 

n q 

nb q(~-(2a+b+l)-alnr) [qr]q-'~ ++b (E) 
= ( - 1 )  ~ t ~ _ n _  ~ Y(n (q,t). (4.6) 

We write q < c if qi _< c for all i = 1 , . . . ,  n. Equation (4.6) is valid for T I _< b while (4.4) 
is valid for T 1 _> - a .  Equating the right-hand sides of (4.4) and (4.6) and setting a = 0, 
we obtain for 0 <__ r I _< b 

[_-blq,t [_-b?q,t 
Cl J l ]+  (_l)nbq(~(b+l)_(b+l)lq[) kq J-~l++b 

= - -  (4.7) 
u~l(q, t)d~(q, t) U-q__+b(q, t)d-n_+b(q, t) " 

We can use (4.7) to define [q-b]n+/u~ldnwhenr I q , t  ~ 0 and rl_< b. It then follows that 
(4.7) is true for all a, a + b C Z>0 and either r I <_ b or r I >_ 0. This can be used to show 
that the right-hand sides of (4.6) and (4,4) are equal and hence (4.6) is true for this range 
of variables. Substituting (4.7) into (4.6), we obtain for this domain 

= q(nab+(b+l-a)l%)[q-b]~ t'lL"-a-blq't 
J-q_++b NTI )(q ' / e  t). (4.8) 

un(q, t)all(q, t)r'~-blq't t'~ J -~+ +b 

It follows from the property 

Fq[x+l]=[X]qFq[X], where [X]q : :  1 - q x  
1 - q '  

(4.9) 

that, for all k E Z, 

Fq[x+k] _ (_l)kq~+½k(~_l) F q [ t - x ]  (4.10) 
Vq[X] Vq[1 - (x + 

Using (2.15) and (4.10), we can manipulate the right-hand side of (4.8) to obtain 

= q(b+l)[nl[q-b]~ n (clO+lti-1;q)~o(qa+l+n+~_i+~ti-1;q)~. (4.11) 
un( q, t)dn( q, t) N(ne)(q' t) I-I (qa+b+tti-1 ; i=1 q)oo(qt+n'+i+lti-1; q)~ 
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Since both sides of  (4.11) is a power series in q, qa, qb, and t, when lql, Itl < 1, 9~(a + 
b + 1) > 0 and r 1 _> 0, which includes the established domain of validity of  both (4.11) 
and (4.8), we can use Lemma 3.6 to extend the validity of  both (4.8) and (4.11) to this 
domain. 

The identity (4.8) can be simplified by taking the limit a --+ ~ with a + b = 0. For 
this purpose, we first take the ratio of  (4.8) to that obtained with r I = 0, thus obtaining 

n X'i~ q; q,t  

n X "  c r  ( n ~ = l ( i , q ) a ( ~ ; q ) b W ( X ) )  

q(b+l-a)[n[ [q-b]~l~ [q-b]qb't t cl[--a-blq'tl-~+ +b N (E) (q, t) 
(4.12) 

un(q, t)dn(q, t)[q-a-b]q't[q-b]q_'tn_++bN(S)(q , t) 

where we used the facts that [q-b]g,t = do = u0 = 1. Computing the the asymptotics 
requires 

L e m m a  4.5. [7] For a Laurentpolynomial f (x l , . . .  ,Xn), we have 

F q [ a + l ]  \nn_% /q b 1 (qxi;q)~ 
. !  I ! I dqxiX7~ - q)=f(xl , . . .  ,Xn) Fq[-b]Fq[a+b+ l J j  ~=~Jo (qa+b+lxi; 

_ ((q,q)a(q,q)b'~ CT \ iq,,-q)---~+b ,] (xi 'q)a(~ 'q)bf(q-(b+l)xl ' ' ' ' 'q-(b+l)xn) '  

(4.13) 

where f~ f(x)dqx := (1 - q) Y~7=of(qJ)q; is the q-integral. 

Remark. There is a typing error in the statement of  the above lemma in [7]. 

L e m m a  4.6. Suppose t = @ where ~ ¢ Z>_o. Then 

lira CT(I-[n-l(xi;q)a(~;q)bE~(x;q't)W(x))=ql~l(b+l)P_~(tfi;q,t). (4.14) 

aa+~=~O CT(rlin=l(xi;q)a(~;q)bW(x)) 

Proof Fixing a + b = 0 and applying Lemma  4.5, we obtain 

( - CT I'In=l(xi;q)a(~; q)b~ll(X; q,t)W(x)) 

n X '  CT (IIi:l(i,q)a(~;q)bW(X)) 

= q(b+l)l~l YI~=I fo 1 dqxix;b-lEn(x; q, t)W(x) 
1-[7=1 fd dqxixyt b-lw(x) (4. t5) 
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Using the definition of the q-integral, we have 

= (1 _q)n E q-by:n=lkiW(qkl"'" 'qg")Erl(q ~1'''" ,qk,; q, t). 
k~Z>0 

Suppose ~ E Z_>0. Then 

W(qk~,... ,qk,,) = 0  if ki+I =ki-~,, . . .  ,ki+~,- t while W(1, qX,... ,q~4n-i)) # 0 .  

It follows that in the limit a ~ ~ with a + b = 0 

~-1-- ~oldqxixytb-lE~l(x; q' t)W(x),~ (1-q)nq-bE7=lk(i-1)E,q(t~-; q, t)W(tfi). (4.16) 

Substituting (4.16) into (4.15) gives (4.14). | 

Lemma 4.6 gives the asymptotics of the left-hand side of (4.12). We now seek the 
asymptotics of the right-hand side of (4.12). Use of (4.9) and (4.10), along with 

Fq [x + a] 
re[x]  ~ [X]q, as x 

shows that, in the limit a --~ ~o with a + b = 0, 

[-blq,t ,,~ tt'(~+)( I _ q)l~l[_b]~ql ' (4.17) q Jq+ 

[.7-a-b]q,t 
u J-~_++b ,,~ (_l)lqt( 1 _q)_lqlq(al,ql+½ET=lrl~-(~-~+U)[a]qlnl (4.18) 

[q-b]q,t 
= (--1)lnlq-½ZT=~q+(n++t)t-~'(q+)[ql+~(n-1)]q~. (4.19) 

[.7-b]q, t 
t't J -~+ +b 

I 

Substituting these results into the fight-hand side of (4.12), and using Lemma 4.6, we 
have in the limit a --+ co with a + b = 0, £ E Z>_o, and ~ >_ 0, 

L.~l + ~.(n-1)]q,t 
/~  (tfi; q, t) = t~ jU+ N (E) (q, t) (4.20) 

u~ (q, t) drl (q, t) N(O E) (q, t)" 

Since both sides of this expression can be written as a power series in q and t for 
0 < q, t < 1, we can apply Lemma 3.6 to extend the validity of this result to all ~, > O. 
Using this result, (4.17) and 

[.~-a-b]q,t 
~/ J-~++b _ (-1)trlltl'(q+)q(al~l+½Z~=l~i(rt~+l)) 

[q-a-b]qb, t [.l+a+~(n-t)]q ,t ' 
t'a Jrl+ 
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we can simplify (4.12) to obtain 

n X" CT (l-Ii=l ( i, q)a( ~; q)bP~rl(X; q, t)W(x)) 

CT (I~-l(Xi; q)a( ~; q)bW(X) ) 

[ ,.,-b]q,t 

J11+ (4.21) = q(b+l)lql&(tfi; q, t)[qt+a+£(n_l)]q,t + . 
i 

It follows from (3.4) and Lemma 2.4 that {En}rl+=~: and {/~11}~t+=~ span the same set 
of functions. In particular, we can write 

Eu(x; q, t) : ~., c~P~n(x; q, t) 
(nln+=u+} 

for scalars ctm. Multiplying both sides of (4.21) by cur I and summing over distinct 
permutations o f p  +, we then obtain 

Proposition 4.7. For all ~(a + b + 1) > O, Iql, Itl < 1, t = q~ and r I >_ O, we have 

n X" C T  (1-Ii=1 ( i, q)a(~; q)bEn(x; q,t)W(x)) 

CT (I~n=l (xi; q)a( ~; q)bW (x) ) 

b-,-b]q,t 

= q(b+l)lrllE-q(tfi; q, t) tu Jrl+ (4.22) 
[ql+a+£(n-1)l~'t + " 

Note that by multiplying both sides of (4.22) by d'n+ (q, t)/d' n (q, t), summing over 
distinct permutations of 1( = 11 + and applying (2.35), we get back Proposition 4.7 with 
E n replaced by the symmetric Macdonald polynomial PK. 

Restraining £ to be a non-negative integer we can use Lemma 4.5 to transform 
(4.22) into a generalization of the q-Selberg integral. 

Proposition 4.8. For all ~(~1),9~(~2) ~> 0, Iql < 1, t = q~', ~, 6 Z>~ and r I >_ O, we 
have 

~=1 f l  dqxix}~-I (qxi; q)= l-[ xZ~(ql-~ xJ ; q)2L 
a O - - (q~zxi;q)=Erl(x; q,t) i<j &It t Xi 

aXl+L(n- 1)]q,t I dqxix  -* J~l+ l~l f (qxi;q)~ r r 2 L ,  t-~.xj 
= E-q (tfi; q, t) [aL~+~2+2Z(n - 1)]q,' l i t  ~q- 1 11  x~/ ~q 77.; q)2~. 

t~ J-q+ i=1 JO (q£Zxi; q)= i<j ~t 

(4.23) 

Proof Apply (4.13) to (4.22) and write 

11  ~ ~q - - ;  q)2~. 
i<j xi 

Then let ~i = - b  - ~(n - 1), ~2 = a + b + 1. | 
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The above derivation of Propositions 4.7 and 4.8 has some further consequences in 
relation to the general theory. First, it allows new derivations of the q-Morris identity 
and the q-Selberg integral. 

Proposition 4.9. [27] For all 9~(a + b + 1) > O, I ql, It[ < 1, t = q)~, and r I >_ 0 we have 

n Fq[1 + a + b + ) ~ ( i -  1)]Fq[1 +)J]  
= i ~ = i F q [ l + a + ~ , ( i ~ ) ] ~ q [ 1 - ~ - b ~ l ~ q [ l + ) q .  (4.24) 

Proof Let r I = 0 in (4.11). Using (2.15) and the evaluation [ 1,9], 

N(oE) (q, t) -- rq[~,n + 1] 
rq [~, -t- 1] n" | 

The q-Selberg integral can be evaluated as in [7] by applying Lemma 4.5 to the 
q-Morris identity and making some manipulations. 

Proposition 4.10. [2] For all 91()~1), 9l(),2) > 0 and 2~ E Z >0 

11 ~ - ' l  x)~'-i (qxi; q)= r r  2~,, 1-)~XJ , l l X i  ~q ~ ;  q)2~. i=1 J0 (q)~2Xi; q ) ~  i<j  ~i 

l~i rq[)~l + )~(i - t)]rq[)~2 + )~(i - 1)]rq[1 + ~,i] q)~7~l (~) +2L2(~) 
i=1 ?q [--~1 +-~2"~ ~--~'~ i-~'-- ~)  ] ~ ]] (4.25) 

We can use (4.25) to simplify Proposition 4.8. 

Proposit ion 4.11. For all 9l(9~1), 9l(~,2) > O, I ql < 1, t = q~, 9~ ~ z>0, and r I >_ O, we 
have 

.~=1[ 1 dqxix~, i-1 (qxi; q)~ Eq(x; q, t)l-lx2)~(q 1-~ x--~j" q)2z, 
JO - t (q)~Zxi;q)= X•  ' Xi' i< j  

II 

= qZ~, (~)+2)~z(~)E n (tfi; q, t) 1-I Fq[~,i + 1] Fq[~,l + ~(n - i) + rl +] Fq[~2 + )~(n - i)] 
i=1 Fq[~+ l ] rq[~ ' l+)~z+-~(2n-~ i~ i i~ i+i  " 

(4.26) 

This formula is a generalization of the integration formula of Kadell [ 16] and Kaneko 
[17]. The formula of [17] can be reclaimed by multiplying both sides of (4.26) by 
d'n+ (q, t)/d~n (q, t) and summing over distinct permutations of ~: = 1] + using (2.35). 

Writing En+~, 1 = x)~lEn and noting that En+X~ (tS-; q, t) --- q)~Xl (~) En( tfi',q, t), it is clear 
that (4.26) is true for all r I C Z n as tong as it is defined. 

The second consequence of the derivation of Proposition 4.8 is that it allows us to 
calculate the normalization constant u n (q, t) appearing in (3. I). 
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Proposition 4.12. [26] 

un(q, t) -- d'q(q, t) (4.27) 
dn(q,t) " 

Proof. Using (2.16), (3.5), (3.t4) and E~l(cx ) = clnlEal(x) we obtain Url(q, t) = 
d'n(q, t)/drl(q, t) for £ E Z_>o. Since both sides of this expression can be written as 
formal power series in q and t i f0 < q, t < 1, we can apply Lemma 3.6 to show that this 
result is true for all )~ > 0. I 

5. Symmetric Macdonald Polynomial Theory 

In this section we will deduce symmetric analogs of Propositions 3.1-3.5 and 4.12. This 
will be done by exploiting the relationships between the symmetric, t-antisymmetric, 
and nonsymmetric Macdonald polynomials. 

In order to deduce the analog of Proposition 3.1, we need to derive the following two 
results. The first reveals the relationship between the symmetric and t-antisymmetric 
Macdonald polynomials. 

Lemma 5.1. 

Proof Consider 

where 

n[n-ll 
S•+a(x; q, t) = t-~r"~At(x)P~:(x; q, qt ). 

xi. (qxi;q)= .1 1 , 1 )  
h(x) := I - I (  1 -  1 (qxj ,q)~ ~ P ~ ( x ;  q, qt)Px(x; 

i<j , ~j)(qtx~;q)=l " xi 'q) q qt 

is an antisymmetric polynomial. Let [n]a ! := I-I~=l [j]a. It follows from the identity 

that 

(5.1) 

(5.2) 

(5.3) 
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Applying this result twice to the left-hand side of (5.2) gives 

(At(x)P~c(x; q' qt)'At(x)PL(x; q' qt))q't = [~ ~x'! CT q" \ i < j  

[n]t-~ ! 
= ~ (P~(x; q, qt),P~.(x; q, qt))q, qt 

[nit-1 ! 
= [n]tq! (P~(x; q, qt),P~(x; q, qt))q, qt~K~,. 

The polynomials t -n(n- 1)/2At (x)P~(x; q, qt) then form an orthogonal set with respect to 
(', ")q,t. Since they also satisfy (2.33) with leading term m~+~, we obtain (5.1). | 

Lemma 5.2. We have 

u-(X)(i~<j(l-txiYj)(l-xjYi))=At(x)At_l(y ). (5.4) 

Proof It follows from (2.26) that (5.4) is equivalent to 

Atl(x)N(x)(i~<j(1-txiyj)(1-xjyi))=At_l(y), (5.5) 

where .~ is the antisymmetrization operator with respect to x. Arising out of the theory 
of the Schubert polynomials, we have the reproducing kernel (see, e.g., [23] (2.10), 
(5.15), (5.2)) 

At I (x)A (x) (f(x)C(x, z)) = f(z), (5.6) 

where C(x, z) : =  II i<j(z i  - x j) and f is any linear combination of monomials x n where 

rli < n - i for each i. Substituting f(x) := f(x, y) := y~ I-Ii<j (1 - xiyj), and z := 1/y, we 
obtain (5.5). | 

We can now give a new derivation of the symmetric analog of Proposition 3.1. 

Proposition 5.3. [24] We have 

Fl(x, y; q, t) 
1 = ~ . . ~ P ~ ( x ; q , t ) P ~ ( y ; q , t ) ,  

.3% (txiyj; q)~ 
II(x, y; q, t) := II 

i,j=l (xiYj; q)~ 

for scalars vK(q, t) independent of n. 

(5.7) 
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Proof To derive (5.7), we apply U -(x) to both sides of (3.1). On the left-hand side, 
write 

f~(x, y; q, t) = H(x, y; q, qt) H ( 1  - txiyj)(1 - xjYi). 
i<j  

Since U-  commutes with symmetric functions Lemma 5.2, we have 

U-(X) g~(x, y; q, t) = At-i (y) At(x)I'I(x, y; q, qt). (5.8) 

On the right-hand side, we use (2.34) and Lemma 5.1. This gives 

x-'*YP°(q't)Au-~,~) x P q,1 1), (5.9) At-, (y)At(x)II(x, y; q, qt) = 0L ,( ) p+_8(x; q, qt)Eo(x; 

where • denotes that the sum is restricted to p with distinct components. Now, applying 

U- (y) |t-+t-1 to both sides of (5.9), we see that At_~ (y) is replaced by [n]t !At-1 (y) on the 
left-hand side, while on the right-hand side En(x; q-i ,  t - l )  is replaced by using Lemma 
5.1. Cancelling At_~ (y)At(x) from both sides and summing over permutations of p 
which give the same ~: gives (5.7). The stability property of the symmetric Macdonald 
polynomials [24] 

PK(xl, ,Xn-l,O;q,t) ~ P(~I ..... ~,_l)(Xl,... ,Xn-1;q,t), Kn =0 ,  
. . . .  (5.10) 

( O, ~:n>0 

applied to (5.7) shows that the v~(q, t) are independent ofn. | 

Define the polynomials g~:(x; q, t) by [24] 

II(x, y; q, t) := ~g~(x;  q, t)m~:(y). 
g2 

Corollary 5.4. (of. [24, pp. 310, 311, 313]) Define an scalar product by 

<P~:(x; q, t), Pp(x; q, t))g := V,~(q, t)~u~. 

We have 

(gu(x; q, t ), m•(X) ) g = 5~  

and hence, the g~(x; q, t) are a basis for the ring of symmetric polynomials with coeffi- 
cients in Q( q, t ). 

Proof Similar to the proof of Corollary 3.2. | 

In order to proceed further with the development of the symmetric theory we require 
the following symmetrization formulas. 
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Lemma 5.5. Let'q R := (1"1 +) andfj  := fj(~l) := #{ilrli = J}. Then 

(a) Pq+(x;q,t) ~-n(n-l)/2~rfr 1 "+~ "" t), 
j = O  bl J J t -  " " 

(5.11) 

Sq+ (x; q, t) = (--t)n(n-1)/ZU-EnR(X; q, t). (5.12) 

Using the theory of the symmetric Macdonald polynomials, Baker and For- 

SO 

and so 

n~ 

i=0  c~(i) ESf i (q  ) 

Since U+x q+ is symmetric, we then have 

[Y]u+xn  + = [xn +] ~2 T~x n+ 
clc~l + =~t + 

Since T / ~ + I  = t~x~]+t, we have 

[xn+]V+x q+ = 12 /(o/, 

n~ 

i=0 

[mn+] v+x~÷ = II[:~(n)],~" 
i=0  

Hence, from Lemma 2.7, we have 

[mq+ ]U+ x ~ln = tn(n-1) /Z [mrl+ ]U + xT1 -'---'~ 

= t~/n-'~/2 I]b~i(n)]t_, ! 
j=0 

(5.13) 

(b) 

Remark. 
rester [5, (5.8), (5.18)] derived a more general formula for the constant relating to U+E~ 
and P~÷. Their expression is not in the same form as (5.11), although they can be shown 
to be equal using the first equality of (5.14). 

Proof We shall only consider (a) as the proof of (b) is similar. Since U+f is symmetric 
for all f ,  it follows from (2.3) and the triangular structure of E~R that 

U+EqR(X; q, t) = U+x fIR + 2 aumtd(x) 
p<~l + 

for scalars ap. From (2.30), we know that U+E~R is a scalar multiple ofPn+. To find the 

scalar multiple, we need to determine [mq+] U+x hR. We first determine [mn+]U+xn+. It 
follows from (2.3) that 

T~x q+ = c~xml + + y" c~,px ~, 
ulu+<~t + 
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We can now deduce the symmetric analog of Proposition 3.5. 

Propos i t ion  5.6. [24] 

Pn+ (?-; q, t) - 
t z01R) [n],-, ! enR(q,  t )  _ tz(n+ ) b~l+ (q , t) 

i-i?~o[fJ]t_l!d11R(q,t) hq+(q,t)' 

where 

h~(q, t) := H ( 1  -qan(s)tln(s)+l). 
,~'EK 

Proof Applying Lemma 5.5(a), we have 

P~I+ (tfi; q, t) - 
t-n(n-1)/2 

+ Z (roenR (x;q,t)) 
! o s° 
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(5.14) 

hq+ (q, t) d~lR (q, t) 
rr q+ fr.lt~ 11n-f°O1)[aT1 + +n - i+ 1]t" (5.18) 
l t j = O L J J J  • i=1 t Hi  

This is an easy consequence of a natural q-generalization of the argument used in [6] to 
prove the corresponding identity in the Jack polynomial theory. 

(5.16) 

(5.17) 

It suffices then to show that 

[n]t ! e~R (q, t) _ b~+ (q, t) 

I-i~+o[fj]t ! dnR (q, t) hn+ (q, t)' 

[n], ! ~ [  [fj],-i ! t l (~R) - l (~ l  + ) 

[n]t_, ! 11  [fj]t! j=0 

For the first identity, we use (2.16) and (4.9) to obtain 

enR(q, t) 1 n 
- [nlt!/__~i [arl+ + n - i +  1]t bn+(q, t )  

_ [f0(rl)] t [ n-f0(n) 
[n]t' H [ O~rl+ + n - i +  llt. 

" i = 1  

(5.15) 

Using (3.6), we obtain 

t-n(n- 1)/2+ EaeS, tl(a).Erl R 
Pll + (tfi; q, t) = I~1  It.1 11 (tfi; q, t). 

j .=OU J l t -  " 

Since t-n(n-U/2Eacs " t l(a) = Ea~s, tl(-a) = [n]t-I !, we obtain the first equality in (5.14) 
by using Proposition 3.3. 

The second equality follows immediately from the identities 
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We now turn to the second identity. Noting that ~ = t re(m-I)~2, we have [m],-I ! 

[~],_, ! [ f j ] , ~  - t - . 
j=O 

It follows from Lemma 2.1 that 

t(n R) = Z(~) + Z(q+), 

where cy is the permutation of minimum length for which rl + = G(qR). Since the mini- 
+ 

mum of such a length is l(c~) n(n 1 ) / 2 -  ~1 . = - ~,i=ofJ(fJ - 1)/2, we obtain (5.16). | 

Let N~)(q ,  t) := (P~(x; q, t), PK(x; q, t))q,t. With rl + = ~:, we 

N~)+ (q, t) _ 

N(P) (q , t )  

[nit! d'q+ (q, t) eqR(q, t) _ b~+(q, t )d'l i+(q,  t) 
ri+ -- . I-[j~o[fj]t ! drls (q' t) e'~s (q, t) hli+ (q, t)d~+ (q, t) 

(5.19) 

Proof  We have 

(U+EqR, U+EI]R)q,t = E (U+Eli R' Tc;ErlR)q,' = E (z~-lU+Erl R, gliR)q,t 
o~sn o~S~ 

~., t -1(°) (U+ EIIn, ErlR ) q,t = [nit-1 [ (U+ ETI R , Erlg ) q,t. 
oESn 

In the second equality, we use the fact that T/-1 is the adjoint operator of T/, while in the 
+ 

third equality, we use (2.23). Multiplying each side of (5) by I'I~__i01/[fj]t ![fj]t-1 ! and 
using Lemma 5.5 we obtain 

(e l i+,e~+)q, ,  tn("-~l/2[n], -1! 
: Ii + "t I (P'q+' ErlR)q,t. 

I-Ii=0 [ f j ]  . 

Using (2.35) and the orthogonality of the nonsymmetric Macdonald polynomials, we 
obtain 

\ [nJt ! d'.q+ (q, t) (Pq+, Prl+ /q,t U - -  (ExIR, E!lR)q,t. 
I-I~i i=o [f j]t ! d'liR ( q, t) 

Dividing each side by y((e)(q, t) = N(0 e) (q, t) and using Proposition 3.4, we obtain the 
equality on the right-hand side of (5.19). The second identity follows from using the 
identity (5.15). | 
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It remains to establish the analog of Proposition 3.5 and to specify the constant 
v~(q, t) appearing in Proposition 5.3. We proceed as in the derivation of Proposition 3.5 
using (5.7), (5.14), and the identity 

b~+ (~, ~ ) = t(l(n+)+l,(~+)_(n_l){q{) b~+ (q, t) 
hTl+(1 1) hll+(q,t ) " 

We obtain 

n q)~ 
1-I = r e~l+ (x; q, t). (5.20) 
i=1 (xi;q)~ ~vrl+(q,t)thl+(q,t) 

Now substituting (2.35) for Pn+ and comparing the results with (3.13), we can read off 
the value of vTl+ (q, t). 

P r o p o s i t i o n  5.8.  [26] 

vK(q, t) = d'~(q, t) 
h~:(q, t) " 

Substituting this result back into (5.20), we obtain the q-binomial theorem involving 
the symmetric Macdonald polynomials. 

Proposition 5.9. [ 17] 

h (axi; q)~ _ ~[, [a] q'' 
i=l ~ ~ 17' d!~(q, t) PK(x; q, t). (5.21) 

As an application of the above theory, we can derive the value of the constant 
7~(q, t) appearing in (2.34). 

L e m m a  5 .10 .  

y~(p+) (q, t) : ( -  1) l(~) d~(p+)(q, t) h(~) (q, qt) 
do+ (q, t) di~:) (q, qt) ' (5.22) 

where p + = K + & 

Proof Substitute (5.7) with t ~+ qt into the left-hand side of (5.9) and cancel At (x) from 
both sides. Noting that P~:(x; q, t) = P~(x, q - 1  t - l ) ,  we obtain 

qt)PK(x;q, qt)At-l(Y)P~(Y;q,~) 

,__,.~(q, t)p~ (x; 1, . = L  ~ )  () q, qt)Ep(y;q ~) (5.23) 

Using (2.35) and (5.1), we can write 

1 1 1 At_1(y)p~(y;q ~ ) _  V~I ,~l(o)dc(p+)(~,7)p. ,. 1, -- / - - ' - ' 1  ~-~+7-i-"1-~ ~GtP-~)(Y;q 1 ) .  (5.24) 
ocs, P+~,  7) 
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Substituting (5.23) into the left-hand side of  (5.23) and equating the coefficients of  
I E .1 ~ P~(y; ~, ~ )  ~(p+)(y, ~, ~), we obtain 

T~(o+) (q, t) = (-t)  l(~) u~(°+) (q' t) do(p+)(-~, 1) (5.25) v( l(q, qt) do+( l, i) 

To obtain (5.22), we simplify (5.25) using the identity 

do+(q,t)d~(p+)(~, ~) = t-l(~). 

d~(o+)(q,t)ap+(1, 1) ii 

The expression for the constant yg(n+) (q, t) in Lemma 5.10 can be simplified using 

a natural q-generalization of the argument in [6]. The simplification gives 

L e m m a  5 . 1 0  t 

• , , d',,a,+~ (q, t) 
?g(rl+)(q't) = ( -1 ) ' t ° )  ~ i  " 
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