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Abstract. We derive self-reciprocity properties for a number of polyomino generating functions, 
including several families of column-convex polygons, three-choice polygons, and staircase poly- 
gons with a staircase hole. In so doing, we establish a connection between the reciprocity results 
known to combinatorialists and the inversion relations used by physicists to solve models in sta- 
tistical mechanics. For several classes of convex polygons, the inversion (reciprocity) relation, 
augmented by certain symmetry and analyticity properties, completely determines the anisotropic 
perimeter generating function. 
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1. Introduction 

Symmetries are among the most important guiding principles in all of physics and math- 
ematics. It often happens that a problem may be solved by symmetry considerations 
alone, and even if not, understanding the symmetries of the solution can greatly reduce 
the amount of work needed to find it. Here, we study a symmetry of functions which is 
known as "self-reciprocity" in combinatorics and "inversion relations" in lattice statis- 
tical mechanics. 

Our focus will be on polyomino enumeration problems which are of interest in 
both combinatorics and physics. We shall demonstrate that one can find examples of 
functional symmetry in the resulting generating functions. 

The inversion relation rose to prominence in statistical mechanics in the early 1980s 
as the most direct path to the solution of many integrable models [2, 3,23] and was soon 
realized to be commonplace in both solved and unsolved models [2, 3, 15]. Let G(x) 
be a thermodynamic quantity which depends on a collection of parameters, x. An 
inversion relation is a functional equation 

c(x) + = v(x), (1.1) 
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where ~b and ~ are known functions of x. Typically, ¢ involves taking reciprocals of 
one or more components of x. The inversion relation tightly constrains the function 
G. For some two-dimensional models, a pair of additional conditions holds: That G is 
symmetric under exchange of horizontal and vertical, and that G is an analytic function 
of its arguments. Very often, the three constraints taken together uniquely determine 
the function G. 

In 1974, Stanley presented a general framework for reciprocity results. He estab- 
lished several powerful general conditions under which a generating function will be 
self-reciprocal [20]. The language and notation of Stanley [20,22] will be used through- 
out this paper. 

Definition 1.1. Let H(yl~... ~Yn) be a rational function in the variables Yi, with co- 
efficients" in ~ . We say that H is self-reciprocal/f there exists an n-tuple of  integers 
(1~1,-.., ~n) such that 

1 , 1 ) :  +y l ,Yn). t t 7 ,  (1.2) 

In what follows, we write y3 =_ y ~ . . .  y~n n and l / y  = ( ~ , . . . ,  1 ) .  Thus, Equation (1.2) 

may be concisely expressed as 

Note that a rational function is self-reciprocal if and only if both its numerator and 
denominator are so, and that the self-reciprocity of a polynomial amounts to a certain 
symmetry in its coefficients. Some explicit examples are given in Subsection 3.2. 

Let us now demonstrate the relationship between self-reciprocity and inversion re- 
lations. Consider the multivariable generating function 

a(x ,  y) = C(m, n)xr~ 1 .mj .,hi nk . . .x j  Yl ""Yk 

=_ ~., C(m,  n ) x m y  ~, (1.3) 

where m = (ml , . . . ,  m j), x = (x l , . . . ,  xj), and similarly for n and y. The summation is 
over (j + k)-tuples of non-negative integers representing the objects being enumerated. 
Performing the summation over n,  we re-express Equation (1.3) in terms of partial 
generating functions H ~  (y), 

G(x, y) = ~.,Hm(y)x m. (I.4) 
m 

Now suppose that the partial generating functions are self-reciprocal, 

Hm ( 1 )  = +emy3(m)Hm(y) ,  (1.5) 
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where e is a j-tuple of elements in the set { -  1, 1 } which characterizes the dependence 
of the sign on m ,  and where/3(m) depends linearly on m:  

/3(m) = A m  + a .  (1.6) 

Here, A = (ag, i)g,i is a k x j matrix of integers and a is a k-tuple of integers. We can 
then write 

G(x, y) T y -aG (exy-A,  1 )  = O, (1.7) 

r-rk - a t  i where exy  -A is the j-tuple whose ith entry is ~ixi He=I Yg ' .  This is clearly a special 
case of the inversion relation (1.1). A few comments are in order: 

* The right-hand-side of (1.7) is zero, but in the more general case, some of the partial 
generating functions, Hm (y), will fail to be self-reciprocal for certain choices of m .  
If  we are fortunate, this will be a small, finite, or otherwise controllable set of cases, 
and we will be able to compute the correction term we require to add to the fight- 
hand-side explicitly. For many examples in statistical mechanics, this correction 
term depends on x but not on y. 

• In all of the cases below, the denominators of our rational functions will be a product 
of terms (1 - y~J), which are self-reciprocal. Stanley has proved that this denomi- 
nator form always holds for certain classes of problems (see [22, Theorem 4.6.11 ]). 

,, It might be asked which of the concepts, inversion or self-reciprocity, is more gen- 
eral. On the one hand, in the derivation of (1.7), the dependence of the exponent 
t3 on m was assumed to be linear, which may not always hold, implying that reci- 
procity is more fundamental. On the other, the function ¢ occurring in (t .  1) may 
in principle be more complicated than x ~ exy  -A, y -+ 1/y. In this case, the 
partial generating functions might not he self-reciprocal. An example is provided 
in Section 2 by the Potts model, but in the polyomino examples considered in this 
paper, this situation does not arise. 

We now present a non-exhaustive list of recipes for finding and proving reciprocity 
results and inversion relations. 

1. ff  the generating function (or thermodynamic quantity) is known in a closed form, 
an inversion relation can be demonstrated directly. As an example, we treat the 
anisotropic perimeter generating function for directed convex polygons in this man- 
ner in Section 3. 

2. For statistical mechanics models which admit a formulation in terms of a family 
of commuting transfer matrices, a transformation of parameters can often be found 
which inverts the transfer matrix. The commutativity property then allows the in- 
version relation to be derived. We review this in detail in Section 2, with the two- 
dimensional, zero-field Ising model as a primary example. 
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3. In non-integrable models, the transfer matrix will still be invertibte and may suggest 
a possible inversion relation, but the required analyticity property is lacking. Nev- 
ertheless, the suggested inversion relation can often be verified by the inspection of 
the partial generating functions up to some finite order in the low-temperature ex- 
pansion (1.4). The q > 2 Potts model inversion relation discussed in Section 2 was 
derived this way in [ 12]. Some of the new results reported in the present paper were 
initially discovered by this method before being rederived by the other methods. 

4. The "Temperley methodology" [7] can be used to obtain very general reciprocity 
results for many classes of column-convex polygons. The first step is to derive 
a functional equation for the generating function which can be interpreted as the 
gluing of an additional column onto the graph. Step 2 is to show by induction 
that appending an additional column preserves self-reciprocity. This is detailed in 
Section 4. 

5. If the problem can be posed as a system of linear diophantine equations, whose 
solutions are subject to certain types of constraints, we may apply self-reciprocity 
theorems due to Stanley [20]. We have so far succeeded in applying this method 
only to families of directed polyominoes (Section 5), but it enables us to treat prob- 
lems which are impossible, or at least extremely cumbersome, by the method of 
functional equations. 

6. For combinatorial objects with a rational generating function of denominator 
Hj  ( 1 - y'~J), one can try to explain self-reciprocity, i.e., the symmetry of the numer- 
ator, by interpreting the numerator combinatorially. This has been done by F6dou 
for a family of objects related to (but distinct from) staircase polygons [10]. 

In Section 2, we review the motivation for looking at inversion relations in statistical 
mechanics and describe the methods used to obtain them. This will be useful for com- 
paring the results obtained later, and for suggesting applications and generalizations of 
the inversion relations. In Section 3, we present examples of reciprocity results and in- 
version relations for polyominoes, and summarize our main new results. The technical 
heart of the paper consists of Section 4 on the Temperley methodology, and Section 5 
on the application of Stanley's results to polyominoes. 

2. Inversion Relations in Statistical Mechanics 

The initial use of the inversion relation in statistical mechanics was the solution by 
Stroganov of certain two-dimensional vertex models on the square lattice [23]. Gen- 
eralizations of Stroganov's models were later solved by Schultz [19] using the same 
means. Shortly after Stroganov, Baxter used a similar method to solve the hard hexagon 
model [ 1 ] and recognized its broad applicability, giving the eight-vertex and Ising mod- 
els as examples [2]. Subsequently, a number of authors (e.g., [5, 17, 18]) pointed out 
that many known solutions to problems in two-dimensional statistical mechanics can 
be derived easily using the inversion relation method. 

It is noteworthy that inversion relations also hold for models that have not been 
solved. Prominent among such models are the two-dimensional Ising model in a mag- 
netic field whose inversion relation was found by Baxter [2], and the three-dimen- 
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sional Ising model and non-critical q-state Potts model, both of whose inversion rela- 
tions were found by Jaekel and Maillard [11, 12]. What generally distinguishes solved 
and unsolved models is the growth rate in the number of poles arising in the partial 
generating functions in the expansion (1.4) as a function of order. Roughly speaking, 
a more complicated pole structure implies that the number of parameters needed to 
specify a given partial generating function is greater, and makes it less likely that an 
inversion relation can completely determine all of them. Nevertheless, inversion rela- 
tions are still invaluable in the study of such problems, not least because they provide 
an independent check on series data. 

The fundamental problem of statistical mechanics is to calculate the partition func- 
tion. Here, we consider vertex models defined on a square lattice with each bond col- 
ored with one o f r  possible colors. Each lattice site makes a contribution to the energy of 
the system which depends on the colors of the adjacent bonds. This defines an r4-vertex 
model if all possible colorings are permitted. 

Stroganov computed the partition function per site in the thermodynamic limit of 
several 16- and 81-vertex models. First consider a finite lattice (on the toms) of N rows 
and M columns. The partition function can be expressed in terms of the transfer matrix 
TM as 

ZM,N = Tr [(TM) N ] (2.1) 

(see [4, 22]). Here, TM is the r M × r M matrix whose i, jth entry is the contribution to 
ZM,N of a single row of M sites connected to the row below by a set of vertical bonds 
in configuration i and to the row above by a set of vertical bonds in configuration j. It 
depends on the temperature T and on r 4 parameters specifying the vertex energies. In 
the thermodynamic limit; the partition function per site is given by 

1¢= lim (ZM,N) t / M N :  lim (~,M) I /M . (2.2) 
M,N-e~ M--+~ 

where ~,M is the largest eigenvalue of TM assumed to be non-degenerate. 
For simplicity, let us consider a family of models whose vertex energies are func- 

tions of a single parameter b. The models solved by Stroganov are integrable by virtue 
of the commutativity of the transfer matrices at different values of this parameter. This 
implies that the transfer matrix eigenvectors are common to all members of the family, 
and that the b dependence is only in the eigenvalues. For this reason, b is often called 
the spectralparameter. The key observation is that the inverse of the transfer matrix in 
these models is itself a member of the commuting family, up to a scale factor 

VM(b) ]  -1 : 'kl/(b) - M  TM (¢(b)) .  (2.3) 

Acting on the eigenvector corresponding to )~M(b) with both sides of Equation (2.3) 
yields the functional equation 

~(b)~:(O(b)) = v(b).  (2.4) 

It is the commutativity of the transfer matrices for all values of b that allows the analyti- 
cal continuation of the function *: from b to ¢(b). With knowledge of the functions g(b) 
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and ~(b) and using the analyticity of rz(b), Stroganov finds a unique solution, thereby 
reproducing Baxter's results for the symmetric 8-vertex and homogeneous ferroelectric 
models, and obtaining the result for a certain 81-vertex model [23]. 

As an illustrative example, we review here the derivation by Baxter [2] of On- 
sager's expression for the partition function of the two-dimensional, zero-field Ising 
model [16]. Let the square lattice be drawn at 45 ° to the horizontal and let J and J~ 
be the couplings between the nearest neighbors along the two lattice directions. Define 
low temperature variables 

J K I = f X = e -2K, y = e - 2 K '  with K = k ~ '  kBT (2.5) 

Transfer matrices for different choices of parameters will commute provided they have 
the same value of k = (sinh 2K sinh 2K r ) -  t. The transformation which inverts the trans- 
fer matrix is 

K --3 K + i7t/2, K' -~ -K',  (2.6) 

which does not modify the value of k. Define the reduced partition function per site by 

A(x, y) = e x p ( - K  - K')K(K, K'). (2.7) 

Then A(x, y) obeys the inversion relation 

A ( x , y ) A ( - x , ~ ) = l - x  2. (2.8) 

Note that logA(x, y) - 1/2log(1 - x  2) has an inversion relation of precisely the form 
(1.7). 

By the symmetry of the model, we have 

A(x, y) = A(y, x). (2.9) 

Inspection of the low temperature expansion leads us to conjecture the form 

P m ( Y  2) 2m 
A(x, y) = 1 + (1 -y27 .-ix 

m>l 
(2.10) 

That the coefficient of X 2m is a rational function of y2 is apparent from the nature of 
the low temperature expansion, but that the denominator has such a simple form is not 
expected on general grounds. It is presumably a consequence of the condition of com- 
muting transfer matrices. Here, we take it as a hypothesis. Then Baxter has shown that 
the inversion relation (2.8), symmetry (2.9), and the denominator form (2.10) determine 
A(x, y) completely. We present his argument in Subsection 3.4 where we use it in the 
context of polygon enumeration. 

Up till now we have been assuming integrability and, in particular, we have relied 
on the property that the transfer matrix and its inverse are both members of some one- 
parameter commuting family. What about models for which this property does not 
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hold? Since analyticity of l((b) breaks down, (2.4) in the above derivation is no longer 
valid. However, it is still possible to obtain an inversion relation by direct analysis of 
the low-temperature expansion of the partition function to some finite order. As an 
example, it was shown in [12] that the logarithm of the reduced partition function per 
site, G(x, y) = lnA(x, y), of the q-state Potts model satisfies the inversion relation 

x G ( x , y ) + G ( l + ( q - 2 ) x ' ~ )  : I n (  ( 1 - x ) ( l - - + ( q - 1 ) x ) ~  
1 + ( q -  2)x J" 

(2.11) 

When q = 2, this reduces to the Ising model inversion relation (2.8). The inversion 
relations we will be considering in the remainder of the paper are derived by analysis 
of the generating function (analogous to the low temperature expansion) and do not 
depend on the models being integrable. 

An additional new feature is seen in this Potts model example. Neglecting for the 
moment the non-zero, fight-hand-side of (2.11), which can be eliminated by a suitable 
redefinition of G(x, y), we note that when q > 2, there is no longer an order-by-order 
cancellation of the partial generating functions as defined in (1.4), but rather a cancel- 
lation of combinations of partial generating functions of different orders. However, we 
may convert to the self-reciprocal form by defining 

( x ) 
G'(x, y) = G 1 - (q -  2)x/2 '  y (2.12) 

under which the inversion relation becomes 

G'(x,y) + G' ( -x ,  ~) = ln 
1 - qex2/4 

1 - (q - 2)2x2/4" 
(2.13) 

In the cases we will look at in this paper, the partial generating functions turn out to 
be self-reciprocal in the natural variables of the problem. We have not investigated the 
existence of inversion relations involving more complicated changes of variables, 

3. Polyomino Enumeration and Self-Reciprocity 

3.1. Definitions 

The constructions we will consider are defined on the square lattice. All are defined 
only up to translation on the lattice. Starting at a lattice site and moving to one of the 
four nearest neighbors constitute a step which we may identify with the edge connecting 
the sites. A connected sequence of steps is a path or walk. If no lattice site in the path 
occurs more than once, the path is self-avoiding. If a path returns to its starting site 
in the final step, and does not intersect itself otherwise, the result is a self-avoiding 
polygon. The number of steps taken is the perimeter of the polygon and the number of 
steps taken in the vertical direction is the verticalperimeter. The horizontalperimeter is 
defined similarly. The area is the number of cells of the lattice enclosed by the polygon. 

Enumerating self-avoiding polygons according to perimeter or area is an unsolved 
problem. However, progress has been made in enumerating certain subclasses of self- 
avoiding polygons. Rectangles coincide with the rectangles of ordinary geometry whose 
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(a) Ferrers graph (b) Stack polygon (c) Stack polygon (vertical) 
(horizontal) 

=_,c  - i  - : - _ "  _ 

- -  - - I  ~ _ i ] ~ _ _  _ 
. . . . .  - i  - - - 

(d) Staircase polygon (e) Directed convex polygon (f) Convex polygon 

Figure 1: Classes of  convex polygons. 
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(a) Column-convex polygon (b) Bar-graph (c) Directed column-convex 
polygon 

Figure 2: Classes of column-convex polygons. 

vertices are lattice points and whose edges lie along lattice directions. A rectangle 
which contains a given polygon, i.e., all steps of the polygon lie inside or on the rect- 
angle, is a bounding rectangle for that polygon. The smallest such rectangle is the 
minimal bounding rectangle. A polygon whose perimeter equals that of  its minimal 
bounding rectangle is convex. I f  a convex polygon contains at least one of the comers  
of  its minimal bounding rectangle (for concreteness, say the south-west corner), then it 
is a directed convex polygon. I f  it also contains the north-east comer, it is a staircase 
polygon, so called because it is bounded above and below by two staircase-like or di- 
rected paths. On the other hand, if it contains two adjacent corners, say the southwest 
and southeast (northeast and southeast), then it is a stack polygon with horizontal (ver- 
tical) orientation. If  it contains three comers, then it is a Ferrers graph. Representative 
examples of  different classes of  convex polygons are shown in Figure 1. 

One way to obtain non-convex polygons is to relax the convexity condition along 
one direction only. A self-avoiding polygon is column-convex if the intersection of 
any vertical line with the polygon has at most two connected components. Row-convex 
polygons are similarly defined. The set of convex polygons is the intersection of the sets 
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- i- 

- L ~._ _ i,, _ 

(a) Three-choice polygon (b) Staircase polygon with 
a staircase hole 

I l l l W l l  
(c) Self-avoiding polygon 

Figure 3: Non-convex polyominoesd. 

of row- and column-convex polygons. Subclasses of column-convex polygons include 
the bar-graphs which contain the bottom edge of the minimal bounding rectangle, and 
directed column-convexpolygons whose bottom edge is a directed path. Some examples 
are shown in Figure 2. 

A second class of non-convex polygons is made up of four directed paths. A three- 
choice walk is a self-avoiding walk whose steps are taken in accordance with the three- 
choice rule which allows a step either to the left, right, or straight ahead after a vertical 
step, but forbids a right turn after a horizontal step. A polygon formed from such a walk 
is a three-choice polygon. When the walk returns to its starting point, we do not specify 
whether the next step, i.e., the first step, is a valid continuation of the walk. If it is, the 
result is a staircase polygon;if not, it is an imperfect staircase polygon (see Figure 3(a)). 
When we refer to three-choice polygons below, we include only the imperfect ones. 

A polyomino is a union of connected (sharing an edge) cells of the lattice. We 
shall consider one class of non-polygon polyominoes - -  the staircase polygons with a 
staircase hole. The outer boundary and the hole are both staircase polygons and must 
not touch at any point. An example is shown in Figure 3(b). 

3.2. Self-Reciprocity in Polyomino Enumeration 

For each of the above classes of column-convex polygons, the anisotropic perimeter 
and area generating function 

G(x,y,q)= E E E c(m,n,a)xmynqa (3.1) 
m>l n>l a>l 

is computed exactly (see [7] and references therein). Here, C(m, n, a) is the number of 
polygons of the class with 2m horizontal bonds, 2n vertical bonds, and area a. For the 
classes of convex polygons, the anisotropic perimeter generating function, G(x, y, 1), is 
an algebraic function of the fugacities, x and y, whereas the area generating function, 
G(1, 1, q), is a q-series. For classes of polygons that are only column-convex, both 
G(x, y, 1) and G(1, 1, q) [24] are algebraic, but G(x, y, q) involves q-series. A closed- 
form expression for the three-choice polygon anisotropic perimeter-area generating 
function is yet unknown, but by means of a transfer matrix technique, it can be eval- 
uated in polynomial time [9]. The isotropic perimeter generating function, G(x, x, 1), 
is known to have a logarithmic singularity [9], and is therefore not algebraic, but is 
known to be D-finite. The generating function for staircase polygons with a staircase 
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H4(q) = 

It satisfies 

hole is also not known in closed form. Its properties are expected to be similar in many 
respects to the generating function for three-choice polygons [ 13]. 

We shall be concerned with self-reciprocity properties of the generating functions, 
Hm (y, q), that count polygons of width m. We first give two examples. 

1. The area generating function for staircase polygons of width 4 is the following 
rational function [6]: 

q4 (1 + 2q + 4q 2 + 6q 3 + 7q 4 + 6q 5 + 4q 6 + 2q 7 + q8) 

(1 - q)2(1 - q2)2(1 - q3)2(I - q4) 

 4(q/ 

and is thus self-reciprocal. Observe that the numerator is not only symmetric (due 
to self-reciprocity), but also unimodal. 

2. The (half-)vertical perimeter and area generating function for column-convex poly- 
gons of width 3 is the following rational function, which can be derived from the 
general formula of [7]: 

yq3 . (y6q8 + 4y5q7 + 2y5q6 + y4q6 _ y4q4 
H3 (y, q) -- (1 - yq)4(1 - yq2)2 (1 - yq3) 

_ 4y3q5 _ 6y3q4 _ 4y3q3 _ y2q4 +y2q2 + 2yq2 + 4yq + 1). 

It satisfies 

-y--~/-/3 (Y, q) 

and hence is self-reciprocal. Again, observe the symmetry of the coefficients in the 
numerator. 

We shall generalize these results to polygons of any width. Table 1 summarizes the 
self-reciprocity properties we have established. Most of them can be proved in various 
ways. One can for instance use a closed form expression of the generating function 
(Subsection 3.3), or a functional equation that defines it (Section 4); one can also encode 
the polygons by a sequence of numbers constrained by linear diophantine equations 
and apply Stanley's general results (Section 5). We shall see that the last two methods 
allow us to introduce many additional parameters and obtain self-reciprocity results that 
significantly generalize those of Table 1. 

3.3. Self-Reciprocity via Generating Functions 

When a closed form expression for the generating function of some class of polygons 
is known, it seems natural to use it to demonstrate an inversion relation. Let us take the 
example of the anisotropic perimeter generating function for directed convex polygons, 
which is known to be [t4] 

xy 
G(x ,y ) -  ~ ,  (3.2) 



T
ab

le
 1

: 
S

u
m

m
ar

y
 o

f 
p

o
ly

o
m

in
o

 in
ve

rs
io

n 
re

la
ti

on
s.

 
o r~

 

O
 

C
la

ss
 

F
er

re
ts

 

st
ac

k 

st
ai

rc
as

e 
(S

C
) 

di
re

ct
ed

 c
on

ve
x 

co
nv

ex
 

ba
rg

ra
ph

 

di
r.

 c
ol

.-
co

nv
. 

co
lu

nm
-c

on
ve

x 

P
ic

tu
re

 

2?
 

©
 

S
el

f 
R

ec
ip

ro
ci

ty
 

H
m

(1
/y

, 
1/

q)
 =

 (
-1

)m
ym

-2
q~

H
m

(y
,q

) 

H
m

 ( 
1/

y~
 1

/q
) 

= 
--

y2
m

-3
 q

 m
2-

2m
n 

m
 (y

, q
) 

H
m

(1
/y

, 
l/

q)
 =

 -
ym

-l
H

m
(y

,q
),

 
m

 >
 2

 

H
m

(1
/y

) 
=

 -
ym

-2
H

m
(y

) 

N
o

t 
si

m
pl

e 

(-
1)

" 
N

 
r,

 
,,~

 
U

m
(1

/y
, 

1/
q)

 =
 

yq
m

 
m

~
,.

r,
"l

t 

H
m

(1
/q

) 
=

 -
(1

/q
)H

m
(q

) 

H
m

(1
/y

, 
1/

q)
 =

 -
( 

a /
yq

m
)H

m
(y

,q
) 

In
ve

rs
io

n 
R

el
at

io
n 

G
(x

,y
) 

- 
y2

G
(-

x/
y,

 
1/

y)
 =

 0
 

G
(x

,y
) 

+
 y

3G
(x

/y
 2

, l
/y

) 
=

 0
 

G
(x

,y
,q

) 
+

 y
G

(x
/y

, 
1/

y,
 1

/ q
) 

=
 -

x 

G
(x

,y
) 

+
 y

2G
(x

/y
, 

1/
y)

 =
 0

 

G
(x

,y
) 

+
 y

3G
(x

/y
, 

1/
y)

 =
 x

y 
- 

x3
y~

/3
x~

 

G
(x

,y
,q

) 
- 

yG
(-

xq
, 

I /
y,

 I
 / 

q)
 =

 0
 

G
(x

,q
) 

+
 q

G
(x

, 
1/

 q
) 

=
 0

 

G
(x

,y
,q

) 
+

 y
G

(x
q,

 1
/y

, 
l/

q)
 =

 0
 

Q
 

t~
 9 ,7
 

o t~
 

O
 

O
 

th
re

e-
ch

oi
ce

 

S
C

 w
it

h 
S

C
 h

ol
e 

N
o

t 
si

m
pl

e 

N
o

t 
si

m
pl

e 

G
(x

,y
,q

) 
+

 y
2G

(x
/y

, 
1/

y,
 1

/ q
) 

=
 k

no
w

n 

G
(x

,y
, q

) 
+

 y
2G

(x
/y

, 
1/

y,
 l

/q
) 

=
 k

no
w

n 
b..

) 
taO

 
t.,O

, 



234 M. Bousquet-M61ou et al. 

with A(x, y) = 1 - 2x - 2y - 2xy + x 2 + y  2 = (1 _y)2 [1 - x(2 + 2y - x ) / ( 1  _y)2]. Ex- 
panding this expression in x gives 

G(x, y) = E Hm(y)xm 
rn> l 

_ y . y(l  +y)  2 . y(1 +4y+y2)x 3 
-- ~ _ y X - t - ( 1 - y )  3x ~- (1 _y)5 

y(1 + 9y + 9y 2 + y3).~4 
O(xS), -+ + 

(1 _y)7 
. A ,  

which suggests that the partial generating functions, Hm(y), are self-reciprocal, and 
more precisely, that Hm(1/y) = -ym-2Hm(y). This is equivalent to the inversion rela- 
tion 

which is easily checked from the closed form of the generating function. Note that an 
explicit expression for Hm(y) is given in [61. The inversion relations for convex poly- 
gons and directed column-convex polygons may also be obtained from the expression 
of their generating function. 

The partial generating functions for directed convex polygons, counted by the area, 
are not self-reciprocal: For instance, the generating function for width 3 is 

1 + 3q + 3q 2 + 2q 3 + q4 
q3 ( (i ~_ q)-2~ _---~)2~( 1 _ q3) ) " 

However, many other classes of column-convex polygons have an inversion relation 
for the full anisotropic perimeter and area generating function. Since these generating 
functions are also known in closed form, they could be derived as above. However, 
more can be shown, namely, that there is a self-reciprocity for any parameter which is 
a linear function of the vertical heights in the graph. This very general result will be 
derived in Section 4. Likewise, the inversion relations for three-choice polygons and 
staircase polygons with a staircase hole, given in Table 1, are also special cases of more 
general formulae which will be derived in Section 5. 

3.4. Using Inversion Relations to Compute Generating Functions 

As in statistical mechanics, the inversion relation and symmetry, and some general as- 
sumptions on analyticity of the generating function, are sometimes sufficient to deter- 
mine the solution completely. In order to have an algorithm for computing a generating 
function term by term, it is necessary, but not sufficient, to have some property relating 
terms of different orders. For our purposes, this property will always be x-y symmetry. 
Thus, we restrict our attention to classes of graphs with x-y symmetry, i.e., Ferrers, stair- 
case, directed convex, convex and three-choice polygons, and staircase polygons with 
a staircase hole. Moreover, we shall only consider the anisotropic perimeter generating 
function (without area). For the former four classes, we will show that the inversion 
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relation provides sufficient additional information to compute the generating function, 
whereas for the latter two, it does not. 

The general form of the generating function is 

G(x, y) = H1 (y)x + H2 (y)x 2 +/ /3  (y)x 3 + ' " ,  (3.4) 

where the partial generating functions, Hm(y), are rational functions 

Hm(y) -  Pm(Y) (3.5) 
Din(y)' 

with Din(O) = 1. The general form of the inversion relation is 

c~ t/  ~ x  
G(x ,y )+y  G ~ y ,  ~ )  =RHS,  (3.6) 

where o~ is an integer and RHS is zero or some simple function. It is equivalent to a 
self-reciprocity relation of the form 

Hm ( ~ )  i~,mym-CXHm(y) = RHS. 

Whether the inversion relation is sufficient to compute the generating function depends 
on the value of the exponent a and on the degree of the denominator, Din(y). Direct 
proof of the denominator form can often be obtained. For Ferrers graphs, it is easily 
shown that Dm (y) = (1 -y)m. For staircase polygons, one finds Din(y) = (1 -y)2m-1. 
The same denominator form also holds for directed convex and convex polygons. For 
the three-choice polygons and staircase polygons with a staircase hole, it can be shown 
that the denominators are 

(1-y)2m-l (1  +y)2m-7, m even, 
(3.7) 

Din(y) = ( l -y )2m- l (1  +y)2m-8 m odd. 

We assume that in general we know the denominator form either empirically or by 
rigorous proof, and that D,n(y) is of degree din. 

Now we proceed inductively, following Baxter [2]. If we have already computed 
the coefficient functions, H1 (y) , . . . ,  Hm- 1 (Y), in the expansion (3.4) and if x-y symme- 
try holds, we also know the coefficients of y, y2,.. .  ,ym-1 in the expansion of G(x,y). 
In particular, we can compute the coefficients ofy, y2,...  ,ym-t in the numerator poly- 
nomial, Pro(Y). In order to obtain the unknown coefficients of Pro(Y), we must be able 
to express them in terms of the known ones by means of the inversion relation. Writ- 
ing Pm (Y) = Ek a~Y k and using Dm (1/y) = 4-y-tireD m (y), the inversion relation fixes the 
value of the combinations of coefficients, ak ± ae, with k + g = a + d m -  m. Hence, 
the determination of all the coefficients, ak, is possible if and only if the arithmetic 
condition holds: 

dm< 3 m -  oc. (3.8) 

This condition is seen to hold for all the classes of convex polygons we have looked 
at, since dm _< 2m - 1, but not for three-choice polygons or staircase polygons with a 
staircase hole, since dm "~ 4m. 
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4. Self-Reciprocity via Temperley Methodology 

We consider column-convex polygons as pairs of partially directed paths having the 
same endpoints, as indicated in Figure 4. 

Let P be a column-convex polygon of width m. For 0 < i < m, we denote by Ni 
(resp. Si) the number of north (resp. south) steps in the top path ~ at abscissa i. For 
0 < i < m, we denote by N i (resp. _Si) the number of north (resp. south) steps of the 
bottom path ~' at abscissa i. We choose the end points of the paths in such a way that 

NO = S__0 = Nm = Sm = $0 = S.~rn = 0. Note that 

m 

F.( k 
k=0 

We note that all standard statistics are linear functions of the Ni, Si, N i, and S~. For 
instance, the vertical perimeter of the polygon is 

m m 

2n = ]~(Nk + ~  +Sk +N_~) = 2 ]~ (Nk + S_k). (4.1) 
k=0 k=0 

The height of the ith column of the polygon is, for 1 < i < m, 

i-1 
h; = 

k=0 

and the area of the polygon is 

m 

a = E (m - k)(Nk + ~ -- Sk - N_k). (4.2) 
k=0 

Theorem 4.1. Let c2 be one of the following sets: Ferrers diagrams, stacks (drawn as 
in Figure 1(c)), staircase polygons, bar-graphs, column-convex polygons. Let Prn be 

m 

k 

r l  

Figure 4: A column-convex polygon. 
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the subset of P containing all polygons of width m. Let Fm be the generating function 
for polygons in the set Pro: 

Frn(~, -5, y, z_z) = E YN-SSY-- N-zs-" 
P~Pm 

Then Fm is a rational function and it is self-reciprocal: 

Fm ( 1 ,  1_, 1 , 1)=CmFm(~,-5, y ,z) ,  (4.3) 
z y 

with 
(-- 1)my_~ m-2 m - l _  

Y-------7~ !=! Yi, 

v2m-3 m-1 
IIy;z- , 

m2 '=* 
Cm= _ ~ y _ / y / ,  

' 

_ 1  

Y0Y_m 

for Ferrers graphs, 

for stacks, 

for staircase polygons (m > 2), 

for bar-graphs, 

for column-convex polygons. 

Vm+I( +I) = 
(1 - y mz_m)(1 -Yrn'Zm)Wrn(Y_m+l ) 

(1 -- y_.m+lYm) (1 -- y_m+lZ_m) (1 -- y_~llYm)(1 -- y_.~l lZrn ) 

- -  

_ - 1  Sz _ (1 --  Y_m+lZ_m)(1 ~+lm)(Ym--'Zm) 

(Y m - Y-m+ l YmZm ) Vm(Y m) @ --  

(1 - y_m+iYm) (1 - y ~ i l Y r n )  (z  m - y_.m)" 

and 

YoY__ 1 
V1 (yl)  -- 1 - y0-~Yl 

The proof of the theorem is based on the so-called Temperley approach for count- 
ing column-convex polygons [24], combined with the systematic use of formal power 
series [7]. Here, we provide only the proof for column-convex polygons, since the 
others are very similar. 

We commence by showing that the partial generating functions for column-convex 
polygons, Vm(~, -5, y, z__), can be computed inductively. 

Proposition 4.2. Let Vm(~, -5, y, z_) be the generating function for column-convex poly- 
gons of width m. Let us denote it, for the sake of simplicity, Vm(Y_.m). Then the series 
Vm(Y_m ) can be defined inductively by 
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\,HI> 0 ¢I >° . i>0 II>o/ 

Figure 5: Construction of column-convex polygon by Hadamard products. 

Proof The basic idea is build a polygon of width m + 1 by adding a new column to 
a polygon of width m [7]. It is convenient to use Hadamard products to establish the 
functional equation. 

Let F(t)  = F, fht h and R(t) = F. rht h be two formal power series in t with coefficients 
in a ring A. We denote by F(t)  63R(t) the Hadamard product of F(t)  and R(t),  evaluated 
a t t =  1: 

F(t)  ®R(t)  = ~ f h r h .  

In what follows, fh (resp. rh) will be the generating function for some column-convex 
polygons whose rightmost (resp. leftmost) column has height h, so that F(t)  63 R(t) will 
count polygons obtained by matching the rightmost column of a polygon of type F with 
the leftmost colunm of a polygon of type R. Also, R(t) will be a rational function of t. 
We shall use the following simple identity: 

1 
F(t)  63 1 - at - F(a).  

The expression for V ! (Yl) is obvious. We build a column-convex polygon of width 
m + 1 as follows: We take a polygon of width m and match its rightmost column with 
the leffmost column of a column-convex polygon of width 2. 

This is illustrated in Figure 5, which shows that 

Vm+i (Y-,n+1) = Vm(t) 63 R(t), (4.4) 

where 

R(t )  = 
tY-m+ 1 1 1 

1-ty_4n+l 1-Y_m+lYm 1-Y_~+lZm 

-t tY-m+l 1 . tY m 

1--tY~n+l 1--Y_m+lYm 1--tY_. m 

-t tY~n+l t Zm 1 + _ _  
1--tY_m+i 1--t'~m l--y4n+tZm 

tY_m+l t~m t~  
1-t~+ 1 1 - tZm 1 - t ~ ,  

is the generating function for column-convex polygons of width 2. In order to determine 
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the coefficient rh of t h in R(t), we expand R(t) in partial fractions of t: 

R(t) = :~nYmY2m+ t 
(1 - y_m+lYm) (1 - y_m+~Zm) 

(1 - y_.mZ_.m) (1 - YmZre) 1 -+ 
(1 _ y_an+lYm) (1 _ y m+l_Zm) (1 _ y_~llyan) (1 _ - I  ~ + 1  re) 1--tY-m+l 

(2m - y_~+:y_m:re) 1 -q 
(1- ~+~:m)(1--~1~:m)%--~m)1--t~m 

(Y--m --Y-m+{ ym2zm) 1 -+ 
( 1 - -  Y_m+lYm) ( 1 - -  - 1  - _ ~+lYm)( zre Y_m ) 1--tYro 

Note that Vm(O) = 0. We now combine Equation (4.4) with the above expression for 
R(t) to obtain the announced expression for Vre+l (Y-re+l)" | 

Proof of  Theorem 4,1. Induction on m using the functional equation of Proposition 4.2 
shows that the partial generating functions for column-convex polygons satisfy 

vre , : ,  y_, Y0Y_m | 

We proceed similarly for the other families. The functional equation is obtained by 
setting some of the variables Yi, Yi' zi, and :i to 0. Then an inductive argument yields 
the self-reciprocity result. 

It would be tempting to write that the self-reciprocity of Vm implies the self-recipro- 
city of, say, the generating function for staircase polygons, obtained by setting z i and 
zi to 0 in Vm. But replacing a variable by 0 in a self-reciprocal rational function might 
break the self-reciprocity: For instance, take P(Yl, Y2) = 1 + Yl + 2Y 2 + 2y2 + YlY2 + 
Y~Y2. Then 

y~lY2P(Y~,Y2), 
but P(Yl, 0) = 1 + Yl + 2y 2 is not self-reciprocal. 

However, the following simple lemma gives a useful stability property of self- 
reciprocal rational functions. 

L e m m a  4.3. Let F(y: , . . .  ,Yn) be a self-reciptvcal rational function. Let A be an m x n 
integer matrix. Let u = (ul, . . .  ,urn), and define u A to be the n-tuple whose ith coor- 
dinate is 1-Iku~ ki. Then the series G(u) = F(uA), if defined, is self-reciprocal in the 
variables ui. More precisel); if F( I / y )  = ±yt3F(y),  then G(1/u)  = ±uA~G(u) .  

From Theorem 4.1 and Lemma 4.3, we immediately deduce 

Corollary 4.4. For any of the sets (P listed in Theorem 4.1, and any statistics on column- 
convex polygons that can be expressed as linear functions of the quantities N, S, N__, S_, 
the generating function for polygons in the set Pm according to these statistics is a 
self-reciprocal rational function. 
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This corollary allows us to complete the top part of Table 1. Let us, for instance, 
derive the inversion relation satisfied by the tri-variate generating function G(x, y, q) for 
column-convex polygons, taking into account the usual parameters of interest: horizon- 
tal and vertical half-perimeters (variables x and y), and area (variable q). 

Equations (4.1) and (4.2) express the vertical perimeter and the area in terms of 
the quantities N, N, S, and S_. They imply that the (half-) vertical perimeter and area 
generating function, Hm(y, q), for column-convex polygons of width m is 

Hm (y, q) = Vm (N, S, N, S), 

where y~ = ~ = yqm-k and Y-k = 2k = q-(m-k). Theorem 4.1 then gives 

-yqmHm(y, q), 

which implies 

G(x, y, q) + yG (xq, ) , ~ ) = O. (4.5) 

Note that in the first two self-reciprocity relations of Table 1, the exponent of q 
depends quadratically on the width. For this reason, they only yield an inversion relation 
f o r q =  1. 

5. Self-Reciprocity via Stanley's General Results 

5.1. Linear Homogeneous Diophantine Systems 

Stanley has analyzed the situation where the objects to be counted correspond to inte- 
ger solutions of a system of linear equations with integer coefficients (linear diophan- 
tine system) subject to a set of constraints. He has established certain conditions under 
which reciprocity relations will hold between two combinatorial problems defined by 
the same linear diophantine system but by different sets of constraints, and also condi- 
tions under which the solution to a given problem will be self-reciprocal [20, 22]. 

Consider the linear homogeneous diophantine system (LItD-system), 

• ~ = 0 (5.1) 

in the unknowns a = (o~1, . . .  , o~s )  with qb a matrix of integers having p rows and s 
columns, and 0 a p-tuple of zeros. The corank ~: of the system is defined to be s - 
rank(qb). For a linearly independent system, ~: = s -  p. Let S be a set of integer solutions 
to Equation (5.1). We define the generating function, S(y), as the formal power series 

s ( y )  = u s ,  (5.2) 
o:CS 

where y = (Yl,... ,Ys) is a vector of fugacities associated with the unknowns in Equa- 
tion (5.1). 
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In our applications, we find two types of constraints on the unknowns, c~j. Cer- 
tain unknowns, ctj, are required to be strictly positive while the rest are required to be 
non-negative. Conveniently, precisely these kinds of constraints have been treated by 
Stanley. Let the unknowns be cz = ('7, 6) -= "7 ® 6, where "7 is an n-tuple and t~ is an 
(s - n)-tuple. Likewise, let y = (u, v). In what follows, the notation, t~ > 0, means that 
all coordinates of 6 are positive, 

Proposition 5.1. Let E be the set of integer solutions, ('7, 6), to a linear homogeneous 
diophantine system of corank r~ such that'7 > 0 and 6 > O. Let E be the set of solutions 
to the same system with "7 > 0 and 6 > O. If the system has an integer solution, ('7, 6), 
such that "7 > 0 and 6 < O, then E(u, v) and -E(u, v) are rational functions obeying 
the reciprocity relation 

-~(u, v)= (-t)'~e (~, l ) . (5.3) 

Proof See Proposition 8.3 of [20]. | 

Proposition 5.1 can be specialized to obtain a self-reciprocity condition, which will 
be our main tool in the derivations to follow. 

Corollary 5.2. A sufficient condition for the function E(u, v) to be self-reciprocal is 
that the linear homogeneous diophantine system has the solution ('7, 6) = (1, -1) .  In 
this case, 

u 1 

E ( 1 , 1 )  =(-1)~-~-fE(u,v). (5.4) 

Proof Since the solution (1, - 1 )  satisfies the conditions of Proposition 5.1, the reci- 
procity result (5.3) holds. The result follows immediately from the shift ('7, 6) -+ 
('7 + 1, 6 - 1) which establishes a bijection between the sets E and E. | 

Since the conditions of the corollary are sufficient but not necessary, it is often pos- 
sible to find a perfectly valid LHD-system describing a given self-reciprocal generating 
function, E(u, v), which does not admit the solution (1, -1 ) .  Hence, we are faced with 
the problem of finding a suitable LHD-system which satisfies the corollary. A useful 
heuristic is to start with an LHD-system in many unknowns, and selectively eliminate 
those unknowns whose constraints are not independent of the constraints on the other 
unknowns. In all the cases we will consider, the resulting system will satisfy the con- 
ditions of Corollary 5.2. We do not justify this heuristic here. Stanley [21] develops a 
more comprehensive theory which overcomes these difficulties, and which additionally 
gives "correction" terms for systems in which self-reciprocity fails to hold. We have 
not yet explored the ramifications of this theory. 

Before applying the above result to staircase polygons with a staircase hole or to 
three-choice polygons, we use it to derive the reciprocity relation for ordinary staircase 
polygons of width 3. This will serve to illustrate all the basic ingredients of the method. 
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J M~ 

Figure 6: Staircase polygon of width three. 

Example 5.3. Staircase polygons of width 3 can be characterized by heights N1, N2, 
N 1, N 2, M0, MI, M2, and M3, as shown in Figure 6. Decomposing the polygon into 
three columns, and imposing the condition that each column be as high on the left as it 
is on the right, we obtain the linear homogeneous diophantine system 

M0 - M1 - N1 = 0, (5.5) 

M1 + N1 - M2 - N 2 ---- 0, (5.6) 

M2 + N2 - M3 = 0. (5.7) 

All heights must be non-negative, but the self-avoidance condition additionally requires 
that the Mj be positive. The constraints M0 > 0 and M3 > 0 are actually redundant, 
since they follow from Equations (5.5) and (5.7) and the constraints on the remaining 
unknowns, namely, 

NI,N2, N1,N2>0, 

mi,  M2 > 0. (5.8) 

Since the constraints on M0 and M3 play no role in the solution, we are free to eliminate 
these unknowns, and it is necessary to do so in order to apply Corollary 5.2. We are left 
with the single Equation (5.6) in the six independent unknowns 3' = (N1, N2, NI,  N2) 
and 6 = (M1, M2). Let us associate to the unknown Ni (rcsp. N i, M i )  the fugacity Yi 
(resp. Y-i' zi). 

Let E'  be the set of solutions to Equation (5.6) subject to the the constraints 3" > 0 
and d > 0. Since ~, = 1, 6 = - 1  is a solution to Equation (5.6), Corollary 5.2 tells us 
that U ( ~ ,  y_, z) is self-reciprocal, 

E' 1 YlY2YlY2 E " -  
, , - - - ~ y ,  y , z ) .  ( 5 . 9 )  

Y ZlZ2 - -  

Equations (5.5) and (5.7) imply that to account for the dependent parameters M0 
and M3, we make the substitutions zl -+ zozl, Yl "-+ z°Y-I' z2 --+ z2z3, and Y2 --+ z3Y2. 
Applying Lemma 4.3, we obtain for the set E of non-negative solutions to (5.5)-(5.7) 
such that M > 0: 

1 YlY2YlY_2E(~ ' 
E , , - y , z ) .  (5.10) 

Y ZlZ2 - -  
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Note that reintroducing the dependent unknowns has not changed the constant fac- 
tor. This feature also holds in the more complicated models we will look at. The 
result (5.10) may be verified by inspection of the explicit expression for the generating 
function 

E(~, u__, z )  = 
zozlz2z3(1-ylzozlz2Z3Y2) 

(1-zoYl)(1-zoZlYz)(1-yly2)(1-ZOZlZzZ3)(1-YlZ2Z3)(1-yzZ3)" 

5.2. Applications 

We now apply the methods of Subsection 5.1 to staircase polygons with a staircase 
hole and to three-choice polygons. All the essential steps have already been seen in the 
derivation of the reciprocity result for staircase polygons of width 3. They are 

t. set up a linear homogeneous diophantine system by decomposing the polyomino 
into width 1 rectangles and imposing the condition that the left and right sides of 
each rectangle have equal height. 

2. sort the unknowns into three classes, % ~ and ~r, according to whether they are 
constrained to be non-negative or positive, or constrained by conditions on the other 
unknowns. 

3. use Gaussian elimination to remove the unknowns in "r. 
4. verify that the resulting system is solved by setting all members of'7 equal to 1 and 

all members of 6 equal to - 1 .  Apply Corollary 5.2 to obtain the self-reciprocity 
result for the reduced system. 

5. reintroduce the unknowns in the set "r by means of Lelmna 4.3. 

We can define three widths for a staircase polygon with a staircase hole: the distance 
from the left edge of the figure to the left edge of the hole, k, the distance from the left 
edge of the figure to the right edge of the hole, g, and the width of the entire figure, m. 
Note that 0 < k < g < m. Recall that for staircase polygons, the figures of width 1 were 
an exceptional case which did not obey the same reciprocity result as the general case. 
The staircase polygons with a hole of width 1 are also an exceptional case, which we 
must exclude. We thus impose the additional condition g - k > 1. A figure with given 
k, t, and m is specified by the following dimensions, as shown in Figure 7(a), 

1. heights Nj and Nj of the lower and upper perimeter segments of the polygon, 1 _< 
j<_m-1, 

2. interior heights Mj to the left and right of, and within, the hole, 0 _< j _< m, 
3. heights H__j and Hj of the lower and upper perimeter segments of the hole, k + 1 _< 

j ___~- 1, 
4. interior heights Mj and Mj below and above the hole, k _< j _ g. 

Three-choice polygons can be regarded as staircase polygons with a hole which 
does not close. The width k has the same meaning as above, g denotes the ultimate 
horizontal extent of the branch of the figure above the hole, and m denotes the ultimate 
horizontal extent of the branch below the hole. Note that ~ _> k and m > k. Again, an 
exceptional case, m = k + 1, must be excluded. Hence, we impose the restriction m > 
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~s 
m7 

4 

_Ms 

N~ 

m0 

(a) Staircase polygon ~,,ith staircase hole, {b) Three-choice polygon, 
(E G, H) = (3, 5, 7) (E G, H) = (2, 6, 5) 

Figure 7: Labels for polyomino vertical heights. 

k + 1. The labeling of the vertical dimensions, with a few obvious modifications, follows 
the pattern of staircase polygons with a staircase hole and is shown in Figure 7(b). In 
particular, the heights Mj within the hole are defined only for j < min(g, m). When 

= k, the unknowns Mj and Hj do not appear. This special case is treated separately. 
As in the case of column-convex polygons, the standard statistics are linear in these 

heights. The (half-) vertical perimeter for staircase polygons with a staircase hole is 
given by 

m- i g- I  

n = M o +  E 
j = l  j=k+l  

(5.11) 

and the area is given by 

k-1 

a = Mo+ E(Mj+ j)+ 
]=1 

g g-i 

E (Nj+M__j)+ E(-Mj+Nj)  
j=k+l j=k 

m - I  

q- E (NJ +Mj)+Mm" 
j= /+1  

(5.12) 

In what follows, we associate the fugacities Yi (resp. Y-i' ~i, wi, zi, Zi, Z_ i) to the unknowns 

Ni (resp. N i, Hi, H__ i, Mi, Mi, mi). 
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Proposition 5.4. Let Ek, e,m(~, y,  ~ ,  w_, z,  -g, z )  be the generating function for stair- 
case polygons with a staircase hole, where k, g, and m are the widths defined above. 
Then if g - k > 1, the generating function Ek, g,m(9, Y, ~ ,  w_w_, z ,  -g, z__) is self-recip~vcal, 

( 1  1 , 1 1 1 1  1 )  
E~,g,m ' ~1 ~ '  w '  z '  -5' 

m-I - g-I W w zkzgl-lj=l (YjYj)I-Ij=k+I( j_ j )  ~ , -  
= ~ Lk,g,miy, y, ~ ,  W_W_, Z, -2, Z). 

llj= 1 Zj 1 [j=k+l Zj llj=k Zj 
(5.13) 

Proof The linear homogeneous diophantine system is the union of five sets of equations 
which we label L1-Ls. The regions to the left and right of the hole give L1 and L2, the 
regions below and above the hole give L3 and L4, and the inside of the hole gives L5: 

L2= { 

L3= { 

L4= { 

L 5 =  { 

Mo-MI-~I =0, 
M j + N j - M j + I - N j +  1 =0, 
i~_~ +Nk-1 -Mk - i ~  -M_M_~ - ~  = O, 

M _ _ ~ + M g + M g + N g - M g + I  -N~+I =0, 
Mj+Nj-Mj+~-N_j+~ =0, 

Mm-l +'Nm-l - Mm = O, 

MM_k - M_M_k+ 1 - N-~k + 1 = O, 

M j + H j - M j +  1 -Nj+I  =0,  

M j + N j - M j + I  - H j + I  = O, 

Me-1 +Ng-I - M e  = O, 

Mk - Mk+l -- H___k+l = 0, 

Mj+-Hj-Mj+I-H___j+ 1 =0,  

M~< + ~ , _ ~ - M e  = O. 

~ r  l ~ j ~ k - 2 ,  

for g + l < _ j < m - 2 ,  

for k + l  < j < e - 1 ,  

for k < _ j < g - 2 ,  

for k + l  < j < g - 2 ,  

All heights of course are non-negative. Self-avoidance imposes the additional constraint 
that the heights denoted by Mj, M j, and Mj are positive. The set r ,  defined in step 2 
above, contains six unknowns whose constraints are not independent which we elimi- 
nate as follows: M0 using the first equation of L1, Mm using the last equation of L2, M__M& 
using the first equation of L3, Me using the last equation of L4, and Mk and Me using 
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the first and last equations of L5. The resulting system is 

l 
M j + N j - M j + I - N j +  1 = 0 ,  f o r l  < j < _ k - 2 ,  

L] = Mk-1 +Nk-1 -M--k-Mk+l - H___k+i -M__~+I -N~+  1 - N ~  = 0, 

. . . .  
+Me-1 +Hi-1 +Mr-1 + Ng-1 + Ng - Mt+l - N~+I = O, 

L~ = M j + N j - M j + I - N J + I = O '  f o r g +  1 < j < _ m - 2 ,  

U 3 = {M_j+Hj -M_j+I -Nj+  I = 0 ,  f o r k + l  <_j<_g-1, 

L~4 = { ' M j + N j - M j + I - H j + I  = 0 ,  f o r k _ j < £ - 2 ,  

L~ = { M j + - H j - M j + I - H j + I = O  , f o r k + l  < j < / ~ - 2 .  

The substitutions N j, N j, H j, H___j "= 1, and M j, M j, M_M_j = - 1 solve this new system 
of equations. One should note that when k = I or m - g = 1, the system is somewhat 
modified, but one may check that the solution still holds. Therefore, we may apply 
Corollary 5.2 to obtain a self-reciprocity condition on the generating function for the 
solutions of LJjL} subject to the positivite constraints on the heights. Making appro- 
priate substitutions to restore the unknowns in set % and using Lemma 4.3, we obtain 
Equation (5.13). II 

We now treat three-choice polygons. 

Proposition 5.5. Let Ek, g,m(y, y_, ~ ,  W___, Z, -Z, 2;) be the generating function for three- 
choice polygons where k, g and m are the widths defined above. Then if m - k > 1, 
the generating function Ek, e,m (Y, Y, w,  w__, z, -~, z_) satisfies a self-reciprocity condition 
which, when g = k, takes the form 

(; Ek'k'm ' y__ ~ '  ~ '  Z '  N' 

~'~m-1 .,-~m-1 
I-I~21 Y: llj= l Z: i lj=k+ i wj 

= ._.~ ,__,,~,_ ~ Ek,k,m(~, Y, ~ ,  w_w_, z ,  ~,  z__), 
l l j = l  Zj 1 l j=k+l ~j 

and, when g > k, takes the form 

(1,1,,11) 
Ek, t,m ' ~1 ~ '  ~_W' Z' -Z' 

Z r-rg-1- r ,m- I  T-~g-1 ~ r"rm-1 
k I t  j=  1 Yj 11)=1 Yj llj=k+ 1 J l l j=k+  1 W j Ek,g,m(Y, Y, W, ~-~-, Z, -Z, Z_). 

I-[ min(g'm-1) Z' Fig-1 z 'F l rn - I  Z 
j= l  Jxl.i=k Jl l j=k+l-j  

Proof It is simpler to treat the two cases g = k and g > k separately. The proofs follow 
very closely that of Proposition 5.4. II 
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As for column-convex polygons, the two propositions above may be extended to 
other statistics. 

Corollary 5.6. Let P be either of the sets staircase polygons with a staircase hole or 
three-choice polygons. Let P~,Xm be the subset of  figures in P with the widths k, g, and 
m defined as above. Then the generating function in PXe,m according to any statistics 
linear in the quantities N, N__, H, ~ M, M, M_M_, is a self-reciprocal rational function 
(assuming g - k > 1 for staircase polygons with a staircase hole and m - k > 1 for 
three-choice polygons). 

The half-horizontal perimeter for either of the sets P is given by m + g - k. Us- 
ing this in combination with Corollary 5.6, (5.1 I), and (5.12), we obtain the inversion 
relations specialized to horizontal and vertical perimeter, and area, which are listed in 
Table 1. The exceptionaI cases ( g -  k = 1 and m - k = t, respectively) can be computed 
explicitly by the methods of [7]. 

6. Discussion 

Each of the methods we have discussed for obtaining reciprocity or inversion relations 
has its own particular uses. For example, the method of Stroganov is suitable for lat- 
tice models in statistical mechanics which are characterized by a family of commuting 
transfer matrices. The Temperley methodology is mainly applicable to families of poly- 
gons that are column-convex or nearly so. Stanley's method for obtaining reciprocity 
results applies to any problem defined by a system of linear homogeneous diophantine 
(LHD) equations, but the solutions to this system must be constrained by a system of 
simple inequalities of a certain form. 

It is probable that, for many lattice models in statistical mechanics, the low tem- 
perature expansion can be framed as an LHD-system. However, most are likely to 
require more general types of constraints than the simple inequalities of the directed 
polyomino problems we have considered. Likewise, the non-directed polygon prob- 
lems that we have successfully treated using the Temperley methodology can be recast 
as LHD-systems with more complex constraints. How to handle such constraints is a 
worthy problem for future investigation. 

In recent work [8] this statistical mechanical language has been adapted for the 
enumeration of lattice paths, and may be applied to polyomino problems as well. It is 
intriguing to speculate that the inversion relations found here may be connected with 
this approach. 

We have not searched for inversion relations for any polyomino problem in vari- 
ables other than the natural variables for the problem. Yet the example of the Potts 
model demonstrates that such inversion relations may exist. It is also possible that sym- 
metries in addition to the ones presented here can be found for some problems. It is our 
hope that such additional symmetries might lead to the solution of currently intractable 
problems. 

For the moment, we remark that the search for inversion and symmetry relations 
appears to provide a new method to tackle certain combinatorial problems. The degree 
of applicability of this method is still unclear. 
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