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Abstract. A set of conditions for the reasonableness of space-time is proposed 
and investigated. Using these, together with strong causality and an as- 
sumption of genericness, it is shown that future timelike or null geodesically 
incomplete space-times contain either curvature or intermediate singularities, 
or primordial singularities. 

1. What is a Reasonable Space-Time ? 

One would like to find acceptable physical grounds for excluding many of the 
"pathological" spacetimes that can be constructed as counter-examples to seeming- 
ly plausible conjectures. For instance, it might be thought that gravitational 
collapse would inevitably lead to a curvature or intermediate singularity [1]; 
it would, however, be mathematically possible for space-time simply to come to 
an end before any predicted singularity formed. To prevent this, I shall propose 
two physical conditions that space-time should satisfy. One (maximality) asserts 
that space-time does not arbitrarily stop; the other (hole-freeness) asserts that 
predictions, and perhaps retrodictions, made on the basis of formally adequate 
Cauchy data are not falsified by the spontaneous appearance of uncaused 
singularities. 

A further condition, rather weaker than the Hausdorff conditions, requires 
that a non-quantum space-time (excluding the Wheeler-Everett picture) does not 
undergo arbitrary branching. This leads to the concept of a Hajicek space-time 
[2, 3-1. 

In what follows "smooth" denotes some fixed sufficiently strong differentiability 
condition on the metric. "Singularity" is used in the sense of Schmidt [7]. 

Definition 1. A Hajicek space-time (or simply: a space-time) is a pair (M,g); 
where M is a connected C °~ 4-manifold, not necessarily Hausdotff g is a smooth 
pseudo-Riemannian metric on M of signature ( -  + + +), and M has the Hajicek 
property: there exists no pair of curves ci :(0, 1 ] ~ M  (i= 1, 2)for which c1[(0, g)= 
c2t(0, g) but cl(g)~cE(g) for some gE(0, 1]. 
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Scholium. Such a pair {c~} constitute what Hajicek [2] calls "a bifurcate curve": 
that is, a curve which branches, not by splitting within an ordinary Hausdorff 
manifold [when c1(9)=c2(g)], but by participating in a branching of the whole 
space-time. If the c~ were past-directed timelike curves they would correspond to 
a pair of observes who persued a common path cit(0, g) on a future segment of 
their world-lines, but who might totally disagree on what the universe had been 
doing when they compared notes about their past segments c~l[O, t]. In a Hajicek 
space-time the universe is allowed to branch providing it does not thereby bifurcate 
any curves. As is well known (Lemma 1 and Theorem 2), this imposes a strong 
control on any branching. 

Definition 2. A space-time is maximal if it is not isometric to a proper subspace 
of any other space-time. 

Schotium. The class of maximal space-times excludes all those which are obtained 
by "cutting out" a closed set. 

Definition 3. A space-time is hole-free 1 if, for any spacelike submanifotd S (without 
boundary), the domain of dependence 2 D(S) has the property that there is no isometry 

:D(S)~N into another space-time for which D(dp(S))+ dp(D(S)). 

Scholium. This excludes examples such as the following. Let M be the universal 
covering space of Minkowski space with the 2-plane {t=0, x=0} removed. This 
is maximal but not hole-free, since D({t = - 1 }) (on any sheet of M) is "punctured" 
by the singularity at t = x = 0  and its image under the natural map ~b into 
Minkowski space is properly contained in D(~b({t=- 1})), which is the whole 
space. By using D, rather than D +, the definition is made symmetric between 
retrodiction and prediction. This avoids the problem of having to determine 
what the appropriate "arrow of time" is either for M or for each S separately; 
but it has the possible drawback that examples such as the space-time in [6], 
where the singularity leaves no trace behind it, are not hole-free. 

Theorem i. Any space-time has a maximal extension. 

This theorem is false for a non-Hausdorff space-time without the Hajicek 
condition, since there is then no limit to the extent to which additional branches 
can be grafted onto the space-time. We have, however the following: 

Lemma 1. A Hajicek space-time is second-countable. 

Proof of Lemma. As with the corresponding theorem for Hausdorff space-times, 
we can proceed via the bundle L(M) of all frames on M (either pseudo-orthonormal 
or linear), showing first that L(M) is Hausdorff (compare [33). 

1. There are no bifurcate curves in L(M). For let {cl, c2} (c~ :(0, 1]~L(M)) be 
a pair with c~l(O,g)=cal(O,g). Then n ocl[(O, g)=7~oc2[(0, g) [where n:I_,(M)~M 
is the canonical projection] and so, by the Hajicek property on M, nq(g)= 
nc2(g)=x, say. Since both Of n oq (i=1,2) are continuous, for any coordinate 
neighbourhood U of x there will be numbers hi, h2 with n oci](hi, g] mapping 
into U. So cil(hi, g] maps into n-1 U, which is Hausdorff. Hence cl(g)= c2(g). 

t I am indebted to J. Earman and N. Woodhouse  for this definition (private communications)  
2 The definition of  D(S) is as in [5], p. 201, except that  I do not  require S to be closed 
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2. L(M) has a (positive definite) Riemannian metric 0 [7]. Let p, q~L(M) and 
choose convex normal neighbourhoods P, Q of each with respect to 9. For  any 
choice of P, either there is a 0-geodesic in Q ending at q which intersects P at 
points arbitrarily close to q, or else there is a least distance from q at which these 
geodesics intersect P and so, shrinking Q within this distance, p and q are Haus- 
dorff-separated. So suppose the first possibility occurs. Take P, P' to be balls of 
radius e, e/2 respectively in some normal  coordinate neighbourhood and let 7 be a 
geodesic to q intersecting P '  arbitrarily close to q. Consider a point r on 7, distant 
less than e/4 from q along the geodesic, and lying in P'. Either r =  q, or, since the 
intersection of the point set 7 with P is open in 7, there is a positively-directed 
segment of 7 from r lying in P. This must terminate in P", the ball of radius 3e/4, 
since its length is less than e/4; and, since curves - in particular, geodes ics-  cannot 
bifurcate, it must have q as its endpoint in P"C P. Thus q e P, for all e. Hence 
q = p. So L(M) is Hausdorff. 

3. We can now implement a well-known proof  ([7] p. 278) of second- 
countability for Hausdorff  space-times. L(M), as a Hausdorff  connected Rieman- 
nian manifold, is second-countable ([4], p. 271) and has a countable dense set. 
This set projects to one in M whose second-countability then follows. 

Proof of Theorem 1. We shall construct a maximal increasing chain of space- 
times whose "union" is to be the required maximal space. The construction fails 
in the general, non-Hajicek case because there are then "too many" space-times: 
I shall show that the class W of Hajicek space-times can be realized as a set, and 
is not only a class as in the general case. To represent ~"  in concrete terms a so as 
to be able to apply set theory rigorously, note that any M E W  can, by Lemma 1, 
be specified by giving (i) a countable atlas {(Ui, ~bi)[i=l, 2 . . . .  } where, for sim- 
plicity, we may take the q~'s to be onto IR4; (ii) the transition functions ~pu= 
q~i~b~ -1 :IR4~IR4; (iii) the metric coefficients ~,,,,7 (i) in each Ui. Then call J the set 

of all such specifications (ii) and (iii): that is, a member  of J is a space-time which 
is concretely given as a countable collection of maps ~Pu and coefficients ,¢i) 
satisfying the usual metric conditions and transformation properties. 

Since any M e W  is isometric to a concrete realisation in J ,  it is now sufficient 
to prove maximality in J .  The problem is that the only natural inclusion of the 
elements of J as defined above depends on the numbering of the maps ~0u, and is 
not purely geometrical: We therefore must put in the inclusion maps. (Geroch 
[10] avoided this by taking the collection of all framed Hausdorff  space-times, 
with geometrical inclusions. But this begs the question of whether or not this 
collection is a set or a proper  class.) 

We circumvent the difficulty by defining a nest to be a collection {M~, X~la, fie I ;  
~<  r}  where I is a well-ordered index set, M~s J and X~p:M~M~ are isometries 
satisfying Z~X~p=Z~.~ ( e < f l < ? ) .  Nests on o¢ are clearly partially ordered by 

a The basic difficulty stems from the fact that a space-time is usually defined in terms of its internal 
properties and not in terms of a specific construction within set theory. Consequently the class of all 
space-times with a given property contains a huge number of isometric realisations that differ only 
in their incidental characteristics: An equivalence class of isometric space-times is then too big to be 
a set, and one cannot talk about "the set of equivalence classes". Either one postulates that there 
exists a set of spacetimes, within which one works (which begs the question); or, as here, one refers 
to some concrete construction in terms of classes of numerical functions which can be shown to be sets 
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inclusions and so we can apply the Kuratowski Lemma ([11], p. 33) to deduce 
the existence of a maximal nest containing any M ~ J .  

Now a maximal nest {M~, )~,~} allows one to define the inductive limit M* 
([12], p. 255; nests must be ordered inversely by inclusion to apply this definition 
verbatim). The natural maps M ~  M* clearly define a unique space-time structure 
on M*, and it is immediate that M* is indeed a required maximal space-time. 

It is false that any hole-free space-time has a maximal hole-free extension: 
there may be "latent holes" that are revealed by extending. For example, the 
metric 

ds 2 = ~,~2(_ dt 2 + dx 2 + dy2 + dz 2) 

on the part of R 4 where t<2r  ( r2=xZ+y2+z  2) is not hole-free for 

~2 (1 ( t<r)  
=~secn( t /r -  1)/2 (r< t<2r)  

because the singularity at the origin arises with no prior warning. However, if 
we take only the part of R 4 where, in addition to t<2r, we have 1/2(0+rc) 2 < r <  
1/202, X=COS0, y=sinO with - o e  < 0 <  0% then the resulting space-time is hole- 
free and has no hole-free maximal extension. There would seem to be no reason 
why this space-time should not be modified to make it a solution of the vacuum 
Einstein equations, so that nothing would be gained by modifying the definition 
of"hole-free" to make the domain of dependence a solution to the corresponding 
Cauchy problem. 

The power of the Hajicek condition is shown by the following: 

Theorem 2. A strongly causal space-time is Hausdorff This is a slight strengthening 
of the result of [2], and so we provide a new proof. 

Proof. Suppose p, qEM are not Hausdorff separated, i.e. any pair of neighbour- 
hoods of p, q intersect. As in the proof of Lemma 1, for any neighbourhood P 
of p, there is at least one geodesic 7 to q which intersects P infinitely often, and 
which therefore has an accumulation point p 'e /~ If ~ is a horizontal lift of 7 to 
the bundle L(M) of pseudo-orthonormal frames, then, since this bundle is Haus- 
dorff, ~ has no accumulation point in n-l(p,): i.e. there is a sequence {xi} of points 
on ~ such that rc(xi)~ p' but {xi} has no limit point in n-a(p,). 

We can now obtain a contradiction to strong causality by showing the existence 
of a timelike curve 7' with properties similar to 7; this 7' is chosen so as to stay 
"near" 7, both as seen from p' and as seen from q, The viewpoint ofp' is investigated 
by examining the behaviour of the frame-curve ~, as it goes repeatedly past 7r- lp,. 

In a coordinate neighbourhood of p' define a local cross-section a of L(M), 
so that xl = llanxi for a sequence of Lorentz transformations 1~. Write 1~ =rib~r' i, 
where ri, r'~SO(3), bl is a boost along the x-axis with velocity v~ and, by choice 
of a subsequence of the xi, r ~ r ,  r '~r '  and vi~oo. Let ( e R  4 be the null vector 
(t, 1,0,0) for which fl(bill~oo. 

Let X~ be the tangent vector to 7 at rcx~ and write X~ = ~Uel, = ~"(l~anx~),, where 
(eio, eil, e~2, ei3)=xi and # is a tetrad-component index. Since "2 traverses any 
neighbourhood of p' infinitely often in finite proper time we must have II~l,]}-~ oe, 
i.e. II(~ri)bill--* o0. 
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Now, either (i) (~r)o=(¢r)l =0, or else (ii) the geodesics from rcxz with initial 
tangent vector +(~r71)~% (for an appropriate choice of sign) intersect the null 
cone through q in a sequence of points which tend to p'. In case (ii) we may, without 
loss of generality, assume that the " - "  sign holds and that the geodesics intersect 
the past null cone. By construction the a-components of their tangent vectors are 
bounded. Hence we can find a sequence of points on these geodesics which form 
a timelike chain tending to q and lying in a neighbourhood of p': joining these 
gives the required timelike curve. On the other hand, in case (i) this sequence of 
geodesics allows one to construct a rectifiable space-like curve, which can then 
be treated in the same way as ~: it will automatically yield case (ii), and a timelike 
curve to q is again obtained. [] 

2. The Existence of Curvature Singularities 

In the preceding section the proofs assumed that 9 was at least C 3-, so that 
geodesics could be defined in L(M) in the usual way. In fact this is unnecessary, 
since rectifiable curves could easily have been used instead of geodesics, and only 
some reasonably well-behaved measure of distance on such curves was needed. 
Indeed, the results still hold if the differentiability is lowered to the condition used 
in [1], where the metric is Lipshitz and the Riemann tensor locally bounded and 
locally integrable. We can restate the result obtained there in terms of maximality 
as follows. 

Theorem 3. In a 91obally hyperbolic space-time which is maximal (with the dif- 
ferentiability just stated) and nowhere D-specialised, every singularity that is 
accessible on a timelike or null curve is a curvature or intermediate singularity. 

Proof. This is simply the theorem of [1] with the inclusion of null curves - an 
addition that is desirable in view of the prediction of incomplete null curves in 
globally hyperbolic space-times by Hawking in Theorem 1 of I-5], § 8.2. 

Suppose, then, that ~c: [0, 1)-~M is a null curve leading to a singularity p, with 
horizontal lift ~ in L(M). We may suppose ~: to be a geodesic, since otherwise 
it is a straightforward manipulation to deform it to a timelike curve. Define a one- 
parameter family of geodesics by )~s, t)= exp(~(t)(-s, 0, 0, 0)). Then, unless there 
is a curvature singularity, the curve 2(a(1 - t), t) is defined and timelike for small 
enough a > 0  and t sufficiently close to 1, and leads to p. The argument is very 
similar to that employed in Lemma 3 of [1]: if 2(1-  t 1, tl) were not defined, one 
could construct a set of causal curves between 2(a, 0) and 2(0, f) for t' > tl, having 
non-compact closure and so violating global hyperbolicity. On the other hand, 
if 2(a(1- t), t) failed to be timelike for t arbitrarily close to 1 then Proposition 1 
of [1] could be used to construct a curve in the image of 2 which led to p, but oia 
which the components of the Riemann tensor became unbounded. 

Having constructed a timelike curve, the result follows from [1]. [] 

If one has a situation of inhomogeneous gravitational collapse, where sin- 
gularities may, in a sense, form earlier in some places than in others, then global 
hyperbolicity is very unlikely. Without this condition locally extensible (non- 
curvature) singularities may be present, as exemplified by the covering space of 
Minkowski space with a 2-plane removed: if the plane is space-like there is a 
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"hole" (see the Scholium to Definition 3) while if it is timelike there is a primordial 
singularity. Theorem 4 below shows that these are the only possibilities. 

Let M* denote the set of all submanifolds of M of the form I-(7) where 7 is a 
timelike curve having a generalised affine parameter [5] that is bounded to the 
future. M* is a subspace of the Geroch-Kronheimer-Penrose space ~ / [8 ]  and so 
inherits a natural causal structure with a past-relationship J - : A 6  J - ( B ) ~ A  C B. 
Write this as A<B,  and define A<B<=~A<B but A+B.  

Note that any point q in M can be identified with the set qo=I-(q)eM*; also 
any point p in the b-boundary ~/ which is accessible along a future timelike 
curve 7 can be mapped onto the point Po =I-(7). Thus we have a map x-~xo from 
a subset of ~ =  M w l ~  onto M* which is injective on M, so that we can identify M 
with its image Mo in M*. 

Definition 4. An inextensible causal curve in M* is a non-empty set S C M* such that 
(i) for any p, q~S either p=q or p<q or q<p;  

(ii) for any p, q s S  with p<q  there is an r~S such that p<r  <q; 
(iii) S is maximal with respect to (i) and (ii). 

Lemma 2. I f  M is a strongly causal space-time and S is a causal curve in M*, then S 
with the order topology is horneomorphic to an interval of IR. 

15"oof. For simplicity let us denote by S' the set S without its greatest and least 
members, if it has any. M has a countable dense set D; the subset D '=  {xcDlpsS',  
x~p} is mapped into S'. by setting ~b(x)= w{p~SIx q~ p } c m .  Clearly T=qS(O') 
is a countable dense subset of S', and hence ([9], p. 51) it is order-isomorphic to 
the rationals in (0, 1) by a map ~p : T--*II). It remains only to extend ~p to an order- 
isomorphism with (0, 1) by defining ~p(x)= sup {~p(t)lte T, t < x}. Then ~ is certainly 
order-preserving and bijective; and it is surjective since for re(0, 1) the set 
w{tE Ti~p(t)<r} is easily seen to be an IP, and so it follows from (iii) that it is in S'. 
Finally, the greatest and least elements of S, if any, can be added, corresponding 
to 1 and 0, respectively. [] 
Definition 5. A primordial singularity is a point p e M  such that 

O) P is the future endpoint of a timelike or null curve 7; 
(ii) there is an inextensibte causal curve S with Po = I - (7)eS  ; 

(iii) {qeSlq<po}C M * \ m o .  

For this definition to correspond to the intuitive picture M must be strongly 
causal. 
Theorem 4. I f  M is a strongly causal hole-free space-time that is nowhere 
D-specialised and p is a singularity in M accessible on a future-directed causal 
curve 7, then either p is a primordial singularity, or M contains a curvature or 
intermediate singularity. 
Proof. Suppose that A7/contains no curvature singularities. Let $1 be a maximal 
chain in M * \ M ,  simply ordered by <,  containing po=I-(7).  We show that $1 
can be extended to an inextensible causal curve. 

1. Let q', p' be two points in $1 with q' < p', p' = I-(7') where 7' is an inextensible 
future-incomplete curve. The sets Cx=I-({ytyeI-(x)c~7'}) for xe 7' form a 
nested sequence with q' properly contained in U Cx. So for some xo, q' is 

properly contained in Cxo. Let 7o be the part of 7' to the future of x o. 
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2. Suppose that for some x e 70, V = I-(~')~I +(x) is globally hyperbolic. Then 
from the analysis of [1] we know that V is covered by the future timelike geodesics 
from x (provided that x is chosen near enough to p), and that V has an extension 
in some other space-time M' in which these geodesics continue without inter- 
secting. Thus they define by their endpoints a natural map 0 from IV', the closure 
of V in M', onto 17, the closure of V in M. Either (i) some of these geodesics have 
end-points in M on l v, or else (ii) by the argument of Lemma 5 of [1] 0 is 1 - 1 
and onto and maps into M except for the point p. But this case (ii) implies that M 
is not hole-free, if we consider a partial cauchy surface which makes a compact 
intersection with IV. 

3. Suppose, on the other hand, that V is not globally hyperbolic, for any x. 
Then, arbitrarily close to p', there will be pairs of points u, v with ueI-(v)c~7'; 
w I - ( 7 ' )  such that the set I+(u)nI-(v) is not compact. We can find a non-conver- 
gent sequence {x~} in this set and, ifp is not a curvature singularity, Proposition 1 
of [1] allows us to conclude that, for u near enough to p, there are geodesics 
joining u to x~ whose initial directions converge to an incomplete geodesic. 

4. Thus by either 2 or 3 we find an incomplete geodesic in I+(xo)C~I-(~, ') which 
corresponds to some reM*\M with q'<r<p'. Thus since $1 is maximal either 
reSt, or there is an r'eS~ such that r~r' and r'~r. But then q'<r'<p', so in any 
case there is a point between q' and p'. And, by the same argument, for any p'eSa 
there is an r'eS~ with r'<p'. 

5. Let S be a maximal extension of $1 as a causal curve in M*. Then Sa is 
closed in S, since any peS\S~ is a PIP and so must have a neighbourhood of 
PIP's [8]. Moreover by 4 above $1 is order-dense and has no least member. 
Thus Sa has the form SI ={teSlt<u} for some ueS, and the result follows. []  
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