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Abstract. By analyzing the Bethe-Salpeter equation for even £_~(~b)2 models 
we show that for weak coupling the mass spectrum is discrete and of finite 
multiplicity below 2m. Moreover on even states of energy less than 4(m-e)  
we show that the S matrix is unitary. Here m is the physical mass and e = e(2)40 
as 24-,0. Our results rely essentially only on a simple assumption about the 
analyticity of the Bethe-Salpeter kernel which has been verified for weak 
coupling. For  the interaction )~4, ()./m~ ~ 1) we show that there are no even 
bound states of energy less than 4(m-e).  

Introduction 

We investigate the energy-momentum spectrum for even 2~(~b)2 models via the 
Euclidean Bethe-Salpeter equation. Let p=(pO, p1) be the energy-momentum 
operator acting on the Hilbert space of states ~g" and define ~2e~4~ to be the 
vacuum. The first results concerning the spectrum of P were established by 
G l i m m e t  al. [1, 2]. By using a weak coupling cluster expansion, they showed 
that the closure of the span of 

N 
eiX°"°4 o(f l)o .. . . .  eiX°P° 1-I 4 o(f i)o, fiE 

i 

contains all states of energy less than ( N +  1)(m-e) for 2 (depending on N) suf- 
ficiently small. Here e(2)40 as 2 4 0  and ~b0(f~ ) denotes the time zero field smeared 
with f~. It was also shown that for even ~ the mass operator restricted to the odd 
subspace of J f  has exactly one eigenvalue m on the interval [0, 3(m-e)].  As a 
result the Haag-Ruelle theory [3] yields the existence of an isometric S matrix. 
It has recently been shown that S + I  and is asymptotic in 2 [4, 5, 13]. For  the 
special case of 2q54, bound states of energy less than 2m were excluded by using 
correlation inequalities [2]. 
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The Bethe-Salpeter kernel in quantum field theory is analogous to a non-local 
potential in quantum mechanics. The Bethe-Salpeter equation takes the form 

R(k )  = Ro(k )  - R o ( k ) K ( k ) R ( k )  (1.1) 

where k=  (k 0, kl) denotes energy-momentum vector. R 0 and R correspond to the 
resolvents of the free and interacting two body hamiltonian in quantum mechanics. 
See § 2 for precise definitions. Unlike quantum mechanics K is not given in closed 
form. In perturbation theory the kernel K is the sum of all two particle irreducible 
diagrams in a particular channel. There is a vast literature in physics which 
investigates (1.1) in an approximation where K is replaced by its first order 
contribution in perturbation theory. This approximation is referred to as the 
ladder approximation and is frequently used by physicists to compute bound 
state energies and wave functions. 

In this paper we study the qualitative structure of the energy momentum 
spectrum assuming strong exponential decay estimates on K in position space 
(or equivalently analyticity in momentum space). These estimates have been 
verified in [6] for weakly coupled )~(q~)2 models by extending the cluster 
expansion of [-1, 2]. In §3 we prove that these results imply that K is compact 
relative to R o. The compactness of K enables us to show that on the even subspace 
of energy less than 4 (m-  5) the spectrum of P is equivalent to that of a free theory 
of mass m apart from possible bound states. (See § 5.) By the theory of spectral 
multiplicity and the Haag-Ruelle theory, it is easy to establish a restricted form 
of unitarity for the S matrix. For the case of weakly coupled 2(4)4)2 we exclude 
bound states of energy less than 4(m-5). Here we use the fact that K is repulsive 
to first order for 2~b 4. Bound states are expected to occur for 2(q~ 6 -  q5 ~) for weak 
coupling because of the infrared singulatities in one or two space dimensions 
and the fact that -2q5 4 is attractive. 

Next we wish to explain the connection between our work and that of Bros 1. 
Several years ago J. Bros [7] made a study of the Bethe-Salpeter equation in the 
framework of axiomatic field theory. He assumes asymptotic completeness in 
addition to a number of technical assumptions in order to obtain decay and 
regularity properties of the Bethe-Salpeter kernel. These properties are slightly 
stronger than those proved for 2~(~b)2 in [6]. Now using the Bethe-Salpeter 
equation and compactness techniques, he shows that the four point function has a 
double sheeted meromorphic continuation in the energy across the cut [2m, 4m]. 
The poles on the second sheet should correspond to resonances. Thus, although 
Bros does not analyze the energy momentum spectrum (since in fact he assumes 
asymptotic completeness), some of our results are implicit in his work. 

This paper has only started to answer the fundamental questions concerning 
scattering in constructive quantum field theory. There are many techniques of 
potential scattering theory such as dilatation analytic methods which may be 
useful in the study of the S matrix. The most obvious open problem is to study 
three body scattering for 2q5 4 with the three body equations presented in [8]. 
The spectral multiplicity techniques used to prove the main theorems of this 
paper fail to yield unitarity in the three body region 2. Hence the solution of the 

1 We wish to thank Professor A. Wightman for pointing out this connection 
2 See Remark 2 in § 2 
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three body problem may give some insight into the problem of full unitarity for 
2~b 4. Another problem is to obtain our results away from the weak coupling 
region. This requires new estimates on the Bethe-Salpeter kernel. We expect that 
for strong bare coupling such estimates can be obtained by extending the recent 
cluster expansion of [12]. 

§ 2. The Belhe-Salpeter Equation 

The Euclidean Bethe-Salpeter equation for an even 2:~(~b)2 quantum field model 
has the following form 

D(xl, Xz, x3, x4)= Do(xl, x2, x3, x,,) 

- j D o ( x l ,  x2, Yl, Y2)/£(Yl, Y2, Y3, Y4)D(Y3, Y4, xa, x4)dy (2.1) 

where xi=(x ° x~) and yi=(y°i y~) are Euclidean coordinates a n d / (  is the Bethe- 
Salpeter kernel• Here 

D(X D X 2, X 3, X4.)= S(4)(x 1, x2, x 3, x4. ) - -  S(2)(x 1, x2)S(2)(x3, x4) 

and 

Do(xt, x2, x3, x4)=-S(Z)(xl, x3)S(Z)(x2, x4)-t-S{2)(xD x4)S(2)(X2, X3) 

and S (2), S (4) denote the two and four point Schwinger functions respectively. 
The Bethe-Salpeter kernel and (2.1) are defined whenever the physical mass is 
positive [8]. 

We reexpress (2.1) with the following change of variables: 

X4--X  3 X4"~-X 3 X 1 "~-X 2 = X 2 - X 1  /~= " C = - -  
2 2 2 2 

~,= YZ--Yl  r f =  24- -23  "c' Xl + x 2  Yl +Y2 
2 2 2 2 

z"= Y4 +Y3 x3 +x4 
2 2 

with ~=(~o, ~,), //=(t/o,//0, etc. Using the translation invariance of D, D o, and 
/£ and the z ~ - z  symmetry Equation (2.1) can be written 

D(z, 4, //)= Do(z, 4,//)-~Do(z, 4, ~ ')K(z-  z ' -  z", ~', tl') 

• D(z",//,//')d~'dtfdz'dz". (2.3) 

Let p, q, and k be the momentum conjugate variables of 4, t/, and z respectively 
and set k=(iko, kO. We define 

e(k, p, q) = S D(z, 4, //)ei(~'~+ r¢ +q'~)dzd~d// 

Do(k, P, q) = ~ Do(z, 4, //)d(*';+ ~"~ +q'")clzd~d// 

K(k, p, q) = ~ K(z, 4, rl)e"~';+ P'¢ +~'")dzd~dtl . 
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If we consider (2.1) as an equation for integral kernels of operators acting on a 
space of functions invariant under ~ ~ - ~ we have 

Do(k, p, q) = b(p + q)Ro(k, P) 

where 

S" denotes the Fourier transform of the two point function. Using the fact that 
the integral (2.2) is a convolution in the v variables, it is easy to show that (2.2) 
may be written in the following form 

R(k, p, q) = Ro(k, p)6(p + q) - ~ Ro(k, p)K(k, - p, q')R(k, q', q)dq' (2.6) 

or as operators 

R(k) = Ro(k ) -  Ro(k)K(k)R(k) . 

The Feynman-Kac formula connects the analytic properties of R(k) with the 
spectrum of the energy momentum operator P=(Po,  P1). Let dE(p) be the joint 
spectral resolution of P given by the SNAG Theorem [9] so that 

eiX'P = S eiX'PdE(p) • 

For ~o=t /o=0 note that 

D(~, ~, t/)= (0(~1), e-I*°lP°ei*lPl0(ql) } . 

The inner product on the right is in ~ and 

0(~1) = ¢o(~,)¢o(- ~1)~- <a, 4o(-  ~1)4o(~ ~)a>a 

where ¢o denotes the time zero field, f2 is the vacuum. Hence for f f  and 9~ belonging 
to C~(IR 1) we have 

d~e*'~S 6(~o)6(t/o)f*(~ t)g'(~ 0D( ~, ~, n)dtld~ 

= ~ R(k, p, q)f(pOg(qOdpdq 

= ~ <O(f)e-I~°lV°e~*le~O(g))e~gd~ 

= ~ ~(Vl- k l ) ~ o  "q- Po@o] a(o(f)Fa(po, p 1)0(g) >. (2.7) 

The convergence of the dr integration follows from a mass gap which we assume 
throughout the paper. In § 3 and 4 we study the analytic properties in k of 

a(k, p, q) f (p)g(q)dpdq . 

In § 5 we discuss the consequences of these properties for the spectral measure 
dE(p). 

Now we state the conditions we assume throughout the paper. Let 2/f ~ be 
the subspace of even states in Yf of energy less than a. 
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Condition (*): 
A. The two point Schwinger function S has the form 

1 
S(P)---p~-7~m2+ S (P2+a2)-ldp(a) , 0<=6o Nm" (2.8) 

m + 230 

B. The closed subspace of • spanned by 

g2, eiX'v O( f ) 

for x ~ R  2 and f ~C~(R 1) contains ~2(m+ao). 
C. The Bethe-Salpeter kernel K is bounded and analytic in the region 

IImqol, IImpol <260 

lImql I, IImpll =<261 (2.9) 

IRe k01_-< 2(m +6o). 

Condition (*) has been established for the case of weakly coupled even N(~b)2 
models in [1, 6] with 6o =m-e(2)  and 61 =e(2)/2, e(2)-,0 as 2--,0. The following 
additional condition enables us to eliminate bound states in the weak coupling 
region by isolating first order repulsive 6 functions. 

Condition (**): For sufficiently small 2>0 the Bethe-Salpeter kernel has the 
form 

K*(x, . . . . .  x4.) = • 6 ( X  1 - -  X 2 ) 6 ( X  2 - -  X 3 ) 6 ( X  3 - - X 4 )  +).2KI(X 1, x 2, x3, X 4 )  (2.10) 

where K,(k, p, q) is analytic and uniformly bounded in 2 for k, p, q satisfying (2.9). 
This has been verified for weakly coupled 2(4)¢+O(q~))2 models in [6] where 
Q(q~) is a positive even polynomial of degree greater than four. 

Let ~n(ouO be the in(out) states constructed by the Haag Ruelle theory. Hence 
J~f'in(out) is the closure of states 

n 

lim I~ cP(f~')) ~2 
(+  co) 

where 

f }O(p) = eit(vo- ~ f(i)(p) 

and f(0(p) are smooth ftmctions whose supports are disjoint and contained in 
neighborhood G of the one particle mass hyperboloid. G is defined so that its 
intersection with the energy momentum spectrum consists only of the one particle 
hyperboloid. 

Let ~ denote the closed subspace of ~f  spanned by the eigenvectors of the 
mass operator M = ( P ~ - P ~ )  1/2. We shall restrict our attention to vectors of 
energy less than 2(m+6o) so we define 

jtoa2 (~ + ao) = ~"¢gd ~ ~ut~2 (m + go) 

and also 

~.~2(m + 6o) _ _ ~  r .  ~ 2 ( m + a o )  
( o m )  - - ~  (out~ I . . . . .  

in ~ in J 

The following Theorems will be established in § 5. 
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Theorem 2.1. I f  condition (*) holds, then the spectrum of MF j~(fj2m+ ~o) has at most 
one point of accumulation at the threshold 2m. The unitary representation of the 
Lorentz group carried by each eigenspace of M of mass less than 2m is a finite 
sum of irreducible representations. 

Theorem 2.2. I f  condition (*) holds, then 
~ 2 ( m + 6 o ) =  .~2(m+6o) j. ~/p2(m+6o) 

" T ~ T t ,  O U t  " 

( i . )  

Theorem 2.3. Suppose both conditions (*) and (**) hold. Then for sufficiently small 2 
(and fixed bare mass) 

.J~Z(m + 60) _ ~A:Z!m + ~o) _ ~ o  ( & )  

Remarks. 1) To establish the discreteness of bound states below the threshold 2m, 
it suffices to take 6 =(0, 0). 

2) To analyze the absolutely continuous part of the spectrum, we show that 
the absolutely continuous spectrum of P has multiplicity 1. Let jf2~,,+oo~ be the 
corresponding invariant subspace. Since the in and out states are absolutely 
continuous of multiplicity one, we have 

~ 2 ( m  + ~o) __ .~/~2(m+ 3o) :~p2(m + ~o) 

This yields unitarity of the S matrix for energy less than 2(m + ~o). 
3) Note that we have excluded singular continuous spectrum for the mass 

operator, but we have not excluded eigenvalues embedded in the continuum 
except in Theorem 2.3. 

4) If K satisfies condition C, then there are no bound states below m+6o. 
To see this, we observe that a bound state of lower energy would create an ad- 
ditional subspace of absolutely continuous spectrum of energy less than 2(m + 6o) 
corresponding to a pair of bound states. This violates Theorem 2.2. 

§ 3. K(k)Ro(k) is Compact 

In order to obtain information about the spectral resolution of the energy 
momentum operator dE(p) we shall analyze the singularities of R(ko+i&k 1) 
where ko and k 1 are real and e--*0. We shall define a Hilbert space A~ such that 
K(k)Ro(k ) has an analytic continuation as a family of compact operators for fixed 
real k 1 and for k 0 belonging to 

~(~, ~o, ~l, kl) 

={ko:IRekol<=2(m+5o), and arg(ko-] fk~+4m2)4~} (3.1) 

for small ~. 
Thus matrix elements of 

R(k) = Ro(k)(1 + K(k)Ro(k))-I 

for fixed kl are meromorphic functions of k 0 for koe@(a, 50, ~ ,  kl). The choice 
of ~ is equivalent to the choice of a cut whose branch point is the threshold 
]//-kl z + 4 m  2. 
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The compactness and analyticity of K(k)Ro(k) rely on the choice of a rather 
complicated Hilbert space. To motivate our choice of Hilbert space, we fix kl = 0  
and consider Ro(k o, 0) as a bilinear form on L2(R 2) x L2(RZ). For IRekol<2m, 
Ro(ko, 0) is analytic in ko. 

However, Ro(ko, O ) is not analytic when LRekoL_>_2m even when Imko:~0. 
This is because 

(Po-- iko) 2 +p2 +4m 2 = 0  

has a real solution p~R 2 whenever [Reko[ _>2m. We can regain analyticity in ko 
(for Im ko 4~0) if we replace L 2 by a space of analytic functions. To illustrate this 
idea, note that iff(Po) is analytic and bounded for [Impo] =<a 

+ o o  

f(Po) [(Po -- iko) 2 + p2 + 4m 2] - ldp ° 
- - o 9  

is analytic in ko for 0 < Re k o < 2m + a. We eliminate singularities of the integrand 
by shifting to contour of integration to Impo = _+a. 

We now turn to the definition of our Hilbert space. Let w(p)=[p~+p~ + 
16m2] -2/3. Let A~ be the Hardy class of functions analytic in the region 

IImpol <230; llmpll ~231 

and such that f ( p ) = f ( - p )  with the norm given by 
+ o o  

J] f It azo--- sup j ~  ](wf)(p + ia)l Zdp. (3.2) 

Here 8=(80, 31) and I~= {a=(~o, al)[]aol<28o; [~1]--<231} and dp=dpodpl. 
In x space the norm is equivalent to 

I] f ]12s = ~ [[wf]~(x) 2 e4OOt~Ole4~ I~ Idx (3.3) 

where [wf]"(x) is the Fourier transform of [wf](p)  and dx=dxodx 1. We shall 
show that K(p)Ro(k) maps A~ to A~. 

Theorem 3.1. Let f =91 "92 where gieA~ and let k 1 be real Then as a function of ko 

Ro(k, p)f(p)dp (3.4) 

has an analytic continuation for ko in ~(a, 8o, 31, kl) for ~ and 81 suJficientty small. 
Moreover/f 0 < ko < 2(m + 8o) we have 

lim~ ImRo(ko + ie, kl, p) f (p)dp 

_~0 for O<ko<l/k~ +4m 2 (3.5) 
-[  16rc2(k2o -k2)  - t/2(kg _ k 2 _4m2) - 1/2 f ( A ;  t(O, (k 2 - k 2 -4m2)1/z) 

for ~ + 4 m 2  <ko<2(m+30). 

Here Ak is the complex rotation defined so that 

Ak(iko, ka) =(i(k 2 - k2) 1/2, 0). (3.6) 
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Proof. Since Ro is invariant under the complex rotations A and det A = 1 we have 

S Ro(ko, ki, p)f(p)dp = ~ Ro((k ~ - k~) ~/2, O, p)f(A~ lp)dp. 

Hence we need only establish the theorem for k~ =0. We represent Ro(k, p) using 
(2.5) and (2.8). Let Roo be defined by 

Roo(k, p) = 32[(p - ~)2 + 4m 2] - i [(p + ~)2 + 4m 23- i 

and set 6Ro=Ro-Roo.  Recall ~c=(iko, ki). For k 1 =0  note that 

Roo(k, p) = 8 _ {[(p + ~)2 + 4m 2] - ~ _ [(p _ ~)2 + 4m 2] - 1 }. (3.7) 
ikoPo 

In order to establish the analyticity of ~Roo(k, p)f(p)dp we consider the region 
Q = {(po, p l)] Ip l[ < 4m} and its complement R 2 ~ Q. Then we have 

Roo(k,P)f(P) = S Roo(k,p)6 f(P) + ~ Roo(k,p)6 f(p)dp + ~ Roo(k,p)f(O,p~)d p (3.8) 
(2" (2 

where 6 f ( p ) = f ( p ) - f ( 0 ,  Pl). The first integral on the right is clearly analytic in k 
since Roo has no singularity for pc Q'. By (3.7) the second term on the right of (3.8) 
equals 

8 S [(p + ~:)2 + 4m 2] -1 6f(p) d - 8 S [ (P-  ~:)2 + 4m 2] -~ 6f(p) d (3.9) 
(2 ikoPo p (2 ik--oPo p" 

Since (ikoPo)-16f(p) is analytic for IImpol <2(m+6o) we can shift the contour 
of integration to Impo= -26'O, +26'O, in each of the two integrals in (3.9) re- 
spectively. Here 6'o<60. This yields analyticity in k for IReko[<2(m+60). The 
region Q is used to ensure the convergence for large p of the integrals in (3.9). 
Because 

lim ImRoo(ko + ie, kl, p) =0  (3.10) 

uniformly in p when 0 < Re ko < 2m, the two terms of (3.9) do not contribute to 
(3.5) for 0 < Re ko < 2m. Moreover because they are analytic ha the region 0 < Reko < 
2(m+6o), they don't contribute to (3.5) in the same region. 

The analyticity of 

6 Ro( k, p) f (p )dp 
~2 

also follows by shifting the contour of the Po integration and again it is easy to 
see that 6Ro makes no contribution to (3.5). 

Now it remains to analyze the final term of (3.9). We compute the Po integral 
explicitly by the method of residues. This yields 

÷co 

Roo(k, p)dpo = 8re{ [ko#(p0(#(p 0 -  ko)3 - '  - [ko#(P0(#(P 0 + ko)] -~} (3.12) 

where #(Pl)= (p2 +4m2)i/2. To compute the limit of (3.5) as e~0 we use the identity 

h(v)dv 
lira -e ~ (v_r)2+e2=h(r) when re(a,b). (3.13) 
eJ, O T-'g2 (a,b) 



Scattering States and Bound States in 2N(~b)2 9 

Let v=#(pO then 

p l and ap 1 = V dv 

By (3.12), (3.13) and the symmetry f ( p ) =  f ( - p ) ,  we have 

lim ~ Im Roo(k o + ie, k 1, p) f (O, pOdp 
e$O ~2 

= lim 8re .[ [ko#(p t )(#(p 1) - ko + / 0 ]  - 1  f (0, p 1 )dp 1 
e$0 - m  

= lim 8re ~ e[kov((v- ko) 2 + e2)]- 1(v2 -4m2) - 1/2vf(O, (9 2 -4mZ)l/2)dv 
aS0 2m 

= 16rt 2 f(0,  (ko - 4m 2) 1/2)k ° ~ (kg - 4m 2) - 1/2 (3.14) 

which yields (3.5) for the case k~ =0. Note that the second term on the right of 
(3.10) does not contribute since Re k0 > 0. 

To establish the analyticity of 

I f(O, pOdpt (3.15) 
~(p ~ )(~(p ~ ) -  ko)ko 

across the cut (2m, 2(m+~o) ) we deform the contour of the p~ integration to the 
contour given by 

t(s)=~s+ib'l s>b  1 
( s - i~ i  s<-~ ' l j  

Along this contour 

#( t(s)) = 2m + is2/2m + (9(b~ 3) Isl < a l  

= l/#~m2 + s2 + i l s l 6 / ~  + s2 + (9(~'~ 2) lst>~'~. 

Hence for 6~ and e > 0  sufficiently small (3.15) has an analytic continuation for 
ko in ~(~, rio, 6~, 0). This completes the proof. 

Theorem 3.2. I f  condition (*) holds, then for fixed k I and 9eA~ the operator 

K(k)Ro(k) : 9 ~ f  K(k, p, q)Ro(k, q)9(q)dq 

has an analytic continuation as a HiIbert-Schmidt operator from A~ to Ao for 
k o ~ ( ~ ,  8, kO. 

Proof. Let U be the unitary map from A~ to L2(IR 2, dx) defined by 

[ g ( g ) ] ( x )  = e ~ (~° I~o 1 + ~, I ~  I) [ w g y ( x ) .  

Then the Hilbert-Schmidt norm of UK(k)Ro(k)U -~ is bounded by 

Sdxdy [e2OOlXOl + ~1 Ix* l ) [ w g ( k ) e o ( k ) w -  1]*(x ' y)e- 2Oolyol + 011Y 11)12 
(3.16) 

__< const ~ w(p)2[~ K(k, p + i28, q')Ro(k, q')w- ~(q')B~(q' - q)dq'] 2dpdq 
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where 

1 1 
B~(q)= q2o+46 ~ q~ +46~" 

To bound the q' integral we follow Theorem 3.1 where f in (3.4) is replaced by 

f(q'  ; q, p, k) =. K(k, p + i26, q')w- l(q')B6(q' - q) . 

From the proof of this theorem it is easy to show that the integral has an analytic 
continuation in ko~@ such that 

IS Ro(k, q') f (q', q, p, k)dq'l < const w(q) . 

Hence (3.16) is bounded by 

w(q)2w(p)Zdpdq < ~ . 

Theorem 3.3. Let T(ko) be an analytic family of  compact operators for k o belonging 
to a domain ~.  Then either 

(i) (1-T(ko)) - I  does not exist for all k o ~  
o r  

(ii) ( 1 -  T(ko)) -1 is meromorphic in @ i.e., there is a discrete set S C ~  of poles 
such that T(ko)v=v has a solution for ko6S. For k o c h \ S ,  [1-T(ko)]  -1 exists 
and is analytic. 

The proof follows from well known facts about compact operators [10]. The 
above formulation of the theorem has been frequently used in quantum mechanics. 
See [11] for example. 

Theorem3.4. For fixed k 1 the operator [l +K(k)Ro(k)] -1 is meromorphic for 
ko~9(~, 60, 31, kl). 

Proof. We exclude conclusion (i) of Theorem 3.3 by noting that if Imk0 is suf- 
ficiently large the norm of the operator K(k)Ro(k) goes to zero so that 
[1 + K(k)Ro(k)]- 1 exists. 

§ 4. The Absence of Bound States 

If condition (**) is fulfilled, the Bethe-Salpeter kernel is given by repulsive 
fi function to first order in perturbation theory. This condition enables us to 
exclude bound states for weak coupling. The basic idea of the section is to eliminate 
the infrared singularity of Ro(k) for k near the treshold by considering the 
operator 

R'o(k)- [Ro(k) -1 + 263-~ (4.1) 

where 6 = b ( x l -  x2)b(x2-x3)b(x3-x4) .  Let R'o(k, p, q) the integral kernel of R'o(k) 
acting on functions g~ A~ in the following way 

[ R'o(k)g](p) = S R'o(k, p, q)g(q)dq . (4.2) 
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Note that Ro(k)geA*d because R'o(k) is a continuous form on Ae x Aa, where A~ 
is the strong dual of A6 with respect to the L2 inner product. Let 

g = {kotRe ko < 2(m + 3o )} \  {k o tim ko = 0, 2m__< Re ko-< 2(m + 3o)} 

and set 

g== ~ {k[kg-k~=c2}. 
c~6 ~ 

Lemma 4.1. Let Ro(k), Ro(k)~ R'o(k, p, q), and Ro(k, p) be as above and k~g=. Then 

R;(k,p,q)=Ro(k,p)3(P-q) 

where 

d2(k)=SdpRo(k,p). 

'1d2(k) Ro(k, P) Ro(k, q) 

2d2(k)+ t d(k) d(k) 
(4.3) 

/ 
R'o(k)(Ro ~(k) + 23)~p2(p) = ~P2(P) + l '1 

This completes the proof. 

2 '12d2(k) 
,1d2(k) + 1 2 ~ l J  v)2(0)R°(k' p) 

For Im k o sufficiently large it is easy to verify by Neumann series the following 
identity 

R(k) = R;(k)(1 + ,12Kl(k)R'o(k))- 1 (4.4) 

where K] is defined by (2.10). By analyticity (4.4) holds in ~ .  
We shall show that for sufficiently small 2 

(1 +,12Kl(k)R'o(k))-1 

has no poles in {(k o, kl)]O<=RekoG2(m+3o), Imk 1 =0}. 
It suffices to show that for 0 <'1_< 1 

11K l(k)R'o(k)t{ H.S. < const ,l- 1 (4.5) 

where {p. ][H.S. denotes the Hilbert-Schmidt norm in A,~. From Theorem 3.2 it is 
easy to show that ]}Kl(k)R'o(k ) [{H.S. is uniformly bounded (independent of ,1) when 
ko~N is bounded away from the threshold k o = l / k Z + 4 m  2. In the following 
theorem we establish (4.5) for ko near the threshold using the fact that 

S Ro(k, p, q)dpdq = da(k) - ,1d4(k)[ ,1d2(k) + 1]-1 

= d2(k)[2d2(k) + 1]-~ = (9(,1-1). (4.6) 

Note that this bound holds even as d2(k)-~oo. 

Proof. A straightforward computation for ~o 16A~ using (4.3) yields: 

( a °  I(k)"l-'13)Rr°(k)IJ)l(P)=lDl(P) "}- .,1 d2(k) q- 1 ,1d2(k) q- 1J c(k) = tDI(P) 

where c(k) = ~dpRo(k, p)tpl(p). And for tp2 belonging to the range of R'o(k) we have 
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Theorem 4.2. Suppose conditions (*) and (**) hold, and R'o(k) is defined by (4.3). 
Then (4.5) holds for kl = 0  0<Rek0<2(m+6o) ,  uniformly as Imko~0.  

Proof. As in the proof of Theorem 3.2, it suffices to show that 

, , , , , .  < const 
lSfl~)Ro( k, P, q ) f z (q ,  q)dpdq't = ). w(q) (4.7) 

where 

f l(p')= Kl(k, p+ i23, p') 

f 2(q' ; q) = w - l(q')B~(q' - q) . 

By (4.3) and (4.6) we see that (4.7) follows from bounds of the form 

I I R 0(k, p)[g(p; q) - g(O; q)] dpl < const w(q) (4.8) 

where g(P; q)=fl~)f2(P; q) or g(P; q)=f2(P; q) etc. Here we follow the proof of 
Theorem 3.1. First we replace R o by Roo in (4.8) since by" complex translation it 
is easy to show that 3R0 has no singularity near k=(2m, 0). We set 

3g(p, q)=g(p, q)-g((O, PI), q), 

so that reasoning as in (3.8) and (3.9) one can show 

t S Roo( k, p)fg(p, q)dpl <-_ const w( q) . 

Using (3.12) the key estimate reduces to a bound on 

S Roo(k, p)Eg((O, Pl), q)-g(O, q)]dp 
= 4n ~ [f~(pl)(#(p~)2 _ k2)]- 1 [g((O, Pl), q ) -  g(O, q)]dpl. 

We split the dpl integral into [Pl[--< 1 and [Pl[ => 1. For IP~[--> 1 there is no singularity 
near ko = 2m and so 

im(>l [#(Pl)(#(Pl) 2 -  k2)] - 1[P~ + 16mZ]2/3Ba(qo, P l -  ql)dP, [ __<const w(q). 

For IPll < 1 let g"(Pl; q) be the smooth function defined by 

t + . . . .  g((O,p~);q)=g((O,O),q)+pl g((O,p~);q) rig tPl,q) 
pl=O 

using the p l ~ - p l  symmetry, we see that the integral over lp l [<l  reduces to 

p2g"(Pl, q) , I 
tmt~l_ # ( P l ) ~  ~-~m~-k~j  apll <constw(q).  

This estimate is elementary using the factor of p2 to cancel the infrared divergence 
of the denominator when ko-,2m. 
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§ 5. The Energy-Momentum Spectrum 

In this section we show how the results of§ 3 and § 4 can be applied to give informa- 
tion about the energy momentum spectrum. Let A] be the subspace of functions 
in A~ which are independent of Po. Note that the span of eixPO(f) for f~A~ and 
x ~ R 2 is dense in ~2(, ,  + ~o) because A~ contains the Fourier transform of functions 
in C~(R1). We recall the formula (2.7) which connects R(k) with the spectral 
resolution of P, 

( f  , R(k) f>L2= S 3(pl - kl) ~ o ~ o  + P-o-l~o] d( O(f), E(p)O(f)> (5.1) 

for f~A~ and Imko=~0. Let h be a smooth function. Then for real ko we have 

lim S ( f ,  ImR(k o + ie, kOf)h(ko)dk o 

= lim ~ 6(Pl - kl) Im [(P0 - ko + ie)-I + (Po + k + ie)- 1]h(ko)dkod(O(f), E(p)O(f)) 
e$o 

= ~ 6(p 1 - kOh(po)d(O(f ), E(p)O(f)) (5.2) 

where supp h c IR +. For the last identity we have used (3.13). Now let us consider 
the spectrum of P for energy less than 2m. 

Lemma 5.1. The spectrum of the mass operator below 2m is contained in the poles 
of (1 + K(k o, O)Ro(ko, 0))-1. 

Proof. If b < 2m is not a pole of [1 + K(ko, O)Ro(ko, 0)]- 1 then since R(k) is analytic 
in a neighborhood of (b, 0) (with no cut) we have for k o near b and k 1 small 

l im( f ,  ImR(ko+ie, k~)f)=O, f ~ A ~ .  
e,~ o 

By (5.2) we have 

dE(p)eiX'eO(f) 
IP-  (b, 0)t <~ 

= ~ dXPdE(p)O(f) 
[p-(b,O)l <e 

= 0 .  

Lorentz covariance implies that dE(p) has no support in a neighborhood of 
the hyperboloid of mass b. 

Lemma 5.2. On each eigenspace of mass less than 2m the representation of the 
Lorentz group is a finite sum of irreducible representations. 

Proof. Let b < 2m be an eigenvalue of M. Then from (5.1) we have for small e > 0 

(27zi)- 1 ~ ( f ,  R(ko ' O) f )dk ° 
Iko-bI=e 

= ~ 6(pOd(O(f)E(p)O(f)). (5.3) 
Ib-Pol<e 

Note that since the poles of [1 +K(ko, O)Ro(ko, 0)]- 1 are simple [by (5.1)] we have 

0 = [1 + K(b, O)Ro(b, 0)] ~ [1 + K(k o, O)Ro(ko, 0)3 - Idko. (5.4) 
Iko-b[=~ 
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The compactness of K(b, O)Ro(b, 0) and (5.4) imply that the range of ~ [ ] -  t is 
finite dimensional, say of dimension n. Hence (5.3) as a bilinear form is of rank n. 

Now suppose the Lorentz representation is n +  t reducible. Then there exist 
n + 1 vectors vi belonging to distinct components of the representation such that 

d(viE(p)v j)  = 6ij6(p 2 -- p~ -- bZ)dp 

for small Pl. Since the vi can be approximated by vectors eix'PO it follows that 
the form (5.3) has rank n + 1 which is a contradiction. 

Next we analyze the spectrum above 2m. We shall show that apart from 
possible bound states the energy momentum spectrum is absolutely continuous 
and of multiplicity 1. 

Let ci be the poles of [1 +K(ko, O)Ro(ko, 0)]-1 above 2m. For a CC [2m,2(m + 
30) ) , let 

C '=  ~ {(ko, k t ) l k~ -k  2 =e2}c~f2 
e~C 

where 

£~ = {(k0, kl)lk 2 - k~ >4m, 0 <__ k o <= 2(m +3o) } . 

Lemma 5.3. Let C= {ci}. Then for keg2/C ~ and f eAo we have 

lira (f ,~so ImR(k°+ie '  k l ) f )L2=~ im<W(k) f '  ImR°(k°+ie '  k)W(k)f>L2 (5.5) 

where 

W(k)= lira [t + K(ko + ie, kl)Ro(ko + ie, ki)]-  1. (5.6) 
e;0 

Remark. By Theorem 3.4 W(k) is well defined and bounded for k6C ~. 

Proof. Let z=(k l  +ie, kl) and for an operator T(z) let 

Im T(z) - (2i)-1 [ T(z) - T(g)]. 

Note that 

Im R(z) = Im {Ro(z)W(z)} = (Ira Ro(z))W(z) - Ro(~) Im(W(z-)), 

and 

Im W(z-) = - W(z) Im(K(z-)Ro(~))W(z). 

Since 

Ro(z)W(z)K(z ) = 1 - [1 + Ro(z)K(z) ] - 1 

= 1 - W(z-)*, 

the above identities yield 

Im R(z) = W(z)* Im Ro(z) W ( z ) -  Ro(z-)W(~(Im K(z))Ro(z)W(z). (5.7) 

As e$0, (ImK(z))Ro(z)~O in the strong operator topology on A 0 hence the 
second term on the right side of (4.7) vanishes as e$0, and the lemma follows. 
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Remark. Lemma 5.2 and (5.2) imply that for PC C ~and f e A ]  

d (  O(f)E(p)e~x'PO(f)) 

is absolutely continuous with respect to Lebesgue measure. 

Next we show that e ~x'P acting on the absolutely continuous spectrum of P is 
unitarily equivalent to multiplication by d x'P on L2(f2, d(2)p) i.e. the absolutely 
continuous spectrum is of multiplicity 1. 

By Theorem 3.1 we can compute the right side of (5.5). For f e A ~  and k s  f2/C ~ 
we define 

(L f ) (k )  = 7z(kg - b2"ll/4(b2 - -  b 2  - -  4m 2)l/4(Wf)[Ak (0, (kg - k~ - 4m2)1/2)3 
'~11 V"O '~1 

Then we have 

lim (g, Im R(ko + ie, k) f ) = (L f)(k)(Lg)(k) 

and so by (5.2) 

d(0(g), E(p)e~" PO( f ) ) = e~X" P( L f )(p )(Z-g)(p )dp . 

Let N be an open set containing C,  (c= {ci}). Then the above identity enables 
us to define a unitary map 

U :E(f2 ~ N)JUf ~ L 2 ( ~  ~ N, dp) 

which extends the map 

U :E(f2 ~ N ) e ~ P O ( f ) ~  ei~'p(L f ) (p) .  

We have used the fact that e~X'e0(f) is dense in ~2(m+~o) 
Proof  of  Theorems 2.1 and 2.2. By the Haag Ruelle theory, P acts on E(~2)J4f i, 

OUt 

as a free energy momentum operator. Hence the multiplicity of e ~x'P is one on 
E(~2)~ i,. Since 

OUt 

o t l t  

inclusion must be equality for each neighborhood N of C'. The proof of Theorem 
2.3 follows immediately from Theorem 2.2 and Theorem 4.3. 
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