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Abstract.A notion of stability of dynamics under distant perturbations is introduced. It is demon- 
strated, for quasi-local systems, that the stability of an equilibrium state under the same perturbations 
implies the state is factorial, i.e. strongly clustering in space. We also characterize the set of perturbations 
necessary to ensure the equivalence of stability and factorialness. 

1. Introduction 

Several characterizations of pure thermodynamic phases hay e been proposed; 
each such proposal emphasizes a different aspect of the equilibrium phenomena. 
The aspects which have received most attention are either kinematical 

a) spatial cluster properties, 
b) extremality among the class of all equilibrium states, 

or dynamical 
c) stability under dynamical perturbations, 
d) temporal cluster properties. 
The purpose of this note is to examine some of the interrelationships between 

properties a, b, and c, in the framework of quantum statistical mechanics. 
For simple quantum models, such as spin systems with short range interactions, 

the connections between points a and b, have been reasonably well understood. 
The dynamics in these models is provided by a strongly continuous one-parameter 
group of automorphisms ~ of a C* algebra 9A of kinematical observables and the 
thermodynamic limits of finite volume Gibbs equilibrium states form the set 
(or possibly a subset) of ~-KMS states over 9.1. These states, c0, form a convex set 
with extremal points; a state is extremal in this set if, and only if, it is a factor state. 
On the other hand a state of such a system is factorial if, and only if, it possesses 
a strong spatial cluster property of the Powers type. We demonstrate that the 
states which are stable under "distant" dynamical perturbations are factor states 
and hence provide a connection with property c. 

The stability criterion is of the following nature. For each P = P * e  9A we 
define local perturbations cop and zP of co and r and then consider sets of perturba- 
tions, typically perturbations which recede in configuration space, which leave 
the dynamics stable in the sense that: 

Ilv,P=(/) - ~,(A)[I ,0 ,  A e 9.I. 
Gt 
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The requirement of purity of co is that 

coe=(A) ~ ,o)(A), A ~ 9.I 

and we show that this implies that co is a factor state. Moreover we characterize 
exactly the set of stabilizers {P~} necessary to enforce the equivalence of the factor 
property and this form of dynamical stability. 

This stability criterion is possibly of greater interest for more complex models 
whose equilibrium states are no longer KMS with respect to a global dynamical 
group but satisfy this property with respect to a modular group which varies from 
state to state. In this context stability under distant perturbations again implies 
the factor property and hence spatial clustering. More generally this form of 
perturbation can isolate subphases of a general state and provide a basis for the 
decomposition of Gibbs states into pure phases. 

2.  B o u n d a r y  P e r t u r b a t i o n s  

Throughout this section we consider a pair (9.1, z) consisting of C* algebra 
with identity, 9A, and a strongly continuous one parameter group z of auto- 
morphisms of 92[. We associate to each self-adjoint P ~ 9J a perturbed group of 
automorphisms by the definition [1] 

z~(A) = z,(A) + ~ i" I ds , . . ,  ds. [z~, (P), [... [Zs.(P), z,(A)]]] 
n>=, O<=sl<...<sn<=t 

and a similar formula for t < 0. We will be particularly interested in sets of perturba- 
tions which leave -c asymptotically invariant. 

Definition 1 *. A stabilizer of (~I, z) is defined as a directed set N = {P~} of self- 
adjoint, z-analytic elements P~ of 9.I with the properties that IIP~1t and II%(P~)tl 
are bounded uniformly e and 

lim fizZy(A)-%(A)II = 0 ,  Aeg . I , t~ lR .  

Next, let co be a state over ~21 which satisfies the -c-KMS condition [2]. For each 
perturbation P =  P * s  N there exists a ze-KMS vector state cop of e) given by 
[-3, 4] 

coe(A) = co(Wp A)/co(We) = CO(V* A Ve)/co(V~ V~,) (1) 
where 

and 

Wp = 1 - Z ( -  1)" j" dsa.., ds.zis.(P).., z~(P)  
n _ > *  O < s -  < - - - < s  < *  _ = i= = n ~  

(2) 

V p = l +  ~ ( -1)"  S ds,. . .ds.zis,(P).. . 'h~.(P). 
n_>_ * o _-<sl =< '" _< s,~S-~- 

(3) 

In fact these formulas are only strictly valid for those P such that t e I R ~  %(P)~9.I 
h a s  an analytic extension to the strip 0 __<_ lm t < 1. They can be extended to general 
P by strong limiting in the representation space W~ associated with co [3]. If ~o 

1 The requirements of z-analyticity (see [2] and [7]) and uniform boundedness seem unnatural 
but are essentially justified by the characterization provided by Theorem 2. 
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and f2o, denote the representation and cyclic vector associated with co and P1, Pe 
are z-analytic one has the useful estimate [4] 

llTzo~(V/,,) f2~,-Tz~(Vt,2)f2~'[l =< liP1-2 P21t e x p { - ~ }  (4) 

where IIPIt = Max( l tP1  It, lIP2 II). Another useful estimate [5] is the following 

co(I4~) > e -  ~(m > e-l icit  (5) 
and hence 

~+(v~,) a~  ~ ( v p  2) a~  _ 
]toe,(A)-toe2(A)] <2[]AII t!n~(Vv,)t2,~{ I {lrc~(Vp2)Oo, i I 

< 2 ItA ]l Jt P1 - P211 exp {3 [1Ptl }. 

Our first result is the following 

Theorem 1. Let to be a z-KMS state over the C*-algebra ~.  For each P = P* ~ 9.I 
let z v and toe denote the perturbed group of automorphisms and the perturbed 
1:V-KMS state, as defined above, respectively. 

I f  to is a factor state it follows that 

lim top=(A) = to(A), A + 9.I 

for every stabilizer ~ = {P:} of (9~, z). 

Proof. As 1Jzi(P~)H is bounded uniformly in e it follows from the Phragmen- 
Lindel6f version of the maximum modulus principle (see [6] page 243) that 
Ilzi.~(P~)i1 is also uniformly bounded for 0 < Ira7 < 1. One then concludes from (2) 
and (5) that Wpjto(We)  is uniformly bounded. Let W be a weak limit point of 
this family represented on Yf~ and consider the state 

do(A) = (f2o, , WTzo~(A ) (2o,), A ~ 9.1. 

This state is a weak limit point of the co~, and by the following lemma is z-KMS. 

Lemma 1. Let ¢ be a directed set of strongly continuous one parameter groups 
of automorphisms of a C* algebra ~ which converge strongly to z i.e. 

limHz~(A)-zt(A)]l = 0 ,  A~9~, t~IR.  

Further let % be a set of z~-KMS states over 9.I and to a weak* limit point of to~. 
It follows that to is z-KMS. 

Proof. To each A ~ 92[ we associate a regularized A~(f) E 9.I by the definition 

A~(f) = ~ at z~(A) f (t) 

where f is a function whose fourier transform f is C ~ with support in the interval 
IP[ _-< a. It follows by easy estimates that 

l f ( t  + is)l < be"N/rc(t + t 2) 
where 

b = M a x ( l I f i [ 1 ,  I l l " I f 0 / 2  • 
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Hence for any interval I C 1R 

![%(A ( f ) ) -  r~(A~(f))H 

~211AH ~ d s l f ( s - z ) [ +  ~ d s [ f ( s - z ) [ J l~ (A ) - z~ (A)H  
s $ l  s d  

< ear'~lzl it A tl f ds - ~ -  + sup liz~(A) - z~(A)ll ~ ds . 
7"(, s 6 I - R e z  s ~ l  s ~ l - R e z  

Using the strong continuity of the "c ~ and their convergence on the re al axis to z, 
we deduce that 

lim Hz:(A~(f)) - z~(A (f))[[ = 0 

for all z ~ K where K C ~2 is compact. Thus for all A, B e 9 / o n e  has 

co(A ( f )  B) = limco~(A~(f) B) 

= limco~(Bz~(A~(f)) 

= o.)(Bz,(A (f))) 

but this ensures that co is ~:-KMS by the usual arguments involving analytic 
elements [2, 7]. 

Returning to the proof of Theorem t we deduce that 

d)(A) = W o,(A) 

is z-KMS with We n~. But it then follows from [8,9] (see also [10]) that 
I,V~ " ' ~co f5 7go). 

As ~ is factorial this implies, however, that W is the identity and c5 = co. Thus 
we conclude that all weak limit points of the WeJco(Wp,) are identical and the 
operators converge weakly. Hence the coe~ converge in the weak* topology to co. 
This completes the proof of the theorem. 

Next we wish to prove a converse to Theorem t but for this we need further 
structural assumptions on 9.1 and co. The reason that more detailed structure is 
necessary is the possible non-existence of stabilisers of 021, z). This does not affect 
the veracity of Theorem 1 but reduces it to an empty statement; it would, however, 
render the proof of the converse impossible. 

We will consider algebras with the quasi-local structure encountered in 
quantum statistical mechanics and then restrict our attention to locally normal 
states. There are two possible choices of statistic, bose or fermi, of which we 
consider only the former. Our results can be extended to the fermi case with 
minor modifications (see, for example, [1 1]). 

Specifically we define the C* algebra 91 to be a quasi-local algebra if it possesses 
a family 91A of subalgebras, where A runs over either the bounded open subsets 
of lW or the finite subsets of Z *, satisfying the following; 

1. U 91A is norm dense in 91. 
A 

2. A1C A2 implies 91A, =C 91a~. 
3. each 9.I. is isomorphic to the algebra ~3(YfA) of all bounded operators on 

some Hilbert space JfA. 
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4. ALCOA2 = 0  implies [9.Ia~, 9.Ia~ ] =0.  
A locally normal state over a quasi-local algebra N is defined as a st ate co with 

the property that 

co(9.1z) = Tr~e~(Q A 9.Ia) 

for each A, where 0A is a positive trace class operator. (The isomorphism between 
9.iz and ~3 (HA) is left implicit.) 

Before proceeding we demonstrate that if ~[ is quasi-local, and -c arbitrary, 
then (9.I, ~) possesses stabilisers. We first remark that condition 4 above ensures 
the existence of a sequence B, ~ 9AA+ . such that IIB, II is uniformly bounded and 

for all A ~ ~I. Next form 

i,lim ]][B,,A][I = 0  

B , ( f )  = ~ dtzt(B,)  f (t ) 

where f is a function whose Fourier transform is C ~ with compact support. It 
follows that Bn( f )  is v-analytic and flzi(B,(f))H is uniformly bounded in n, 

[[z~(B.(f))l[ < [[B.]] Cf  

where C¢ is independent of n (compare the proof of Lemma t). One also has for 
each interval I C IR 

[[[Bn(f), All] < 2 lIB, I[ ]]AII ~ dr[ f  (t)[ + ~ dtl f( t)[  llUB,, z_t(A)]][. 
t ¢ I  t~ i  

Exploiting the strong continuity of z, or using the Lebesque Lemma, one easily 
concludes that 

tim tJ [B,(f),  A] 1t = 0 
n--~ oo 

for all A ~ ~.  
Finally if B, is self-adjoint and f real then B,(f)  is self-adjoint and 

t 

B.cf) B tf*B~(¢)(A) -- zt(A) ll = fl~ ds z~ _~ ([ . ( f ) ,  zs(A)])il 
0 

t 

< .( ds ]J [S,(f) ,  zs(A)] II. 
0 

Combining these estimates and again using the Lebesque Lemma one has 

lira ilz~-(f)(/) - z,(A) ll = 0 

for all A ~ 9~, i.e. {B,(f)} is a stabilizer of (9.I, z). 
We are now in a position to characterize the factorial z-KMS states of a quasi- 

local algebra. The following theorem restates a number of well-known facts, for 
completeness, but also gives a stability characterization. 

Theorem 2. Let co be a locally normal, z-KMS state, over a quasi-local algebra 9.1. 
For each P = P* ~ ~ let "c e and coe denote the perturbed group o f  automorphisms 
and the perturbed ze-KMS state respectively. 
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The following conditions are equivalent 
1. co is a factor state. 
2. Given A ~ 9I and e > 0 there is a A such that 

Ico(A B) - co(A) co(B)[ < e IIBll 

for alI B e ~) 91al. 
A ' n A = O  

3. co is extremal , -KMS. 
4. For every stabiIiser ~ = {P~} of  (91, "c) 

limcoe~(A) = co(A), A e 91. 

This theorem expresses the equivalence between the various characterizations 
of pure phases mentioned in the introduction. The equivalence between Condi- 
tions 1 and 2 is a property of the Powers type; proofs can be found in [11, 12J. The 
equivalence of 1 and 3 is established in [8, 9] and summarized in [10]. The implica- 
tion 1 ~ 4 is established in Theorem 1 and it remains to prove that 4 ~ 1. 

It is the equivalence of Condition 4 with the other conditions that essentially 
justifies our definition of stabiliser. We will deduce 4=~ 1 by proving that if I is 
false then 4 is false. Assume that 3 ,  contains a non-trivial hermitian element z. 
For quasi-local algebras and locally normal states it is known [13, 11] that 

This characterization, the Kaplansky density theorem, and the density of the 
91A in 91, then ensure the choice of a directed set of self adjoint B~ ~ 91 such that 
lIBel[ is uniformly bounded 

lim l] [B~, A]  II -- 0 ,  A ¢ 91 

and 
lira II(rc,(B~) - z)~p II = 0,  tp ~ W , .  

~t 

Forming the regularized B~(f)  as before we note that {B,(f)} is a stabiliser of 
(91, ~). 

Now as co is z-KMS it is in particular ~-invariant and there exists a strongly 
continuous one parameter group of unitaries U, acting on J r ,  such that 

~.(%(A)) = U.(t) Tc.(A) U.(t) -1 , t ¢ IR, A ~ 91 
and 

u . ( t )  z =  z U~( t )  , t e IP.. z ~ 3 .  

(see for example [14]). Thus 

II0z~o(B~ ( f ) ) -  ~ dt f ( t )  z) ~ [[ 

<= ~ dt[f(t)l H(Tc,(B)- z) U.(t)tpl[ . 

Taking f d t f ( t ) =  1 we deduce that s -  l imrc , (B,( f ) )=  z. Now let us consider 

the convergence of the perturbed states associated with the stabilizer. These 
states are of the form 

c%,(f)(A) = (~v(B,(f)), T%(A) ~p(B~(f)))/ll ~(B~(f))II 2 
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where we have used Araki's notation [3] 

~p(h)= ~ ( -1)"  ~ ds l . . .ds ,  Uo(isl)hUo,(i(s2-sl))...U~o(i(s,-s,_a))hf2o, 
n>_0 0_-<sl_-< '" Ns.__<~ 

for each h e rc~. 
But Proposition 4.1. of [3] establishes that if h~ 6 rc~ converges strongly to 

h 6 ~z~ then tb,(h~) converges strongly to ~p(h). Thus v?(B~(f)) converges strongly to 
~p(z). But as z commutes with U~, the vector ~p(z) is easily evaluated and one has 

s-lim ~p(B~ (f)) = e- ~/2 f2,o. 

Therefore 

lim coBb(f) (A) = (f2o,~o,(A) e-~f2~)/(f2o,, e-~(2o,)4: co(A) 

and Condition 4 is false. This proves the theorem. In fact we have established more 
concerning the structure of KMS states and stabilizers. 

Theorem 3. Let  co be a locally normal z-KMS state over a quasi-local C* 
algebra 91 and let do be any z-KMS state which is majorized by co. 

Given e > 0 there exists a stabilizer ~ = {P~} of  (91, z) such that 

supA~ lim~ cop.(A) -- do(A)/ll A 11 < e. 

Pro@ Each z-KMS state co which is majorized by co is of the form [8-10] 

do(A) = (f2o, TT:~,(A) ~o~) 

where Te  3~, 0 _< T < 1, and 

(t2~, TQ~)= 1. 

Now introduce T, by 

and note that 0 _< T. =< i, T. ~ 3~, and 

(Q~o, Tn Q~)= t .  

The states co, determined by T,, i.e. 

are also z-KMS and satisfy the estimate 

Ico.(A) - do(A)[ < 2 [IA Un. 

Hence given e > 0 one can choose n such that 

sup Ico,(A) - do(A)l/IbAlk < ~ . 
Aeg.l 

, , - - / i x - - /  

is bounded, and e-z"/co(e-2")-- T,. 
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But in the proof of Theorem 2 we have constructed a stabilizer such that each 
state of the form co, can be attained as a weak limit. This completes the proof of 
the theorem. 

3. W e a k  B o u n d a r y  Per turbat ions  

In quantum statistical mechanics the basic assumptions used in the previous 
section are often invalid, e.g. there appears to be no pair (9.I, z) with the assumed 
properties, associated with the free Bose gas. Thus in this section we attempt to 
draw some of the conclusions of the previous section under weaker circumstances. 

Throughout  this section ~ '  will denote a yon Neumann algebra acting on a 
Hilbert space ~ and U a strongly continuous one-parameter group of unitaries 
on ~ which implement automorphisms z of 0/g, i.e. 

M ~ d/l ~-,'c~(M) = g ( t )  M U( - t) ~ J/l[ 

for all t e IR, M e ~ .  Further co will denote a state over ~ determined by a cyclic 
vector fJ e ~vt ~. 

We will need a weaker notion of stabilizer 
Definition 2. A stabilizer of (d/d, z, co) is defined as a directed set ~ = {P~} of 

self-adjoint z-analytic elements P~ of Jg with the properties that ][ P~ If, and [I ri(P~)[[, 
are bounded uniformly in e and 

lim [[(zte~(M) - zt(M) ) PI[ = 0 
c~ 

for all M e J//, t e IR and p ~ ~ ,  
The first question that arises is whether stabilizers exist. We first demonstrate 

that {P~} exist, for a general triplet (~/, z, co) satisfying all the requirements except 
the z-analyticity and the boundedness of ]]~i(P~)ll. To construct such a sequence 
take z e ~/~ c~ ~ '  and choose P~ e ,/~ such that P~ converges strongly to z. Now if 

U ( t ) - ~  e iHt 

and we define 
Up~(t)  ~- e im + e~)~ 

then one can show [I] that 
zP~(M) --- Ue,(t  ) M Ue~ ( - t) .  

Thus one estimates, as in Section 2, that 

Itl 
ll(z~(M)-zt(M))~fl[ =< ~ ds tI[P~, z~(M)] L ~ ( s -  t) PII 

0 

Itl 
<= 211P~t! tlMtl .[ dslt(Up.(s)- b~(s)),pll 

0 

10 
+ ~ d s t l [ P ~ - z , % ( M ) ]  O~(s- t )~pII .  

0 

Hence invoking the uniform boundedness principle and the Lebesque Lemma we 
deduce that zf~(M) converges strongly to z~(M) whenever Ue,(t ) converges strongly 
to U~(t). But t~t 

II(Up~(t) - Uz(t)) PII <-- j ds II(P~ - z) ¢A~(s) ~p]] 
0 

and hence the convergence is ensured. 
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If the triplet (M, z, co) also satisfies the requirement that the centre of Jg  is 
left pointwise invariant under -c, i.e. each z ~ J tc~dg '  commutes with U(t) for all 
t stR, then we can regularize the above set {P,} with a regularization function f ,  
as in Section 2, and deduce that the regularized set {Pdf)} satisfy all the require- 
ments of Lemma 2. The argument proceeds as above but uses the strong 
convergence of P~(f) to z times the integral of f .  

Theorem 4. Consider a triplet (Jd, z, co) as defined above and assume that co is a 
z-KMS state over ~ .  

I f  co is stable under perturbations in the sense that 

l i m  cop~(M) = co(M), M ~ Jg 

for all stabilizers ~ = {P~} of  (d/d, z, co) then it follows that Jg  is a factor. 
If,  on the other hand, c5 is a z - K M S  state majorized by co then, for each ~ > O, 

there exists a stabilizer of  (Jg, z, co) such that 

sup Id)(M) - lim coe~(M)l/]l MII < e. 
M ~ '  

The proof of the theorem copies the proofs of Theorem 2 and 3. One also uses the 
new definition of a stabilizer, the pointwise invariance of d/ /~ J t '  under "c which 
follows from the KMS condition (see, for example [-10, 14]) and the fact established 
above, that each z e d//c~ ~/ '  can be strongly approximated by a stabilizer. 

Acknowledgement. One of us (HN) is grateful to l'Institut Fran?ais de Vienne who enabled this 
collaboration and the CNRS, Marseille, for its hospitality. 

References 

l. Robinson, D. W. : Commun. math. Phys. 31, 171 (1973); see also Streater, R. F. : Commun. math. 
Phys. 7, 93 (t968) 

2. Haag, R., Hugenholtz, N., Wirmink, M. : Commun. math. Phys. 12, 215 (1967) 
3. Araki, H.: Pub. Res. Inst. Math. Sci. Kyoto, 9, 87 (1973) 
4. Robinson, D.W. : Proc. Varenna Summer School (1973) 
5. Araki, H. :Golden-Thompson and Peierls-Bogoliubov inequalities. Kyoto (preprint) 
6. Rudin, W.: Real and complex analysis. London-New York: 1970 McGraw-Hill 
7. Kastler, D., Pool, J.C.T., Poulsen, E.T.: Commun. math. Phys. 12, 175 (1969) 
8. Araki, H.: Commun. math. Phys. 14, 120 (1969) 
9. Lanford, O.E.: Syst~mes/l un nombre infini de degr6s de libert6. CNRS, Paris (1969) 

10. Ruelle, D.: Carg6se lectures in physics. New York: Gordon and Breach 1970 
11. Robinson, D.W. : Commun. math. Phys. 41, 79--88 (1975) 
12. Haag, R., Kadison, R., Kastler, D. : Commun. math. Phys. 16, 81 (1970) 
13. Ruelle, D.: J. Funct. Ann. 6, 110 (1970) 
14. Winnink, M.: Carg6se lectures in physics. New York: Gordon and Breach t970 

Communicated by K. Hepp and J. L. Lebowitz 

Heidi Narnhofer 
Institut fiir Theoretische Physik 
der Universit~it Wien 
Boltzmangasse 5 
A-1090 Wien, Austria 

Derek W. Robinson 
Centre de Physique Th6orique 
C.N.R.S. 
31, chemin J. Aiguier 
F-13274 Marseille Cedex 2, France 


