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Abstract. Peculiarities of symmetrical quantum systems are considered with 
the aid of the Mackey's induced representations theory. The four-dimensional 
coordinate representation of the relativistic quantum mechanics suggested by 
Stueckelberg in 1941 is rederived, reinterpreted and generalized for an arbi- 
trary spin. Then it is applied to introduce the causal propagator as a particle- 
antiparticle transition amplitude without consideration of a field equation. 
Finally the theory of relativistic quantum particles interaction is reformulated 
without an appeal to the concept of quantized fields. 

1. Introduction 

The present paper is the first one in the series devoted to reformulation of the 
relativistic quantum theory of particle interactions in terms of elementary particle 
states with no appeal to the concept of quantized field. The new formulation is 
based essentially upon the four-dimensional coordinate representation of rela- 
tivistic quantum mechanics suggested by Stueckelberg at 1941. The symmetry 
properties of Minkowski space-time and group-theoretical methods are used in 
the present paper. The next one will deal with the quantum particle theory in 
the de Sitter space-time. The same methods appear applicable in this case because 
the de Sitter space possesses a sufficiently large symmetry group. 

Relativistic wave functions have been considered by Stueckelberg [1] with 
the four-dimensional normalization integral 

IttJ.'lt 2 = ~ d4xitp(x)12 (1) 

The theory based on such functions has met difficulties in interpretation and was 
forgotten. Yet some authors were discussing the unusual relativistic position 
operator in the last years [2-5], which proved [2] to correspond to the repre- 
sentation, considered by Stueckelberg in [1]. Let us call this operator the Stueckel- 
berg position operator and the corresponding representation--the Stueckelberg 
one. The equivalent concept of localization was used in an other connection in [6]. 
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The Stueckelberg position operator satisfies all plausible conditions (trans- 
formation properties, orthogonality of eigenvectors and so on). However this 
operator acts in the space of functions normalized according to four-dimensional 
integral (1) and its eigenvectors (localized states) are orthogonal in respect to the 
corresponding scalar product. This space is not a space of real states for a particle 
with definite mass and spin. This leads to difficulties in interpretation. 

It was shown in [7, 8], that the Stueckelberg coordinate representation as well 
as its generalization for any spin arise naturally as a representation of the Poincar6 
group induced from the Lorentz subgroup. A connection was found between this 
representation and the one describing states with the definite mass and spin. In 
the present paper we shall find on this basis a probability amplitude for propa- 
gation the particle from one point to the other, introduce a conception of causal 
propagator, calculate the causal propagator for any spin, and finally construct 
the quantum particle theory with no appeal to the concept of quantized field. 

As to the Stueckelberg coordinate representation, it acquires physical sense 
in terms of virtual states arising as separate interfering alternatives for any real 
process to occure. 

The final scheme we arrive at is identical with the space-time interpretation 
of the quantum field theory suggested in classical works by Feynman [9]. Yet 
the rather simple Feynman rules needed much more complicated concepts and 
methods of quantum field theory for their substantiation. It will be demonstrated 
below that the Feynman scheme may be formulated as a closed one if the 
Stueckelberg coordinate representation is used. 

This result proves to have some significance apart from reinterpretation of 
the well known series for the S-matrix. Propagators arise in this approach as 
probability amplitudes rather than Green's functions, and because of this the 
present approach may have nontrivial applications for example in the case when 
some classical field is present besides interacting quantum particles. 

For the readers' convenience the results of [7, 8] are summed up in the next 
section, i.e. the Stueckelberg coordinate representation and the Wigner linear 
momentum representation are derived with the aid of the inducing method 
(Mackey's theory) in the group theory. The subsequent sections describe the 
scheme for the construction of relativistic quantum theory of interacting particles. 
Some more details have to be published in the book [10]. 

2. Poincar~ Invariance and Induced Representations 

Given a space X on which a group G acts transitively as a transformation group. 
Then X is called a homogeneous space of the group and it may be realized as 
the quotient space G/K of the group with respect to a subgroup K, the latter being 
the stabilizer for some (arbitrarily chosen) XoE~ i.e. 

K =  { k e G : k x o =  Xo} . 

Explicitly, having chosen x o (and hence K), a point x~ ~ corresponds to the right 
coset 9 K  where 9Xo = x. It is convenient to choose in each coset a representative 
xGEG. We then have an injection x-->x G from the homogeneous space into the 
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group. Once such a choice has been made there arises the system of factors (g, x)K 
by 

gxG = (gx )dg ,  x)K . 

Any linear representation A of the subgroup K (acting, say, in a space ~ )  may 
be lifted to a linear representation U of G acting in a space o~. This induced 
representation, denoted by A(K)TG is defined as follows [ t l ,  12] t. A vector in 

is a function on Y" with values in ~ .  Denoting it by- ~0 the transformation 
law is 

(g(g)q2)(x) = A (k)q)(g- 1 X) with k = ( g t ,  x)~c ~. (2) 

Equivalently one may consider ~p as a function on the group restricted by the 
structural condition 

~o(gk) = A(k- 1)q,(g). (3) 

The transformation law is then simply 

(U(g)(p)(g')= (p(g- l g,) . (4) 

If then representation A has an invariant sesquilinear form (q~, ~0') and dx is an 
invariant measure on ~r then A (K)TG has the invariant sesquilinear form 

(~o, ¢9  = j dx(~o(x), q)'(x)5. (5) 

One more thing necessary for our purposes is intertwinin 9 of  induced repre- 
sentations. Let Ua=A(K)TG and UA=A(H)'[G be two induced representations. 
The operator T : W ~ Y f a  is called intertwining operator (this being expressed 
by T ~ [ U  ~, U A] if 

T U  ~(g)= U A(g)T 

holds for all ge G. It may be shown [11, 12] that an arbitrary intertwining operator 
for these representations has the form 

( T(p)(g)-= ~G/K dx t(g- l xa)q)(x) , (6) 

where t(g) is a linear operator from S n  to 5¢A and the mapping g~t(g) satisfies 
the structural condition 

t(hgk) = A(h)t(g)A (k) (7) 

for all geG, heH,  keK .  
We shall be concerned with two kinds of induced representations of the 

Poincare group P. The first is the set of unitary, irreducible representations [13] 
describing the states of a particle with mass m and spinj and which will be denoted 

1 It may be noted [see (8)] that this induction process provides a natural quantization method for 
a classical system possessing sufficient symmetry, e.g. when the configuration space is a homogeneous 
space of the symmetry group. 
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by U~j. For  their description in terms of induced representations see also [14]. 
The homogeneous space is here the hyperboloid of 4-velocities v 

(v, v) =(v°) 2 -  v 2,  v ° > O .  

Picking as the reference point x0 the point eo = (1, 0, 0, 0) the stabilizer group 
consists of the space-time translation group T and the 3-dimensional rotation 
group R. Then 

U,,j = Amj(TR)T P,  

where Am2 is given by 

A~(arr)=eima°A j(r) 

with a =(a  °, a 1, a 2, a3), a T eT, r s R  and A2 the 2 j+  1-dimensional unitary irreducible 
representation of R. With the invariant measure dv=v  o I d3v on the velocity 
hyperbotoid and the scalar product defined according to (5) Umj is unitary. 

The other kind of representation we shall consider results if one takes Min- 
kowski space as the homogeneous space of P from which the induction process 
starts 2 Choosing the origin as the reference point x o the stabilizer group is the 
homogeneous Lorentz group L. This leads to induced representations U D = D(L)~ P. 
Here D is some representation of the homogeneous Lorentz group, usually sug- 
gested as finite dimensional. The space )FD consists of functions v2 on Minkowski 
space with values in SD(Sg~ D being the carrier space of D). We have the trans- 
formation law 

(Uo(ar)~p) (x) = ~p(x - a), (8) 

(UD(1)tp)(x)= D(1)tp(l- ix) A ~ L . (9) 

There exists an Hermitean but indefinite form (~p, ~ ' )v  in 5°D invariant under 
D(L). Correspondingly we have in the carrier space ~gfD of Up the invariant 
(indefinite) form 

(1~, I~')D = ~ d4X(lp(X), ~J(X) ) D = ~ a ' x l p ( x ) l y ( x )  , F = F + F  . (10) 

The space -NFD may be considered as an adaptation of the Stueckelberg repre- 
sentation to the case of arbitrary spin. Vectors in this space cannot be regarded 
as physical states of a particle. The most significant reason is that they may have 
a limited extension in time. The improper vector ~x(X')=c$4(x-x')F, FE 5~ D cor- 
responds to 4-dimensional localization in the space-time point x. One may inter- 
pret such vectors as related to a virtual event encountered in the interaction of 
the particle with others (see below). 

The operator J r n j : J l ~ m j - - ~ D ' e s t a b l i s h i n g  relations between spaces of real 
states of a particle and localized (Stueckelberg) states has to maintain the sym- 
metry properties. It means that Jmj intertwines corresponding representations: 
Jmi~[U,,~, Up]. With the aid of the theorem on intertwining of the induced 

2 It has been brought to my attention that this construction has also been discussed in [15]. 
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representations [Eqs. (6) and (7)] one obtains 

Jmjq)(x) = %,~(X) = (m/( 4rC3/z)) ~ dye- im°"~ D(vc)J /p(v) , (11) 

where JjG [Aj, D+R]. This means that the operator Jr: 5 e J ~ D  intertwines Aj(R) 
with the representation r ~ D(r) of the rotation group R. VL is the Lorentz trans- 
formation (boost) bringing eo to v. 

The form (Pmj, ~P~q)D does not exist. Thus Jmj~mi forms a subspace of gener- 
alized (unnormalizable) vectors in .2C D. But the form (~p, ~mj)D is well defined 
provided tp is a normalizable vector in ~¢'D. This yields the invariant form AOP, q~) = 
(~, Jm/P)D with arguments ~p~XCD, q)~2C,,j. This form may be naturally inter- 
preted as a probability amplitude for the real state ~o to convert into the localized 

(Stueckelberg) state ~,. Analogously A(~0, ~)=(J,,jq~, ~)D =(~mj, ~P)D wilt be inter- 
preted in the following as an amplitude for the localized state ~# to convert into 
the real state (p. 

3. Amplitude of Particle Transition in Space-Time 

Connection between the localized state space ~ D  and the particle state space 
~Cm~ may be established in the opposite direction. It is an intertwining operator 
Kmj~[UD, U,q] that is needed for the purpose. The same method gives for it 

Km/p(v) = (p(v)= (m/(47c3/2)) S dxeim(v'XI KiD(VL 1)I])(X) ' (12) 

where Kj~ [D+R, Aft. The operator Kmj appears to extract the part corresponding 
to the given m,j from a localized state of a particle. 

An important physical conclusion may be drawn if one projects ~ D  onto the 
physical space ~mj  and rewrights the result again in the coordinate representa- 
tion. The composition of these two operations is described by the generalized 
projector Pm~ = JmjKmd for which one has 

P,,qtp(x) = ~ dx' Pmj(x - x')q~(x') , (13) 

where 

Pmj(X-- x') = (m2/(16rc3)) y dye- im(v,x- x')Pj(V), (14) 

P j(v) = D(VL)P jD(v L ~) , (15) 

Pj =J jK j .  (16) 

If the operators Jj and Kj correspond to each other in a certain sense then 
KjJj=~. and consequently P2 is a projector. It has sense as a projector onto the 
definite spin j [of all spins described by the representation D(L)] in the rest system. 
A projector on this spin in an arbitrary reference frame Pj(v) arises as a result 
of boosting. 

It may be shown that the operator pi(v) is a polynomial in 4-velocity com- 
ponents v u, # = 0, 1, 2, 3, provided D is a finite-dimensional representation, There- 
fore the kernel Pmj(X--X') can be transformed to the form 

Pmj(x - x') = P j((i/m)O/Ox)Pm(x - x'), (17) 
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where 

P ~ ( x -  x') = (m2/(16rta)) j" dye-im(~,~- ~') (18) 

is the negative-frequency part of the Pauli-Jordan function. 
Let us postulate that virtual localized states, arising in the course of inter- 

actions, may be converted one into another, these conversions occuring through 
the intermediate real states. This means that the localized state ,p ' e~ , )conver t s  
into some real state ~0~f~=j. and further into the localized state ~. In order to 
calculate the probability amplitude of such a process, one must multiply the 
amplitudes of the transitions N'--+q~ and c#~V), and add the products, resulting 
from all possible alternative intermediate states q~. The latter means that (0 runs 
through some basis in almS. These calculations may" be carried out with the aid 
of amplitudes A(cp, ly) and A(N, c#) found in the preceding Section. It is obvious, 
that the resulting amplitude may be expressed by means of the projector P~j as 
follows: 

Ams(~, ~P') = (*P, Pm~tP')o. (19) 

For point-localized states *Px, ~ '  this formula gives 

A,,jOP~, ~P~,) = < F, Pmj(X - x')F'S o = F P,,j(x - x')F' . (20) 

This is the reason for the kernel Pmj(X--X') to be called the amplitude of propa- 
gation of the particle (not causal propagation however, which will be considered 
below). 

4. Antiparticle and the Causal Propagator 

One of the main principles of the relativistic quantum theory in the present for- 
mulation concerns the character of the particle and antiparticle propagation. 
Following the idea of Stueckelberg and Feynman [9] we shall postulate that the 
particle and antiparticle differ by the sign of mass and propagate in the mutually 
opposite directions of the time axis. In fact there appears a new object in the 
theory which could be called a particle-antiparticle complex. Let us make these 
statements more precise. 

An elementary particle was defined in Section 2 by the induced representation 
A,,s(K)TP, m being supposed positive. Let us define an antiparticle in the same 
way but replacing m with ( -m) ,  All quantities characterizing a particle will be 
marked by the superscript "plus" while those of an antiparticle will be marked 
by the sign "minus". For example 

(+--) _+ im (co,a) Ares (arr )= e Aj(r ) . (21) 

There exists a natural correspondence between particle and antiparticle states 
described by the charge conjugation operation Ic: JF~)--+~(m~ ) as follows 

Ic@ +- )(v) = Cj cp ( +- )(v) , (22) 
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where Cje[Aj, Aj] and CjCj=11. The coordinate representation is the same for 
particles and antiparticles, and a charge conjugation Ic:~D--~:~f D has the fol- 
lowing form in it: 

Icy(X ) = C~p(x), (23) 

where CE[D, D], CJ~+)=J}-)Cj  and CC=IL 
The considerations of Section 5 which may also be conducted for the case 

of an antiparticle lead to the particle and antiparticle transition amplitudes: 

t ~  )(x - x') = Uf  )((i/m)8/~x)1 ~+ )(x - x') , (24) 

where 

/~+)(x-  x')= (mZ/(16rc3)) S dye+ im( . . . . .  ') (25) 

are the negative- and positive-frequency parts of the Pauli-Jordan function cor- 
respondingly, and matrices ~-+)(v) are obtained by "boosting" (17) from the 
properly chosen matrices 4 +) . 

Let us define the causal propagator U~j (x -x ' )  as a probability amplitude for 
the particle or (alternatively) antiparticle transition from the point x' to x. Taking 
into account that a particle extends to the future while an antiparticle goes to the 
past one must put 

U~j (x -  x') = O(x - x')P(+ )(x - x') + O(x ' -  x)l~,~ )(x - x') , (26) 

where 
f l  if x ° > x  '° 

O ( x - x ' ) = l O  if x ° < x ' ° ,  (27) 

One may write this in covariant form as 

P~,j(x - x') = Pj((i/m( ~/Ox)P,~(x - x ' )  , Pj(v) = P) +)(v) = P) - ) ( -  v), (28) 

where U,, is the scalar causal propagator of Stueckelberg. It is important, that 
Um(x-x ' )  turns out to be a Green's function for the Klein-Gordon equation: 

([3 + m2)U~(x - x') = - i6(x - x').  (29) 

The probability amplitude for the causal transition between two point-localized 
states is expressed through the causal propagator as 

c - t~,,j(x - x )F )D = F l~ j (x  - x')F'.  (30) Am~(~x, ~ x , ) -  ( F ,  ' ' - 

Remark 1. The formula (17) defines the polynomial Pj(v) only on the hyper- 
boloid of four-velocities. The extension of the polynomial onto the whole 
linear momentum space R 4 is ambiguous, because it admits adding of an arbi- 
trary polynomial Q(k), kER 4, multiplied by (k, k) -1 .  Consequently the differen- 
tial operator Pj(iO/m) may be altered by an additional term, containing the Klein- 
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Gordon operator as a factor. This leads to an additional quasilocal term 
Q(~)c3(x-x') in the causal propagator P~j (x -x ' ) .  The requirement for the propa- 
gator to be a Green's function of some equation diminishes this ambiguity. 

Definition of the causal propagator proves to be unambiguous for the spin j__< 1 
described by one of the simplest representations D of the Lorentz group. In turn 
the requirement for the propagator to be a Green's function may be formulated 
as the requirement for the corresponding integral operator to have the differential 
operator as an inverse. In such a form this requirement may be justified in the 
framework of the present approach, based on transition amplitudes. This line of 
investigation leads to the local Jormulation of the theory [10]. 

Remark 2. One can easily derive the following integral relation 

~r r~ G i ~ do- (x)P~,.~(x- x ) ~ P~,.~(x r'- x')= P~,.~(x- x'), (3 i) 

where integration goes over any closed hypersurface surrounding the point x', 
the other point x being outside. This relation means that the amplitude of tran- 
sition from x' to x is equal to the sum of amplitudes of transition through all 
possible points of the surface S. The relation looks like the Einstein-Smoluchowski 
condition in the functional integration theory 1-16, 17]. It may serve as the basis 
for definition of the functional integral of a certain kind. The latter might enable 
one to generalize a causal propagator to the case of an arbitrary external classical 
field. 

The amplitude of a causal propagation A~q(~ x, ~px,) is linear in the tp:,, and 
antilinear in ~ .  This corresponds to its interpretation as an amplitude of the 
transition ~ , ~ p ~ .  With the aid of the charge conjugation one may go over to 
the amplitudes for the causal production and annihilation of the pairs of localized 
states: 

_ _  - -  p ~ - ~ T .  1 '  t A~j(N~, v2~,)- FPP,,;(x- x )F , A~q(p~, ~ , ) = F  W~j(x-x)F , 

where the superscript T denotes the matrix transposition and the following 
notations are used: 

Wmj(X -- X') =/~m2(X -- xr)cFr ; Fmj(X -- X') = C ÷ F Pm2(x - x') . (32) 

The ambiguity in interpretation of the causal propagation is a consequence of 
the fact, that the coordinate representation is unique for the particle and anti- 
particle. There is an analogous ambiguity in interpretation of interactions. One 
may accept any possible interpretation, while ensuring, that interpretations of 
propagation and interactions correspond each other to give Lorentz-invariant 
convolutions (see the next section). 

It appears that the symmetry property 

[P~(- v)]T(C* F) T =(-- 1)2Jc + rp2(v) 

takes place for any finite-dimensional D(L). Consequently the amplitudes of pro- 
duction and annihilation of the pairs of localized states are symmetrical for an 
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integer spin and skewsymmetrical for a half-integer one: 

[e~°(x ' -  x)]  ~ = ( -  1 W / ' ~ ° ( x  - x ' ) .  

This symmetry is important for the spin-statistics relation. 

(33) 

5. Local Interaction and Amplitude for Arbitrary Process 

The causal propagator, describing transitions of localized states through the 
intermediate real ones, was defined in the preceding section. Let us assume that 
besides the causal propagation, the direct transitions between point-localized 
states also exist. Let the direct transitions not change the point of localization. 
Call such transitions local interactions. The point-localized state ~x(X') = ~(x-  x')F 
is characterized by the localization point x ~ f  and the polarization vector 
F~A°D. If the local interaction occurs at the point x and includes the particles, 
corresponding to the representations D 1,--., D,, then it can be defined by the local 
interaction amplitude -t~(F 1 .. . . .  Fn). The mapping 7x of the product ~D~ × .-. × ~ ) ,  
into the set of complex numbers is linear in the vectors, describing the particles 
before transition, and antilinear in the particles after transition. 

The mapping 7x is determined by the matrix i... )~x ...k a s  

7~(Ft . . . . .  Fn) = 7~ ... k(fl) i . . . . . .  (F,) k . (34) 

The requirement for the local interaction to be invariant under the Poincare 
transformations, preserving the point x, yields that 7~(F1,...,Fn) is invariant under 
the Lorentz transformations of F~ ..... F,. This means that the matrix 7~".,,k is 
proportional to some generalized Clebsh-Gordan coefficient, the factor being a 
coupling constant. Invariance under translations yields that the coupling constant 
does not depend on the space-time point: 7~=7. 

Just as in the case of the causal propagator, the local interaction amplitude may 
be reinterpreted if one of the functions ~p~ is treated as the complex conjugate of 
the wave function of the charge conjugated particle. Then production of the 
particle and annihilation of the corresponding antiparticle would be interchanged. 
Any interpretation may equally be used, but accordance with the interpretation 
of causal propagators should be ensured. It is convenient to choose 7 to be linear 
in all its arguments, and interprete it as an amplitude of annihilation of many- 
particle localized state into a vacuum. Then causal propagators in the form 
P ~ ( x - x ' )  ought to be used, describing the pairs of localized states production. 

Let us summarize the previous considerations. Some elementary processes 
with particles were considered, and their probability amplitudes found or sug- 
gested. Those are the following transitions: 

i) Conversion of the real state ~,,j into the point-localized one tp~ (localiza- 
tion) with the amplitude F~p,,j(x) and the conversion of the localized state tp~ 
into the real one t:,,j (materialization) with the amplitude 3 ~7~j(x)F. 

3 In this interpretation a direction of the transition is defined in respect to the "proper time", which 
is opposite to the ordinary time in the case of an antiparticle (the Stueckelberg-Feynman conception). 
Consequently if ~ :  is a real state of the antiparticle, then localisation Ptpm~(X) and materialization 
~,q(x)F are actually correspondingly production and annihilation of the pair of the point-localized 
and the real states. 
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• ii) Transition of one localized state Px' into another ~x through one of the 
real states of the particle (if x > x') or antiparticle (if x < x'), both alternatives 
forming a single process called causal propagation, with the amplitude 4 
m t ! 

F P~j (x -  x )F . 
iii) Direct transition between the many-particle states localized at a single 

point (local interaction) with the amplitude s 7(F 1 ... . .  F,). 
One needs one more suggestion to complete the particle theory, that the real 

processes may occur only through sequences of elementary acts of the mentioned 
three types. An amplitude of any real process may be reduced to the sum of 
products of the elementary amplitudes, each product corresponding to an alter- 
native realization of the process through the elementary ones. 

Let us make more precise, what concepts and suggestions form the basis of 
the present formulation of the particle theory. The space of real states of the 
particle (antiparticle) is defined as the carrier space of the irreducible unitary 
representation of the Poincare group with the positive-definite (correspondingly 
negative-definite) energy. The space of localized states of both the particle and the 
corresponding antiparticle is defined as the carrier space of the representation, 
induced from the finite-dimensional representation of the Lorentz subgroup. This 
space contains a subset of point-localized states, playing the most important role 
in the theory. The whole theory is strictly regulated by the requirement for proba- 
bility amplitudes to be covariant under the Poincar6 group. The rule of summing 
amplitudes of alternatives is supposed. Besides these rather general suppositions 
only one specific postulate is suggested. It states that the quantum transitions of 
only three kinds or any sequences of them are admitted. These three elementary 
transitions are: i) localization and materialization; ii) causal propagation and 
iii) local interaction. The amplitudes for the elementary transitions can be derived 
from the qualitative definition of them as given above, and from Poincar6 
covariance. The amplitude for any composite process can be calculated with the 
aid of the rule of summing up alternatives. 

Some additional explanations are necessary on the calculation procedure. The 
concrete version of the particle theory is fixed by the list of particles and inter- 
actions, admitted by the theory. The particle is determined by the triple (re, j, D), 
and the interaction is determined by the amplitude 7. Then for any reaction all 
alternative sequences of elementary transitions, resulting in this reaction, are to 
be enumerated and corresponding amplitudes summed up. The amplitude of 
each alternative is the product of elementary amplitudes. 

Enumeration of alternatives can be carried out with the aid of the Feynman 
diagrams in an obvious manner. 

Remark 3. If the transition between real states occurs for a finite time interval, 
then its amplitude corresponds to the diagrams with external lines, ending on 
some spacelike surfaces. Such line corresponds to the integral 

f da"U~,(x'-x)(?~-~.tp(x) or j" da'~(x)SZtx~j(x-x') .  

* Two other possible descriptions of the same process are production and annihilation of the pair 
of localized states with amplitudes PP~(x-x')P r and FrP~j(x-x')F ' correspondingly. 
5 Other possible interpretations of the same process are obtainable if production of some localized 
states are substituted by annihilation~ or vice versa. The interpretations of local interactions and 
causal propagators ought to be chosen consistently. 
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The  ampl i tude  described previously (one for an infinite t ime interval) m a y  be 
obta ined  if some of the surfaces tend to the infinite past, while the others tend 
to the infinite future. This p rocedure  clarifies an interpreta t ion of external lines, 
because it takes into account  an relat ion of the p roper  and ordinary  (coordinate) 
time. 

6. Concluding Remarks 

The above considerat ion demons t ra tes  that  the relativistic q u a n t u m  theory may  
be given the form, essentially similar to the form of the nonrelativist ic theory. The 
similarity becomes  actually more  startling, if the nonrelativist ic quan tum me- 
chanics is constructed by means  of the induced representat ions  of  the Galilei  
g roup  [10]. Yet there is nothing surpris ing in this similarity, because even the 
t radi t ional  quan tum field theory usually gets its final in terpreta t ion in terms of 
the per tu rba t ion  theory. The point  is that  each order  of the pe r tu rba t ion  theory 
includes just a finite n u m b e r  of  particles in the intermediate  states, so that  the 
infinite number of degrees of freedom are effectively reduced to a finite number of 
them. The present  approach ,  explicitly using virtual  localized states, enables one 
always to remain in the f ramework  of the theory with a finite n u m b e r  of  degrees 
of  freedom. It might  be said that  the per tu rba t iona l  form of the quantum field 
theory is re formula ted  as a quantum particle theory. 

Certainly,  all the usual difficulties such as divergencies, appea r  in the present  
approach  as well. Yet this re in terpre ta t ion  seems to be useful for the general izat ion 
of the particle theory to the case of a curved space-t ime. Such generalization 
appears  immediate ly  possible for the de Sitter space-t ime, provided the lat ter  
possesses a 10-parameter  symmet ry  group. It is more  r emarkab le  that  the gener- 
alization onto  any Riemann ian  space- t ime seems to be possible, if one takes the 
set of  all parallel  transfers as a background  symmet ry  1-18, 19]. 
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