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1. Introduction 

Although the study of the onset and development of thermal convection in shear 
flows dates back to the 1920's, interest in the topic continues to be high due to its 
importance in several distinct fields of research. In a review by Kelly [1], 43 of the 
references listed were found to have been published within the past ten years. Many of 
these, however, were related to the prediction of linear stability theory that, at low 
Reynolds numbers, the preferred mode of convection consists of longitudinal rolls or 
vortices which are spatially periodic in a direction normal to the plane of the flow and 
whose axes are in the direction of the flow. (This prediction holds for a unidirectional 
flow with a horizontally constant vertical temperature gradient imposed on it and with 
no side-walls.) Knowledge concerning possible secondary instabilities of the rolls as the 
Reynolds (Re) or Rayleigh (Ra) number increases is still scanty, although the original 
observation of such a possible instability was made in 1937 by Avsec [2] for the case of 
a channel flow over a heated plate. In fact, the single relevant theoretical investigation 
has been made only recently by Clever and Busse [3], for the case of free convection 
flow in an inclined layer. They obtained satisfactory agreement with the experimental 
results of Hart [4], who observed in that case the onset of waviness in the rolls as Ra 
increases for a fixed angle of inclination. In this paper, theoretical prediction of the 
onset of waviness in the rolls is made for the case of Couette flow when heated from 
below. Although this problem is somewhat similar to the instability of Taylor vortices 
contained between concentric, rotating cylinders [5, 6], the governing equations are 
different due to three-dimensionality, even if the Prandtl number is taken to be unity in 
the convection problem. 

Perhaps the most interesting application of results concerning thermal convection 
in a shear flow is to the appearance of cloud streets in the planetary boundary layer. The 
streets are formed by the advection of moist air upwards in the convergence region of 
roll vortices, as shown schematically in Fig. 1 (taken from the paper by Fleagle [7]). 
According to Kuettner [8], the spacing between cloud streets is 2-8 kin, and they can 
extend up to 500 km in length. Kuettner presented data obtained in the tropics, where 
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Figure 1 
Schematic of flow in the planetary boundary layer, with longitudinal rolls giving rise to cloudstreets (from 
[7]). 

the main forcing mechanism for the rolls is undoubtedly buoyancy. The rolls were 
found to be aligned in the mean wind direction, and the ratio of wavelength to inversion 
height was close to what one would predict on the basis of linear Rayleigh-Benard 
convection theory. The very fact that organized structures were observed suggests that 
the mean effects of turbulence can be simulated by an eddy viscosity. Krishnamurti [9] 
has discussed in detail the occurrence of cellular convection in the atmosphere on this 
basis. 

In regions away from the tropics, the Coriolis force can be important for the 
occurrence of the rolls, both in its effect upon the mean velocity profile and in including 
instability (cf. [10]). In a study of field data collected in the USA, LeMone [11] 
concluded that the observed structure of the atmospheric rolls was similar to that 
predicted on the basis of Ekman layer stability analyses. However, she concluded that 
buoyancy is also important from measurements of the magnitude and aspect ratio of 
the rolls. In general, therefore, both rotation and stratification should be considered 
when modelling atmospheric rolls. 

Because we are concerned in this paper with three dimensional aspects caused by 
the instability of longitudinal convection rolls, observation of regular three dimen- 
sional structures in atmospheric rolls are of particular interest. If correlation can be 
made between any such structure and our theoretically predicted waviness for the 
convection rolls, then the use of a turbulent eddy viscosity to correlate theoretical and 
experimental results with atmospheric phenomena would be justified to a far greater 
extent than is presently felt to be acceptable. The waviness of the longitudinal rolls is 
associated with the same Reynolds stress terms which are responsible for the turbulent 
stresses simulated by an eddy viscosity. Hence, a positive correlation would indicate a 
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clear separation between the small scale atmospheric motions causing dissipation and 

the larger scales which enter the dynamics in much the same way as in laboratory 
experiments. 

At the present time, the evidence of such a correlation is far from being conclusive. 
In part, this is due to the fact that the atmospheric rolls are observed to have various 
kinds of three-dimensional structures. For  instance, Malkus and Riehl [12, p. 45] 
report in their study of cloud streets in the tropical Pacific that 'several scales of 

/ 

organization were frequently encountered, and in some disturbed regions a double 
organization was suspected, with some portions of the parallel cloud lines greatly 

amplified at periodic intervals along the r o w s . . . '  Kuo [13] has suggested that this 
modulation is due to the simultaneous occurrence of disturbances within the 
convective zone which are periodic in the mean flow direction and which propagate 
along the rolls. However, the same effect could be induced by internal gravity waves or 
Kelvin-Helmholtz waves occurring above the inversion. A much smaller scale 
structure is also often observed. For instance, Kuettner [14] states that most cloud 
streets are composed of individual cumuli 'lined up like pearls on a string' (see Fig. 13 of 
[8] for a good example). It is very doubtful if such a structure can be associated with the 
instability discussed here. However, Markson [15] has measured longitudinal 
variations in clear air convective rolls with a scale of  about 1.6 times the wavelength of  
the basic rolls. Such a scale is at least consistent with our theoretical predictions, and so 
a correlation might exist in this case. More detailed observations of the structure of the 
velocity field in the atmospheric convection rolls would certainly be very desirable. 

We proceed now to the analysis of the Couette flow problem. 

2. The Basic State 

We consider the motion induced in a Boussinesq fluid contained between two 
plane, solid horizontal boundaries (of infinite extent and separated by the distance H)  
which are moving oppositely to each other in the x-direction with a velocity difference 
AU~. The fluid is heated from below so that a constant temperature difference ATo* 
exists across the layer. Dimensional velocity components in the x (streamwise), y 
(cross-stream), and z (vertical) directions are denoted by u*, v*, and w*, respectively. 

The basic steady state, whose stability we consider later, is composed of linear 
velocity and temperature variations (corresponding to strictly laminar flow) plus the 
deviations from such variations caused by the longitudinal rolls. These rolls will occur 
as soon as Ra > Rac, the critical Rayleigh number without shear ( =  1707.8), and they 
are well-known to be the preferred form of convection for reasonably small Reynolds 
numbers (cf. [16]). The rolls are independent of the x-coordinate, and so a stream 
function (W) can be'used to describe the flow in the (y, z) plane. The basic state is then 
represented as 

U* = AU~U(y ,  z) = AUg{z  + U,(y ,  z)}, (2.1) 
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~7-z W* = (K/H)W = - ( x / H )  dy V* = (x/H)V = (K/H) , (2.2a, b) 

T* = A T * { - z  + |  z)}, (2, 3) 

where x is the thermal diffusivity and the lengths are nondimensionalized with respect 
to H. The origin of z in the following is taken to be mid-way between the boundaries. 

The x-momentum equation is then 

1 0ul~Ux 0R~ 1 +  = + - -  (2.4) 
Pr ay Oy & - z J j  ~ Oy 2 

where Pr is the Prandtl number. The equation for ~ is obtained by eliminating pressure 
from the y- and z-momentum equations and is 

L a } P--7 [ 8z 8y (V2qJ) ~3y az (V2W) 

= _ R a  ~ 0  Oy + V*W (2.5) 

The energy equation is 

 z y+W =v o (2.6) 

The boundary conditions are 

0~  O~ 
U1 = - - | = 0 (2.7) 

~y 8z 

a t z =  +�89 
It is clear that Eqns. (2.5, 2.6) can be solved independently of (2.4). These can be 

solved just as in the case of two-dimensional convection rolls without a mean flow. The 
actual method used to solve these equations is the same Galerkin technique explained 
in detail by Clever and Busse [17]. The wavelength of the rolls is assumed to be the 
critical wavelength for the onset of Rayleigh-Benard convection. Once ~ is determined 
as a function of Ra and Pr, UI(y, z) can be determined from the linear, inhomogeneous 
equation (2.4), using a similar method. We note that UI is strongly dependent upon Pr. 
Its qualitative dependence upon Ra is revealed by noting that near Rac, where �9 ~ 0 
(Ra-Rac) x/2, UI is given approximately by 

1 W=~2U1 ~2U1 
- e r  + ( 2 . s )  
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and it is clear that the average of  U1 with respect to y is zero. In this limit, U1 is produced 
solely through vertical advection by the rolls of  the mean vorticity associated with the 

Couette component.  I f  we define 

Ul(y, z) - -  ~.fl(Z) + fill(Y, Z), (2.9) 

where an overbar denotes an average with respect to y, then in general the equation for 
UI(z) is 

d2U1 _ 1 d (01W---~, (2.10) 
dz 2 Pr dz 

which yields a nonzero/-/1. The total mean flow, i.e., z + U1 is shown in Fig. 2 for the 

Figure 2 
The mean flow profile when longitudinal 
rolls are present, for various Rayleigh 
numbers (Ra) and Pr = 0.7. 
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case of  air (Pr = 0.7) and various values of  Ra. At Ra = 10,000, a pronounced 
boundary layer structure is seen, with a nearly uniform velocity core. This feature was 

found earlier by Lipps [18] in his calculation for Ra = 20,000 and Pr -- 0.7 (see his Fig. 
10). For  the same value of Ra but Pr = 9.35, Lipps found the deviation from a linear 
profile to be very small. The emergence of the boundary layers obviously affects the 
mean shear stress exerted at the walls. The increase in the mean wall shear stress, 
relative to the Couette value, is shown in Fig. 3 as a function of (Ra-Rac). The effect 
would be even greater for smaller Pr. 
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Figure  3 
The  increase in the average  wal l  shear 
stress, S = ( g j - / / #  AU*)  - 1, as a funct ion 
of  Ra for Pr = 0.7. 
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We now perturb the basic finite amplitude state just discussed by a small 
disturbance which depends on x and time, as well as y and z. For  time, we introduce the 
diffusive scaling 

t* = (n2/~c)t (3.1) 

For the streamwise component of velocity, we let 

U* = AU*(z + Ul) + (x/H)gO(x, y, z, t), (3.2) 

where ? is a small parameter. The diffusive scaling (x/H) is introduced for the 
perturbation in order to retrieve the limiting case AU~' = 0. The other velocity 
components are represented in the form 

w* = (K/H){ W 1 + g~(x, y, z, t)}, (3.3) 

etc., and a nondimensional perturbation velocity vector is introduced as 

v = iti + jr7 + kv~, (3.4)  

where (i, j, k) are unit vectors in the (x, y, z) directions. The temperature is defined by 

T* = ATe'{ - z  + | + gO(x, y, z, t)}. (3.5) 

The equations for the various disturbance quantities are obtained through lineariz- 
ation (for ~ << 1) of the full equations. They are 

1 c~v Ov 1 { Ov wc3v'~ 
p--~ & + Re U ~x + Pr V-ffyy + dz J 

1 
+ Re i(v .VU) + ffrr {j(v-VV) + k(v .VW)} 

= - V p  + RaO + VZv, (3.6) 
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~0 ~90 ~0 w~O 
+ Re e r  + + 

+-~y f + - I  = V20, (3.7) 

V.v = 0. (3.8) 

In the actual analysis, the solenoidal velocity vector is represented in the manner of 
Clever and Busse [17]. Rather complicated equations result which are not presented 
here. Both the equations and the ensuing analysis are very similar to those of  the 
inclined layer problem [3]. 

Because the coefficients of  the unknowns in Eqns. (3.6--3.8) are independent of x 
and t, any disturbance unknown, say, ti, can be assumed in the form 

~(x, y, z, t) = a(y, z) exp (ibx + ot). (3.9) 

The growth rate a is the eigenvalue for the system of Eqns (3.6-3.8). When amongst all 
disturbances (for given values of Re and Ra) the largest real part of a exceeds zero, then 
the rolls are unstable. As in the case of an inclined layer [3], the disturbance equations 
allow modes with two different symmetries. Only one of these has been fofind to be 
unstable in the range of Re and Ra investigated. For the unstable mode, tTis a symmetric 
function of y, and so the instability appears to be 'sinuous' in a plan-view. Two different 
kinds of instability can then occur. The wavy instability is characterized by real a, i.e., 
zero frequency2), whereas the imaginary part of a ( =  ai) is nonzero for the oscillatory 
instability. The latter instability manifests itself by waves travelling in either direction 
along the convection rolls, with a wave velocity different from the mean flow velocity. 

The neutral stability boundaries for these two instabilities are shown in Fig. 4 as a 
function of (Ra-Rac) and Re for Pr = 0.71. For Re = 0, the oscillatory instability is 
predominant (at least for a longitudinal roll wave number of 3.117). Although this 
mode is destabilized as Re increases, the wavy mode is affected even more. For Re 
> 39, it is the predominant mode of instability if the shear flow is established before the 
Rayleigh number is increased much beyond Rac. However, if the shear flow is 
established only after the Rayleigh number has been increased initially to a value in 
region A (bounded by the dashed line and the two stability boundaries), then further 
increase in Ra will lead to an oscillatory instability, whereas a decrease in Ra will lead to 
a wavy instability. If Re is increased from zero for a fixed value of Ra in region A, then 
either instability can occur, depending upon the value of Ra. We also note, for Re 
> 200, the rolls become unstable for (Ra - R a c )  ~- 57, so that rather precise control 
over Ra would be required in an experiment in order to observe the transition. 

The neutral curve of the wavy instability corresponds to  the limit of b ~ 0. Figure 
5 shows a typical graph of the dependence of the growth rate a upon b. The wave 
number b of the most unstable disturbance increases rapidly once Ra has exceeded the 

2) For our antisymmetric mean flow. 
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Figure 4 
The neutral stability boundaries for the wavy and oscillatory instabilities in Couette flow, for Pr --- 0.7. 

critical value, and so it is unlikely that nearly neutral disturbances will ever be observed 
in a laboratory experiment. The wave number of the most unstable disturbance lies 
typically between 1 and 2 when the critical Rayleigh number is exceeded by more than a 
few per cent. Because of convergence difficulties in the expansion, the behavior for 
Couette flow has not been investigated in detail. Greater success was achieved in the 
case of an inclined layer [3], and the reader is referred to that paper for a more detailed 
discussion and for comparison with experimental observations. For comparison of 
theory and experiment in the case of wavy Taylor vortices the reader is referred to 
Eagles [24]. 

Figure 5 
The dependence of the growth rate (a) upon wavenumber (b) for 
various values of the Rayleigh number 
(wavy instability, Re = 1000). 
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The wavy instability of Taylor vortices is clearly related to the phenomenon of  
wavy convection rolls discussed here for Couette flow, even if the equations governing 
the two instabilities are different. From the point of view of verification of the neutral 
stability boundary, Taylor vortex flow is perhaps better suited. Although theory 
predicts that the minimum Taylor number (Ta) for secondary instability occurs as the 
circumferential wavenumber becomes zero (Ta ~ Ta, = 125; see Eqn. (5.22) of [6]), 
the condition of circumferential periodicity places an additional constraint upon the 
possible wavenumbers and gives rise to the selection of an azimuthal wavenumber of at 
least unity at the onset of wavy vortices. 

The behavior of the lower branch of the neutral curve for the wavy instability 
shown in Fig. 4 can be predicted by an expansion procedure valid for (b Re) << 1 and 
(Ra-Ra~)/Ra~ = e 2 << 1, both of which conditions are fulfilled in this region. As 
discussed in [3], the growth rate behaves in this limit as 

a = - b 2 { R e Z ( A  - e2B) + ~2C}. (3.10) 

The term involving A represents the damping of x-dependent disturbances for Ra 

= R a c ,  whereas the term involving C represents the damping of  the wavy mode when 
Re = 0 and e 2 << 1. The term involving B yields the wavy instability in such a way that, 

(A/B). We at Re >> 1, the boundary is described approximately by the relation ec = 
emphasize that the wavy instability occurs for (bRe) << 1 so that a distinction can be 
made between this instability and lightly damped hydrodynamic disturbances which 
can exist for b --, 0 but with (bRe) fixed. For instance, Gallagher and Mercer [19] have 
shown that the decay rate of such disturbances has a local minimum (for a fixed value of 
b) somewhat below the bifurcation point which divides monotonically decaying 
disturbances from decaying oscillatory disturbances. However, the bifurcation point 
occurs as b --, 0 for (bRe) ~- 300, which is far above the values used here to locate the 
neutral stability curve for the wavy instability. 

As the reader will note in Fig. 4, the oscillatory neutral curve ends at a finite value 
of Re. Up to this value, the instability begins at a finite wavenumber (in the manner of 
Fig. 7(b) of [3]), where the decay rate (as a function of b) becomes zero. At the end of 
the curve in Fig. 4, cr i for the most unstable disturbance vanishes, and the oscillatory 
instability merges with the wavy instability and another more stable nonoscillatory 
mode (in an analogous manner to the bifurcation which occurs in homogeneous 
Couette flow; see Fig. 1 of [19]). 

The oscillatory instability is not related to any two-dimensional Tollmien- 
Schlichting type instability. Thus, the wavenumber b and a wave speed c based on the 
advective time-scale ( H / A U * )  and obtained from 

c = tri/(Re Pr b) (3.11) 

are plotted in Fig. 6. We note that both b and c decrease as Re increases, which, is in 
contrast to the expected behavior of lightly damped solutions to the Orr-Sommerfeld 
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equation for Couette flow at large Re [20]. The matter of whether a hydrodynamic 

instability involving propagating waves can take place at higher values of Re is not 
addressed in this paper. We note that for Re >> Ra >> 1 and finite b, the momentum 
equations (3.6) become uncoupled from the energy equation (3.7), and the problem 
reduces to an investigation of the hydrodynamic stability of the nonplanar shear flow 
{z + ul (y ,  z)}. 

Finally, it should be mentioned that the neutral stability boundaries are sensitive 
to variations in Pr, as can be seen from the results for the inclined layer [3]. No 
secondary instabilities were observed in the high Pr experiments of Richter and 
Parsons [21], in which a Couette type apparatus was utilized (but with end walls, so 
that the laminar velocity profile was parabolic). 

2.5 
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1.0 

0.5 

50 150 200 100 

Re 

Figure 6 
Wavenumber (b) and wavespeed (c) of the most unstable oscillatory disturbance as a function of the 
Reynolds number (Re) for Pr = 0.7. 

4. The Disturbance Energy Balance 

The disturbance energy equation has been investigated theoretically by Asai [22] 
and Lipps [18] for rolls and transverse waves in unstably stratified Couette flow, and 
LeMone [11] has discussed the energetics of atmospheric roll vortices on the basis of 
field data. Hence, we thought it worthwhile to present similar information for the 
secondary instability, at least for the wavy mode. 

The equation for the mean kinetic energy of the disturbance is obtained by 
multiplying the linearized momentum equations (3.6) by the respective velocity 
components and then integrating over the entire layer. If we let ( . . . )  denote an 
average obtained by such an integration, then the equation for the mean kinetic energy 
of the disturbance is 
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1 d 

Prdt 

= [ R e ( - ( l + d ( / x ~ f f X ~ l  

u w  j l j,,, 

[1 ({,v,2 , v  
- -  - ~ -ZVW 

+ -~y-y- ff6 + ~ z  i f :  - Iv, (4.1) 
IV 

where Iv is the dissipation integral. The various terms are normalized on the basis of I v, 
so that Iv should be taken as unity in the following. The individual averages on the left- 
hand side have the following interpretations. The first average, <.. .>~, gives the 
transfer of energy into the disturbance from the mean shear flow, z + Ul(z), via a 
Reynolds stress. This would have been the only energy production term if we had done 
an analysis of the mean flow on the basis of the Orr-Sommerfeld equation. The second 
average represents the release of buoyant energy into kinetic energy and provides the 
coupling to the disturbance potential energy equation. The third average, < . . .  >~x~, 
provides for energy transfer from the variable part of U~(y, z) via Reynolds stresses, 
whereas the fourth term allows for similar transfer from the velocity components 
V(y, z) and W(y, z) associated with the longitudinal rolls. In the limit of high Prandtl 
number, these latter terms become small, as does U~. 

The various averages in Eqn. (4.1) are given in Table 1. We list them in sequence as 
we come down along the upper branch of the neutral curve shown in Fig. 4 and then 
along the lower branch. All the terms are important initially but, as the minimum value 
of Re for instability is approached, terms I and II begin to predominate, with I1 being 
the main energy source (i.e., conversion of potential energy is relatively large). Once the 
minimum is reached, and we go along the lower branch, term I becomes increasingly 
large and becomes the dominant energy source as Re becomes large. This might suggest 
that a hydrodynamic instability associated with the distorted mean velocity profile, 
which has a point of inflection at z = 0, is the cause of the instability. However, it is 
clear that the numerical value of the mean vorticity is a minimum at z = 0 for values of 
Ra of interest, and so the flow is stable on an inviscid basis by the Fjortoft-Hoiland 
theorem [23, p. 105]. More fundamentally, we should remember that the wavy 
instability occurs first for values of (bRe) << 1, and, in this limit, Eqns. (3.6-3.8) are only 
weakly dependent upon U1 and ~. The strong dependence suggested by the results in 

Table 1 for the lower branch occurs because ~ is driven somewhat passively by vorticity 
advection in the x-momentum equation, in much the same way that UI(y, z) is 
produced by the longitudinal rolls. It would therefore be misleading to use these results 
as a basis for a mechanistic explanation of the origin of the instability. 
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Table 1 
Contributions to the mean disturbance kinetic energy equa- 
tion for the neutrally stable, wavy mode (refer to Eqn. (4.1) 
for identification of the terms) 

Re Ra I I1 III IV 

200 9500 0.225 0 . 2 9 5  -0.644 1.124 
100 4500 0.275 0.508 0.186 0.031 
50 2500 0.294 0.665 0.372 -0.332 
40 2000 0 . 3 4 5  0.644 0.0945 -0.083 
40 1880 0.395 0.599 0.0029 0.0031 
50 1800 0.544 0.453 0.0017 0.0013 
75 1775 0 . 7 3 8  0.260 0.0016 0.0006 

100 1770 0 . 8 3 5  0.163 0.0016 0.0003 
300 1765 0.977 0.021 0.0017 0.00005 

1000 1765 0.996 0.0019 0.0020 0.00001 
2000 1765 0 . 9 9 7  0.0005 0.0028 0.00001 

Re = (AU~H)/v, Ra = (gc~AT*H3)/vx 
where v = kinematic viscosity, 

x = thermal diffusivity, 
a = coefficient of thermal expansion. 

S imi la r  c a l cu l a t i ons  have  been  m a d e  for  the  osc i l l a to ry  ins tabi l i ty .  A t  the  end  o f  

the  s tabi l i ty  cu rve  ( R e  ~ 200;  cf. F ig .  (4)), t e rms  I, I I ,  a n d  I I I  p r e d o m i n a t e ,  w i th  e a c h  

be ing  r o u g h l y  equa l .  
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Summary 
An investigation has been made of the instabilities of longitudinal convection rolls in a Couette flow 

which is heated from below. The instabilities occur either as stationary waves or as waves which propagate 
along the convection rolls. Neutral stability curves are presented as a function of Rayleigh and Reynolds 
numbers for a Prandtl number of 0.7. The disturbance energy budget is given for selected values of the 
Rayleigh and Reynolds numbers. 

Zusammenfassung 
Die Instabilitaten von longitudinalen Konvektionsrollen in einer ebenen Couette-Str0mung, die yon 

unten erhitzt wird, sind untersucht worden. Die Instabilit~iten nehmen entweder die Form yon stehenden 
Wellen an oder von Wellen, die sich entlang der Konvektionsrollen fortpflanzen. Die Kurven ffir marginale 
Stabilit~.t sind als Funktion der Rayleigh- und Reynoldszahl dargestellt worden im Fall der Prandtlzahl 0.7. 
Das Energiebudget der St6rungen wird ftir ausgew~ihlte Werte der Rayleigh- und Reynoldszahl angegeben. 
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