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On the Determinat ion o f  Free Energy  in Linear Vi scodas  tic Solids ~) 
By SI~LOMO BREUER ~) and E. TURAN ONATa), Brown University, Providence, R.I., USA 

1. Introduct ion  

Consider isothermal deformations of a linear viscoelastic solid in simple tension or 
compression. Let ~(t) and e(t) denote, respectively, the relevant stress and infinitesimal 
strain components at time t. We adopt the stress-strain law in the form Ell 4) 

t 

j c(t - 3) de(z) 
(7(t) = ~ -  &,  (1) 

where G(t) is the relaxation modulus. We shall restrict our attention in the following 
to the class of relaxation moduli defined by 

N 

G(t) = ~ c  ie -~it for t > O, (2) 
i=1  

where c i and a~ are positive constants and a i ~ ai+ P 
The paper is concerned with the study of the free energy F and the entropy 

production 0 in the solid defined by (1) and (2). Our point of departure is the thermo- 
dynamic equation 

~(t) ~(t) = # + To b, (3) 

where the dot indicates tile time rate of change of the quantities concerned at time t, 
and T o is the (constant) temperature of the element. This equation is obtained from 
the energy equation (the first law of thermodynamics) and the equation of entropy 
balanceS). The second law of thermodynamics requires that  the rate of entropy 
production be non-negative definite: 

~ O. (4) 

We shall assume that  F and 0 are functionals of the strain rate history to which the 
material element under consideration has been subjected. We now inquire whether 
the knowledge of the relaxation modulus (2) will enable us to determine these two 
functionals, with the help of the constitutive relation (1), the thermodynamic Equa- 
tion (3) and the second law (4). This problem has been studied by STAVER•AN and 
SC}IWARZL [2], BLAND [31 and HUNTER [4J, whose point of departure has been to 
regard the viscoelastic material as consisting of a network of linear viscous and 

1) The results  communica ted  in  this  paper  were ob ta ined  in the course of research sponsored b y  the 
Office of Nava l  Research under  Contrac t  Nonr 582(I0), and  b y  Mater ia l  Research Program,  The Advanced  
Research Projects  Agency, Depa r tmen t  of Defense. 

2) Divis ion of Appl ied Mathemat ics .  
a) Divis ion of Engineering.  
4) Numbers  in  square bracke ts  refer to References, page 191. 
5) See the  Appendix.  
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elastic elements, i. e. dashpots and springs. Pursuing the idea of model representation, 
these authors, in independent works, arrived at the following expression for the free 
energy (per unit volume) of the solid: 

t t / ,  

/71 
- - 0 0  J 

- - ~ 0  - - (5O 

where ~(~) is the strain rate history to which the solid has been subjected in the 
interval -- oo < T < t, and G(t) is the given relaxation modulus represented by  (2). 
An expression similar to (5) has also been given by  the above authors for the rate of 
entropy production at t ime t6). 

A remarkable aspect of the second order functional in (5) is that  it depends on the 
given relaxation modulus, but  not on the type of model chosen to derive this expres- 
sion. This remark suggests the possibility that  the functional (5), representing the free 
energy of the solid, may  be obtained without using a model representation. The paper 
is concerned with a discussion of this possibility. 

I t  is shown tha t  the conditions we are able to impose on F, without recourse to 
model representation, reduce the general form of F discussed in the next section to 
a much simpler form, but  they fail to determine F uniquely. In  the last section we 
construct a rnodel contraining a mass for which the free energy is different from the 
one given in (5). 

2. The General Form of the Free Energy 

As a first step toward the determination of F we shall assume that  it can be re- 
presented as a functional of the given strain rate history in the following manner, 

t t ! / i  P 

F = /  /K( t -  d,l (61 
- - o o  - - o 0  - - 0 0  

d ,J 

where K(x, y) is a continuous, symmetric kernel, whose first partial derivatives with 
t 

respect to x and y exist. We shall also assum e that  F is non-negative definite i.e. 
- - O G  

t 

F > 0 ,  (7) 
- - O o  

so that  K(x, y) must  be a non-negative definite kernel. We now differentiate (6) with 
respect to t and make use of the thermodynamic relation (3), to obtain 

t t t 

- - o 0  - - o o  - - 0 0  

~) I t  m u s t  be  n o t e d  t h a t  F 1 r ep resen t s  the  s u m  of the  free energies  of t he  elast ic  e lements  in  the  model .  
T h e  express ion  g iven  b y  the  a b o v e  a u t h o r s  for  the  r a t e  of e n t r o p y  p r o d u c t i o n ,  on  the  o the r  h a n d ,  cor re -  

sponds  to t he  s u m  of e n e r g y  d i s s ipa t ion  in  the  v iscous  elements .  I t  is of i n t e re s t  to  no te  t h a t  T O (9' c a n n o t ,  
in  general ,  be  i n t e r p r e t e d  as the  r a t e  of h e a t  p r o d u c t i o n  in  t he  e lement  cons idered  s ince the  i s o t h e r m a l  
de fo rma t ions  of e last ic  e lements  of the  mode l  will  in  genera l  r equ i re  hea t  e x c h a n g e  w i th  the  s u r r o u n d i n g  

med ium.  Howeve r ,  in  cases where  th i s  h e a t  e x c h a n g e  is negligible,  T O 0 c a n  be  ident i f ied  as the  r a t e  of h e a t  
p r o d u c t i o n  in  the  cons idered  e lement .  
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We make the further assumptions that a(t) as well as 0 do not depend upon t(t)v). 
It  then follows from (8) that 

! 

a(t) = e / K ( 0 ,  t - r) e(r) d r ,  (9) 
--OO 

t t 
= _ [  oK �9 

/ ~  e(rl) e(r2) dr1 dr2. (10) ~o 
, )  

- o o  - o o  

The preceding analysis may now be seen to result in the following three conditions 
upon the unknown kernel K(x, y) : 

By (6) and (7) we must have 

t t, 

F = [  [ K ( t  - t - > 0 ,  (111 
--(30 OO OO 

, /  . /  

for all e(r). From (4) and (10) we find 

- o o  - o o  

for all e(r). Finally, (9) and (1) yield 

G(t) (13) K ( 0 ,  t) = T " 

As will be apparent from subsequent results, the knowledge of G(t), supplemented 
by the conditions (11), (12) and (13), is not sufficient to determine the general form 
of K(x, y) and hence of F. We must therefore seek further conditions which F must 
satisfy. To this end, suppose the material is subjected to a straining program s(r), in 
( -  co, co), with the following properties: 

~(z-)=0 for r ~ - - T  and r ~  0 ,  (14) 
and 

0 

/ G(t-z)  e(z)dr=O for t ~ 0 ,  (15) 
- T  

where T is a fixed positive number. Combining (14) and (15) with (1) and (2) we 
obtain o 

N 

a ( t ) = ~ c  ie-~#/e ~e'e(T) d r = 0  for 1 2 0 .  (16) 
i ~ l  - T  

Now (16) will hold if and only if 

0 

j e~i ~ ~(r) & = o, i = 1, 2 , . . . ,  N ,  (17) 

- T  

~) No te  t h a t  the  f i r s t  a s s u m p t i o n  is e q u i v a l e n t ,  i n  v i e w  of ( t) ,  to  the  a s s u m p t i o n  t h a t  G(t) is  c o n t i n u o u s  

i n  the  i n t e r v a l  0 ~< t < oo.  
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because the functions e-~i t are linearly independent. On the other hand, the linear 
independence of the functions e~i ~ guarantees that  it is always possible to find non- 
trivial ~ (r) such that  (17) will hold. Thus the straining program described by (14)-(15) 
can be realized. 

We now observe, that  under the straining program just described the material 
will be in a completely relaxed state, with zero stress and constant strain for t > 0. 
Indeed, an observer who is given the material for t >_ 0, will not be able to distinguish 
it from a virgin material. Thus we demand that  the free energy of the material 
subjected to a straining program given by  (14)-(15) shall be zero for t > 0. I t  follows 
now from (11), (14) and (15) that 

0 o 

F = /  /K(t-~,t--~)~(-~)~(~),~,~d~=o for t>_O, (~8) 
OO d ,J 

, - T - T  

if (17) holds. In particular, (18) must hold at t = 0. Putt ing t = 0 in (18) and writing 

/(x) = e ( -  x) ,  (19) 

we have from (17), (18) and (19) the additional condition to be satisfied by K(x, y) in 
the form 

T T 

/ /K(~,  y)t(~)/(y)d~ d y =  O, (20) 
0 0 

whenever 
T 

/e-a~,~ /(x) dx = O, i = 1, 2 N . (21) 
o 

We may now make use of (20) and (21) to determine the general form of K(x, y). 
Since K(x, y) is a eolltinuous, non-negative definite kernel, Mercer's theorem s) gives 
the uniformly convergent expansion 

K(x, y) = ~  ~~ (22) 

where 2 n are the (positive) eigenvalues and % the corresponding (real) eigenfunctions 
associated with the kernel K(x, y) in the interval (0, T). Since 2~ > 0, due to tile non- 
negative definiteness of K(x, y), we obtain from (20) and (22) that  for f(x) satisfying 
(21), 

T 

/qJ,,(x) /(x) dx = O, n 1, 2 , . . . .  (23) 
0 

In view of (21), (23) expresses the fact that  %(x) must be orthogonal, in the interval 
(0, T), to any function f(x) which is orthogonal to e- ai~ in the same interval. This 
observation implies, as the following argument shows, that  %(x) must be of the form 

N 

a) See [5], p.  138. 
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where y, i are constants. In order to prove (24), we may decompose %(x) in the form 

N 

~.(*) = ~ ' y . ~  e - ~ x  + ~.(x) ,  ~ = 1, 2, . . . ,  (25) 
i = l  

where %(x) are chosen, without loss of generality, to be orthogonal to e-  ~i* in (0, T), 
i.e. r 

- ~ . x  e * %(x) d x = O ,  i = 1 , 2  . . . . .  N ;  u = 1 , 2  . . . . .  (26) 
0 

Multiplying (25) byf(x), integrating from 0 to T, and using (21) as well as (23), we find 

T 

/~o,(x)/(x) = 0 ,  n = 1, . . . . .  (27) dx 2 
0 

In view of (26), %(x) is a function which satisfies the restriction (21) imposed on f(x). 
Thus in (27), f(x) may be replaced by %,(x) - to obtain the desired result, % = 0, 
n = 1 , 2 , . . . .  

Since the eigenfunctions %(x) are linearly independent, (24) shows that there can 
be no more than N of them. Consequently, the kernel K(x, y) is degenerate, and we 
find from (22) and (24) that  

N N 

K(~, y) = Z ~ J ~ -  ~ -  ~J', (28) 
/=1  ]=1  

where fl~i are symmetric constants due to the symmetry of K(x, y). Our considerations 
are restricted so far to the domain 0 < x, y < T, so that/3~ may, in principle, depend 
on T. However, since T is an arbitrary positive constant one can show by a simple 
argument that/3~- cannot depend on T. Finally, in so far as (28) has been derived on 
the basis of evaluating (18) at t = 0, we have yet to verify that (18) will indeed be 
satisfied for all t > 0 if K(x, y) is given by  (28). A trivial calculation shows that such 
is indeed the case. 

Having found the general form of K(x, y) as given by (28), we return to the 
conditions (11)-(13) derived earlier. I t  will be expedient to define the following 
functionals of k(T)" 

= r e  -~('-~) e(~) dr, i = 1, 2 . . . .  , N .  (29) Ki 
- o o  

In terms of K~ we find that (11) and (28) may be combined to give 

t N N 

= ~ Z ' ~  K~ K~ > o, (so) 
- o o  i = 1 1 = 1  

while (12) and (28) yield 
N N 

i=l i=1 

Finally, (13), (2) and (28), together with the linear independence of e-~g~, furnish 

N 
1 

.~t3i . i=-2 ci, i =  1,2 . . . . .  N"  (fili= fiji). (32) 
]=1  
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[t  can easiiy be seen that  for N > 1 the Equations (32) and the inequalities (30) 
and (31) do not suffice to determine fiij uniquelyg) �9 (32) represent N equations for 
N ( N  + 1)/2 unknowns, and the inequalities (30) and (31) fail to limit, in some signif- 
icant way, the remaining N ( N  -- 1)/2 unknowns. In order to see this in an explicit 
fashion we consider the special case of N = 2. Using (32) and the well known necessary 
and sufficient conditions x~ for the positive definiteness of the quadratic forms (30) 
and (31), we obtain the following inequalities for fi12, 

1 1 
j51n < ~- rain (q, @ , flaz < 2 

and 

C 1 C 2 (33) 

where 

C 1 ~- C 2 

A + B  A - - B  
--  (,~ _ ,~)~- < flirt < (a~ --  ,h) ~ ' (34) 

B = a  l a  n ( q + c ~ ) > 0 ,  A = [ B  e + a  l a n c  l c  2 (a  n - a l ) e ]  l / e >  B.  (35) 

I t  is easily seen that  (33) are implied by  (34). Indeed, using (35) we obtain the follow- 
ing successive relations, 

A --  B A ~ - -  B~ _ a l a z o l c ~  

(a~ - a,1)~ (A + B)  ( a ~ - -  a l )  ~ A + B [ (36) 

< a~a~lc~ 1 clc.2 ~ - - m i n ( q , c ~ . )  
2 B  2 c ~ + c . ~  - 2 " 

Hence (34) is the only restriction on flln and it fails to determine flln uniquely. 
Before closing this section we wish to point out that F may be written, with the 

aid of (32), in the following form, 

t N N N 

1 }-7, ~ _ L S - "  S- 'fl , .  (K s - Kj) 2 , (37) 

where fi~j are subject to inequalities of the type discussed for the case N = 2. I t  is 
interesting to observe, with the help of (29) and (2), that  the first term on tile right 
hand side of (37) is identical with the expression (5) given by  the above mentioned 
authors; i.e. "~heir result would agree with our result if fi~ were zero for i 4= j .  

The conditions that  we were able to impose on F, without recourse to model 
representation, reduce the general form (11) to the simpler form (37), but they prove 
to be short of reducing F to the form given by (5). In the next section we construct 
a model for which the expression for the free energy is different from (5), yet conforms 
to (37). 

3. Example: In this section we briefly discuss an example of two models having 
identical relaxation moduli but  differing in their free energies. Consider first two 

9) For  N = 1, i .e. when  the ma te r i a l  is a Maxwel l  body,  (32) and  (28) yield 

1 e - a 1 ( x + y )  K(x, y) = y q 

and in  a s imi la r  manner ,  (32) and  (30) give 
t 1 

F ~ ~ c z K ~ .  
--O0 

10) See [6], p. 137. 
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Maxwell elements connected in parallel. For this model it is well known that  the 
relaxation modulus is given by 

G(t) -= c 1 e - ~ l t  + c 2 e - ~ 2 t ,  (38) 

where c~ and cJa~ (i = 1, 2) are the spring constants and dashpot viscosities, respec- 
tively. The free energy of the springs is easily seen to be 

1 2 1 2 
F1 = -~ q K1 + - i  c~ K 2 , (39) 

where K~ is given by  (29). This corresponds to (37) with N = 2, fi~ = 0, and hence is 
in accord with (5). 

On the other hand, consider the modified model in which a mass m is inserted 
between the spring and the dashpot of one of the two Maxwell elements. Let d 1 and 
#1 be the spring constant and dashpot viscosity of the element containing the mass, 
d 2 and #2 having analogous meaning for the mass-free Maxwell element. I t  can be 
shown then that  d~ and #~ (i = 1, 2) can be so chosen that  the relaxation modulus of 
this model is again given by  (38). 

The free energy of the resulting model is the sum of the energy of the springs and 
the kinetic energy of the mass, and may  be shown to be 

1 2 1 Is  + d~ (K 1 -- K2) ~ (40) F = 2- cl K1 + T c2 m (a~ - a~) ~ " 

Comparison of (40) with (37) shows that  for this model 

d~ (41) 

Moreover, it can easily be shown that  fi12, as given in (41), satisfies the inequalities (34). 
This example shows that  the relaxation modulus is not sufficient to determine the 

free energy uniquely beyond the form (37) supplemented by  the inequalities implicit 
in (30) and (31). 

Appendix 

Consider deformations of a linear isotropic viscoelastic solid. Let (~j(x,  t) and 
e~(x ,  t) denote, respectively, the components of the stress and infinitesimal strain 
tensors at time t and position x, where x stands for the triplet of coordinates (x~, xe, xs) 
in a rectangular cartesian coordinate system. 

Let the material  occupy the finite regular domain D whose boundary is denoted 
by  B. If  the material is deformed, the first law of thermodynamics states that  1~) 

(% e~j = e -~ Oql (42) 
ON i ' 

where e is the internal energy per unit volume of the solid and qi are the components 
of the heat flux vector. 

Let n~ denote the components of the unit outward normal to B. The equation of 
entropy balance may  be written in the form 

/ ;l / id  v = - ~ r  dX + ~ d r ,  (43) 
D B D 

it) See, for example, [7~, p. ~44. 
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where S is the entropy per unit volume and T is the temperature. The first term on 
the right of (43) represents the rate at which entropy is supplied to the solid across its 
boundary, while ~ is the rate of entropy production per unit volume of the solid. 
Using the Divergence theorem, (43) gives 

T S - -  Oqi 1 0 T 
0x~ + T- q~ 0 ~  + T ~ .  (44) 

Now the rate of ,entropy production may be split as follows 

1 OT 
)'~ T~ q i ~  + ~ '  (45) 

where the  first  t e rm  on the  r ight  is ident i f ied  wi th  the  ra te  of e n t ropy  p roduc t ion  due 
to hea t  conduct ion  whereas  the  second t e rm  represents  the  ra te  of en t ropy  produc t ion  
due to in te rna l  processes. I t  follows now f rom (42), (44) and  (45) t ha t  

c%~. eij = ~ + T(0"-  S) .  (46) 

At this point we introduce the (HEL~ttOLTZ) free energy F,  defined by 

F = e -  T S .  (47) 

Assuming isothermal conditions, i.e. T = T o, 

/) = ; -- T O S ,  (48) 
so that (48) and (46) give 

a~j h~s = i b + 2r o 0". (49) 

For simple tension or compression, (49) gives way to 

o =k+T0d. 
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Zzt, sammen/assung 

Der Artikel  behandelt  die isotherme Verformung eines linear-viskoelastischen Stoffes im 
einachsigen Spannungszustand. Ein Integralgesetz fiir die Spannungs-Dehnungsbeziehung 
wird aufgestellt, in dem der Relaxat ionsmodul  als Summe yon ExponentiMfunktionen 
angesetzt wird. Die M6glichkeit, die freie Energie und die Entropieprodukt ion aus der 
Kenntnis des Relaxationsmoduls zu bestimmen, wird diskutiert .  Im Gegensatz zu frtiheren 
Untersuchungen dieses Problems macht  der vorliegende Artikel  keinen Gebrauch yon 
Modetlvorstellungen und stiifizt sich ausschliessiiclx auf thermodyuamische 0berlegungen.  
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