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1. Introduction 

More than a decade ago, the writer came across a paper [1] which dealt with the 
free vibrations of rectangular cantilever plates. Classical plate theory, upon which the 
paper was based, and rectangular cantilever plates in particular, have been the subject 
of scores of other technical papers, both theoretical and experimental, and their 
behavior is widely understood and accepted. In addition to presenting voluminous 
numerical results for free vibration frequencies, the paper depicted a most astonishing 
behavior. Curves were plotted which showed the variation of frequency with the 
nondimensional aspect ratio of length to width for ,the plate. The curves behaved 
smoothly everywhere except where they approached each other. Then, instead of 
continuing smoothly and crossing, they each suddenly and violently veered away from 
the other (see, for example, Figure 1) and continued along the path that the other 
would have taken had it been permitted to cross! 

The authors [1 ] call the regions 'transition zones' where the veering away occurs. 
Furthermore, because if the curves did cross, the same basic mode shape of free 
vibration would be associated with a curve before and after crossing, in the'  transition 
zones' of veering away the mode shapes and nodal patterns must undergo violent 
change--figuratively speaking, a dragonfly one instant, a butterfly the next, and 
something indescribable in between. Thus the results appear strange from an esthetic 
viewpoint. 

One then wonders whether an error may not be present. But the plate theory is 
used correctly, even the free corner conditions which are so often overlooked. An 
exact solution to the problem is out of the question, but the paper uses a very powerful 
generalized Fourier method developed by A. E. Green [2], and uses it with obvious 
skill and understanding. Of course, the solution would require finding the roots of 
determinants of infinite size, but the authors have successively truncated to determin- 
ants of very large (although finite) order, have carried out all calculations on the 
computer in high precision, and claim that the results have converged. Because the 
results look magnificent everywhere except at the 'transition zones', it is difficult to 
dispute this claim. 

Subsequently, a monograph [3] was prepared which summarized the literature of 

1) On leave from Ohio State University, Columbus, Ohio, USA. 



1 O0 Arthur W. Leissa ZAMP 

the world in plate vibrations. During the course of this work, a number of other 
references were found which exhibited the 'curve veering' aberration. In [4, 5] 
Claassen and Thorne applied the methods of [1] to two rectangular plates having 
other boundary conditions: (1) completely clamped and (2) clamped on two opposite 
edges, free on the two others. In [6, 7] the skew cantilever plate was analyzed. Earlier, 
Warburton [8] used a two-term Ritz solution with beam functions to analyze rectangu- 
lar plates having various edge conditions. Huffington [9] did likewise for an orthotropic, 
rectangular plate. Mindlin et al. [10, 11, 12, 13] used a sixth order plate theory 
incorporating shear deformation effects to analyze thick circular and rectangular 
plates. In this latter work the 'curve veering' phenomenon was found to occur even 
though the solutions were exact. 

F o r a  rectangular plate there are 21 distinct cases [3] having clamped, simply 
supported, or free boundaries. It is widely known (cf., [3, 14, 15, 16]) that exact 
solutions to the classical theory exist for six of the cases--those having two opposite 
sides simply supported, while the other two edges can be any combination of clamped, 
simply supported, or free. It is generally urlderstood, and during the research for [17] 
it was specifically verified, that the frequency curves (versus aspect ratio) always cross 
for these six cases. This raises the fundamental question: Why do the six exact solutions 
yield crossings while the 15 approximate ones do not ? For, after all, from a physical 
vantage point, the six cases having exact solutions have all manner of edge conditions, 
as do the other 15 cases. Of course, the exact solutions permit a recognizable separation 
of the two independent space variables x and y, whereas no simple separation having 
a finite number of terms has been found for the other 15 cases; therefore, coupling 
exists in any of the latter known solutions when less than an infinite number of terms 
are retained in the solution. 

P= 

Figure 1 
The 'curve veering' aberration. Aspect ratio 
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Although the references described above all relate to the eigenvalue problem of 
free vibrations of plates, in recent years the writer has become keenly aware of the 
presence of the 'curve veering' phenomenon in other areas of mathematical physics 
where eigenvalue problems exist. Examples of such areas include: 

1. Free vibrations of beams and shells. 
2. Buckling of beams, plates, and shells. 
3. Electromagnetic waves in waveguides. 
4. Fluid flow in nonrigid conductors. 
5. Potential curves and surfaces for molecules. 

Because of the widespread apparent acceptance of the aberration the writer feels that 
it is time to examine the phenomenon more closely. He will begin to do so by looking 
at what is probably the most simple and best understood two-dimensional eigenvalue 
problem of mathematical physics--the free vibration of a rectangular membrane. 

2. A Simple Example. Vibration of a Rectangular Membrane 

Consider a rectangular fiat membrane having dimensions 2a by 2b, subjected to 
a uniform tension T. Making the usual assumptions of small transverse displacements, 
w, and constant mass density, p, the classical two-dimensional wave equation results, 

~2w 
TV~w = p ~t ~ (2.1) 

where V 2 is the scalar Laplacian operator and t is time. Assuming free vibrations and 
a rectangular coordinate system x, y the displacement is expressed as 

w(x, y, t)  = W ( x ,  y)e  ~ t  (2.2) 

where ~o is the circular frequency. Introducing the nondimensional coordinates 
= x /a  and ~/ = y/b  and substituting (2.2) into (2.1) yields 

e 2 w  
= -b-U + + 1 2 w  = 0 (2.3) 

where 12 is a nondimensional parameter related to the frequency by 

Further, choosing the location of the ~, ~/system so that the sides of the membrane 
are defined by ~: = 0, 2 and ~ = 0, 2, it is seen that the boundary conditions of zero 
displacement along all four sides are satisfied by choosing 

W(~:, ~/) A,~ sin - ~  = - -  sin" 2 (2,5) 
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where Amn is an amplitude coefficient depending upon the initial conditions of the 
problem and m and n are integers. Substituting (2.5) into (2.3) yields 

"~T 2 

and the eigenvalue problem is solved exactly. The eigenvalues ;~ are given explicitly 
by (2.6) and the eigenfunctions by (2.5). It is seen further that if A 2 is plotted versus 
the square of the aspect ratio, (2.6) determines a family of curves, depending upon the 
choice of m and n, all of which are straight lines. Three of these, corresponding to 
m n =  11, 13, and 31 are depicted by the dashed straight lines of Figure 2. The odd 
integers of m and n are chosen in order to yield only those free vibration mode shapes 
which are doubly symmetric with respect to the symmetry axes (~ -- 1 ,~/= 1) of the 
rectangle, for it is generally accepted among proponents of the 'curve veering' 
aberration that, where symmetry exists, it can only occur between curves belonging 
to the same symmetry class of eigenfunctions. In Figure 2, as well as from (2.6), it is 
seen that the eigenvalues ~ and ta2~ lie on parallel straight lines, whereas, the lines 
for ~1 and 2t~1 cross at a/b = 1, yielding a repeated eigenvalue for the square membrane. 

3. An Approximate Solution. The Same Problem 

Let us now see what happens when the problem of the previous section is solved 
by an approximate method. The well-known Galerkin method will be used in a quite 

90 
/ 

80 i I 

70 

! 

5O 

. . . . . .  Exact solution 
~ A p p r o x i r n a t e  solution 

Figure 2 
Eigenvalues versus aspect ratio. 

2O 

lC 

. . . J  

(alb) 2 



Vol. 25, 1974 On a Curve Veering Aberration 103 

straightforward and obvious way. For this problem the method is mathematically 
identical to the equally well-known Ritz method [18, 19]. 

If  the origin of the ~, ~/coordinate system is now chosen to be at the center of 
the rectangular region, it is clear that the boundary conditions W = 0 are satisfied 
exactly on all four sides by taking the algebraic polynomial 

W = (~2 _ 1)(72 _ l ) ~ N a ~ j ~ J  (3.1) 

where i and j are integers 0, 1, 2 . . . .  having upper limits M and N, respectively, 
and the afj are undetermined coefficients. 

The Galerkin method consists of requiring the residual of  the governing differential 
equation (2.3) to be made orthogonal to each term of the trial function (3.1) over the 
area 

~ Wpq~L~'( W)dA = 0 

where Wpq is the term of (3.1) 
(2.3) and (3.1) into (3.2) yields 

,s ai~ ( j  + q + 5)(j + q + 3)(j + q + 1) 

(3.2) 

obtained by letting i = p and j = q. Substituting 

[(i + 2)(i + 1) 2(i 2 + i + 1) i(i-_1)1] 
x [ i + p + 3  i + p + l  + i T p  

+ ( i + p + 5 ) ( l + p + 3 ) ( i + p +  1) (3.3) 

[( j  + 2)(j + 1) 2(j = + j + 1) j ( j  - 1) ] 
x [ )-7(_-~-+- 3 j + q +  1 + j + q - I  

+ A2 8 t 
[(i + p + 5)(i + p + 3)(i + p + 1)][(j + q + 5)(j + q + 3)(j + q + 1)] 

= 0 .  

Thus, (M + 1) • (N + 1) simultaneous, homogeneous, linear algebraic equations 
in the unknown coefficients a~j are generated by (3.3). For a non-trivial solution the 
determinant of the coefficient matrix is set equal to zero. For each fixed aspect ratio, 
a/b, the determinant yields (M + 1) • (N + 1) roots for the eigenvalues, A 2. 

For the rectangular membrane there are four symmetry classes of mode shapes, 
considering modes which are symmetrical or antisymmetrical with respect to the 

and ~7 axes. In this example, only the doubly symmetric modes will be used, as in 
the previous section. This is accomplished by retaining-only the terms in (3.1) which 
are even in ~: and V (i.e., i, j = 0, 2, 4 , . . . ) .  Considering the first three doubly symmetric 
terms within the summation sign of (3.1) (i,j = 0, 2) then (3.3) yields a third order 
determinant for p, q = 0, 2: 

If, Jl = 0 (3.4) 
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where 

f~l = 14 A2 - 3 5 ( a / b )  2 - 35 

f 2 ~  = ~ t  2 - ~ ( a / b )  2 - 11 
f a a  = -}h  2 - l l ( a / b )  2 - s (3.5) 

A ~  = A t  = 2 ~  ~ - 5 ( a / b )  2 - 7 

f ~  = f a l  = 2 t 2  - 7 ( a / b )  2 - 5 

f 2 a  = f a 2  = "}h 2 - ( a / b )  2 - 1. 

The eigenvalues h 2 of  (3.4) are determined with a digital computer using an 

iterative root-finding program. However, when only the first term (i = j = 0) of (3.1) 

is retained, the resulting characteristic equation is obtained by truncating (3.4) to 

retain only f~l. Then fz~ = 0, which yields 

Comparing (3.6) with the exact eigenvalues (2.6) shows that the one-term representa- 

tion, using parabolas to replace sine waves, is in itself reasonably accurate, yielding an 
upper bound for the lowest eigenvalue A 2 which is everywhere within 1.3 per cent of 

the exact value, and a frequency ~o which is everywhere within 0.7 per cent of  the 

exact value. From this very good one-term solution, one can expect even better 

results when three terms are retained. 
The results for the three-term solution are depicted by the solid lines in Figure 2. 

The curve for the lowest eigenvalue appears also to be a straight line which falls, for 

plotting purposes, on top of the curve for the exact solution. These eigenvalues are 

compared in Table 1. The results are given to six significant figures, although they 

were calculated to even greater accuracy, as will be demonstrated later. 

Table 1 
Comparison of the exact (2.6) lowest eigenvalues with those of the three-term solution 

Solution (a /b )2  

type 0.1 0.5 1 2 10 

Exact 2.71414 3 . 7 0 1 1 0  4 . 9 3 4 8 0  7 . 4 0 2 2 0  27.1414 
Three-term 2.71423 3 . 7 0 1 2 2  4 . 9 3 4 9 7  7 . 4 0 2 4 5  27.1423 

The curves for the higher two approximate eigenvalues ;~31 and h~3 appear in 
Figure 2 also to be straight, parallel to and rotated from, respectively, the correspond- 
ing exact straight lines. These eigenvalues are seen to be significantly greater than the 
exact values in general, as might be expected for the higher modes of a Ritz-Galerkin 
solution. The lines appear to cross also at ( a / b )  2 = 1. Indeed, if these curves were 
plotted with as many as 1000 equally-spaced data points (but carefully omitting the 
points for a / b  = 1.013) for each curve, no other conclusion could be reached. 
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Suppose then one looks even more carefully in the interval 0.95 < (a/b) 2 < 1.05. 
Enlarging Figure 2 a hundred times in this interval yields the view seen in Figure 3, 
where only 4he eigenvalue curves for the three-term approximate solutions for ~1 
and ~s  appear. Here it is observed that the lines remain essentially straight outside o f  

the interval 0.99 < (a/b) 2 < 1.01, but that inside this interval, they veer away f r o m  

each other. 

The behavior of the curves in the ' transition zone' is further clarified by Table 2 
wherein the eigenvalues in the interval 0.995 < (a/b) 2 < 1.005 are displayed. From 

Table 2 
Eigenvalues and their second differences in the ' transition zone '  

[a]2 Upper curve Lower curve 

)~2 Second ~2 Second 
difference difference 

0.995 28.0285 - -  27.8963 - -  
0.996 28.0328 0.0008 27.9201 -0.0008 
0.997 28.0379 0.0013 27.9431 -0.0014 
0.998 28.0443 0.0023 27.9647 -0.0023 
0.999 28.0530 0.0033 27.9840 -0.0033 
1.000 28.0650 0.0040 28.0000 -0.0040 
1.001 28.0810 0.0034 28.0120 -0.0033 
1.002 28.1004 0.0022 28.0207 -0.0023 
1.003 28.1220 0.0014 28.0271 -0.0013 
1.004 28.1450 0.0007 28.0322 -0.0009 
1.005 28.1687 - -  28.0364 - -  

29.0 

28.5 

28.0 

27.5 

27.0 

Figure 3 0.95 
Enlarged view of Figure 2 for the interval 0.95 _< (a/b) 2 <_ 1.05. 
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these data it is seen that the curves appear to approach each other most closely at 
(a/b) 2 = 1 before veering away, and that the difference between the upper and lower 

curves at this point is approximately 0.2 per cent, too small to be identified in Figure 

2. In Table 2 the second differences of 2`2, which are measures of the curvatures at the 

corresponding values of (a/b) 2, are also given. The positive and negative curvatures 

of  the two curves are seen to increase significantly in magnitude as the points corre- 

sponding to (a/b) 2 = 1.000 are approached from either direction. 

Thus the strange aberration of 'veering away '  has been generated in a straight- 

forward way on an otherwise well-behaved and well-understood problem. One may 

find it difficult to believe that the simple algebraic polynomial of (3.1), especially with 

only its first three terms, is capable of creating such a disturbance at (a/b) 2 = 1. 

Indeed, one may wonder whether apparent separation between the curves of  Figure 3 

is not due to numerical error in the computations. 

Investigating the latter point, it is found that for (a/b) 2 = 1, the characteristic 

equation arising from the expansion of the determinant (3.4) using (3.5), can be 

written exac t l y  in the partially factored form 

(h 2 - 28)(22` 4 - 662, 2 + 277) = 0 (3.7) 

yielding the roots h 2 = 28 and -12(33 + ~/5--~). The latter two roots were obtained to 

ten significant figure agreement with the iterative root-finding program used for the 

results of Table 2. Thus it is proven that the eigenvalue curves arising from the 

approximate solution do not cross but are represented accurately by Figure 3 and Table 2. 

4. Mode Shapes and Their Contortions 

An even more ugly behavior seen in the references of the Introduction, when the 

curve veering phenomenon is present, is the need for the eigenfunction mode shapes 

to alter themselves drastically in the so-called ' transition zones' .  In terms of Figure 3 

this means for the lower curve, for example, as the (a/b) ratio is increased, that the 
mode shape is the 13 mode for (a/b)  2 < 0.99 and the 31 mode for (a/b) 2 > 1.01, and 

must somehow change itself rapidly and in a continuous manner in the narrow interval 
0.99 _< (a/b) 2 < 1.01. This is no small feat when one remembers the completely 

different forms of the node line patterns (lines of W = 0) associated with the two 

modes. These forms are depicted in Figure 4. 

Figure 4 
Nodal patterns for the 13 and 31 modes. (a) 13 mode 
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To determine the nodal patterns corresponding to the three-term solutions in 

the interval 0.99 <_(a/b) 2 <_ 1.01, any two of the three homogeneous equations 

yielding (3.4) are taken. Let us take the first two, and rewrite them as 

f l l  + f12b2o + flabo2 = 0 
f~2 + f22b2o + f2abo2 = 0 (4.1) 

where b u = au/aoo and thefu  are as previously defined in (3.5). Solving (4.1) for the 
amplitude ratios b~j, 

b2o = Alf2a - A2A3 
f~af22 - f~2f23 (4.2) 

bo2 = f~2 - f t l f22  
f13f22 - f ~ 2 f ~ '  

the transverse deflection of  the membrane is conveniently written in nondimensional 
form as 

W 
- -  = (~2 - 1)(~ 2 - 1)(1 + b20~ :2 + bo2~ 2) (4.3) 
ao0 

which completely determines the mode shape corresponding to a given value of the 
eigenvalue ~. A nodal pattern is obtained by determining the values of ~: and ~/for 
which W/aoo is zero. 

The change in the nodal patterns in the interval 0.95 _< (a/b) 2 < 1.00 for 
the lower curve of Figure 3 is depicted in Figure 5. Therein, in order to emphasize the 
changes, only the first quadrant of the membrane is shown. The continuation of the 

Figure 5 
Nodal patterns corresponding to 
,~8 for the interval 0.95 <__ ( a /b )  2 < 1. 
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nodal patterns into the other three quadrants is easily imagined by mentally reflecting 
the curves of Figure 5 about the ~ and ~ axes. It  is seen that for (a/b) 2 = 0.95, the 

nodal pattern consists of two horizontal lines which are nearly straight, located at 

approximately r/ = + 0.38, which clearly identifies the pattern with the 13 mode. For 

the exact solution, the lines are straight and located at ~ = + 0.33, as in Figure 4a. 

However, it is seen that as (a/b) s --> 1, the curvature of the nodal lines at ~ = 0 
continuously increases until, for (a/b) 2 = 1, the lines are found to be the diagonals 

of  the square. The most rapid change in the nodal pattern occurs for (a/b) 2 >_ 0.99, 

where significant veering of the frequency curves begins. The effect appears even more 

drastic when one remembers that (a/b) 2 = 0.99 corresponds to a/b = 0.995. 

The similar drastic change in the 31 mode for (a/b) ~ > 0.95 is shown in Figure 6, 

wherein the nodal patterns arising from the approximate solution using three terms 

are indicated by solid lines. In this case for (a/b) 2 = 0.95 the nodal lines are clearly 

the 31 mode shown in Figure 4b, and change drastically with increasing (a/b) 2, 

becoming a circle for (a/b) ~ = 1. 

Looking further at (4.3), the shape of the nodal curves in Figures 5 and 6 becomes 

clear. Equation (4.3) shows that the boundaries s e = _+ 1 and ~ = + 1, as well as the 

curve 

b20~ 2 + bo2~ 2 + 1 = 0 (4.4) 

are lines of  zero deflection. From (4.4) it is seen that when b~o, as calculated from 

(4.2), is positive and boz is negative, (4.4) represents a family of hyperbolas, which 

are the curves of  Figure 5. For b2o = -be2  = oo the hyperbola degenerates into the 

straight diagonals. As (a/b) 2 increases beyond the value of unity, b2o becomes negative 

Figure 6 
Nodal patterns corresponding to 
~t~l for the interval 0.95 < (a/b) ~ < 1. 

1.0 

0.5- 

" , , \  

O~ ' ' 1.0 

/iabi2::ilExc ouion 
Approximate solution 

i ]t,/ l ~  i i 
0.5 



Vol. 25, 1974 On a Curve Veering Aberration 109 

and b02 positive, generating a family of hyperbolas which are identical to those of 
Figure 5, but rotated about the diagonals, the separate curves then corresponding 

to (b/a) 2 = ,0.999, 0.995, 0,99, and 0.95. Similarly, for b2o and b02 both negative in 

(4.4), and b2o/bo2 -> 1, (4.4) represents a family of ellipses, which are the curves of 
Figure 6. For b2o/bo2 = 1 the ellipse becomes the special case of a circle. And as 
(a/b) 2 increases beyond the value of unity, b2o/bo2 < 1 and a corresponding set of 
ellipses is generated for (b/a) 2 = 0.999, 0.995, 0.99, and 0.95 which are the same 
shapes as those of Figure 6, but having their major axes along the ~ axis instead. Thus, 
the nodal patterns associated with the lower eigenvalue curve of Figure 3 are all 
hyperbolas, and those of the upper curve are all ellipses. It is interesting to note that 
all nodal curves pass through the common point ~ = ~ = 0.3697. 

That the simple polynomials of (3.1) generated by taking only the first three terms 
within the summation sign yield simple nodal patterns consisting of hyperbolas and 
ellipses should not be surprising. What is surprising is how rapidly these curves change 

their shape as they approach (a/b) 2 = 1 where the exact frequency curves cross. This 
is exactly the same behavior exhibited by the nodal pattern curves of [1, 5] where 
approximate solutions were used. 

While discussing the subject of mode shapes and nodal patterns, let us return 
briefly to the exact solution presented previously in Section 2. Therein the mode shapes 

are given by (2.5). If  two modes have the same frequency, then the initial conditions 
of the free vibration problem can always be chosen to permit any linear superposition 
of the two modes. In particular, for the 31 and 13 modes of the square membrane, 
superposition gives 

W = Aaz sin sin ~-  + Az8 sin sin 3rr~.2 (4.5) 

Choosing the initial conditions so that A81 = -A13, and remembering that the co- 

ordinate origin for (4.5) is located in one corner of the region, then it is easily seen 
that for ~ = ~ and ~: = 2 - ~7, the equations of the two diagonals, W is everywhere 
zero. Thus, one nodal pattern for the approximate solution for a/b = 1 can also be 
obtained from superposition of exact modes. Furthermore, taking Aal = +Ala in 
(4.5), and employing some trigonometric identities, yields 

- W = 4 sin sm -~- cos 2 + cos 2 -~- (4.6) 
Aal 

which is a product obtained from the equations of the edges of the membrane and an 
internal nodal line which is almost circular. This near-circle falls inside the nodal 
circle of the approximate solution, as shown in Figure 6. 

Thus it has been shown that mode shapes of exact solutions can be superimposed 
to obtain mode shapes similar to those of an approximate solution. But the converse 
is not true. The approximate mode shapes cannot be superimposed in order to obtain 
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the natural mode shapes of an exact solution because, in order to do so, the mode 

shapes must have the same frequency; i.e., the frequency curves must cross. 

5. Some Further Observations 

In the preceding two sections of this work, the ' curve veering' aberration is seen 

to occur in an approximate solution. Its presence here is particularly disturbing because 

it is made to occur in a problem which has a very well-behaved exact solution. Further- 

more, the aberration is seen to occur with greater severity than in any of the numerous 

references described in the Introduction. 

It  is clear in the present case that the aberration of reality occurs because of the 

application of an approximate method. Yet the method is the one most widely used 

on plate vibration problems [3] and is applied to the present problem in a most 

straightforward manner. 
It  can be seen from the present example that the aberration may imply coupling 

when there is none. In the example problem, the approximate solution eigenfu~ction 

(4.3) is, of  course, representable by an infinite Fourier series, typical terms of which are 

the exact  eigenfunctions (2.5), thus introducing hypothetical coupling among the 

exact eigenfunctions. 

The writer will show in subsequent publications elsewhere that t h e '  curve veering' 

aberration occurs in many places in the solution of eigenvalue problems of mathe- 

matical physics. He also intends to demonstrate that the aberration is, in general, 

the result of  approximation, and that the approximation can be induced in many ways. 

The effects of one approximate method are shown above. Approximations can also 

be caused by errors in numerical calculations. 

Perhaps most importantly, the approximation causing the aberration may occur 

in the mathematical model (i.e., differential equation and boundary conditions) of a 

physical phenomenon. That  is, the aberration can arise from the exact  solution of a 

problem defined by an inadequate mathematical model. The latter should come as no 

great surprise, for the improvement of a mathematical model naturally comes from 

the observation of its deficiencies over some range of one's spectrum of interest. 
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Abstract 

In numerous places in the literature of eigenvalue problems of mathematical physics one finds 
curves which approach each other and suddenly veer away. The author postulates that this ugly 
behavior may be the result of approximation in the representation of physical reality. In the 
present paper such behavior is demonstrated to arise from the application of the well-known 
Ritz-Galerkin method to the classical eigenvalue problem of the free vibration of a rectangular 
membrane. 

Zusammenfassung 

An vielen Stellen der Literatur fiber Eigenwertprobleme der mathematischen Physik kommen 
Kurven vor, die sich n~ihern, aber bevor sic sich schneiden, wieder auseinander laufen. Der 
Verfasser postuliert, dass dieses unsch6ne Verhalten durch die Approximation in der Erfassung 
der physikalischen Wirklichkeit verursacht werden kann. In der vorliegenden Arbeit wird als 
Beispiel die klassische Eigenwertaufgabe der schwingenden Rechteckmembrane gew/ihlt und 
durch Anwendung des Verfahrens von Ritz-Galerkin ein derartiges Verhalten nachgewiesen. 
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