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1. Introduction 

During the last 30 years, there has been enormous progress in our ability to 
solve large linear systems. Although this progress has been mainly due to hardware 
improvements, it has been helped substantially by advances in software design and 
theoretical understanding, by Wilkinson ([9], [10], [11]) and others. 

However, it is still difficult to estimate reliably and accurately the error e = 

xc - x and the relative error (R.E.) IIe]l/lIxH of  the computed solution xc of Ax = b, 
where A is a given nonsingular matrix and b a given vector. It is easy to compute the 
residual r = A x c  - b and the relative residual (R.R.) Ilrll/]lb[]. But unfortunately, 
the R.R. is very weakly correlated with the R.E. ; in general, we only know that, in 

any norm 

1/K(A) < (R.E.)/(R.R.) < K(A), where K(A) = IIAII.IIA-1II . (1.1) 

This is true because 

R.E. /lie [[] / [[lrl[~ /[[b[[~ / / [ [ r  [l~ (1.2) 
R.R. = \llxll] / \llbll! = \llxll! / 

where b = A x  and r = A x  -- Ax~ = A ( x  - x~), which implies 1/11,4-111 _< Ilbll/llxll, 

Ilel!/llr 1[ -< 11-4 II, this makes the R.R. unreliable as an error diagnostic. 
The IRE .  In [3], we proposed the following, relatively inexpensive and (in our  

experience) very reliable way of estimating the R.E. First form the residual r = 
A x c -  b in the same precision used to compute x~. Next, define the indicated error e~ 

as the computed solution of A y  = r; this costs little if the factors of  the LU-decom- 
position used to 'solve' A x  = b are stored. Finally, compute the indicated relative 

error (IRE) of the computed solution, defined as the ratio 

IRE = I[ecH/llxoll. (1.3) 

In our experience, this has the same order of magnitude as the true relative error. 

1) The main results of this paper were reported in [3l, and communicated in 1976 to those 
working on the LINPACK project. 
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An  alternative a priori bound  on the residual can be based on WilMnson's 
inequality [10, (64.3)]: 

Ilrll <- f(n)llAIl'llxoll~, (,4: n x n), (1.4) 

Here  ~ = 2 - t  is the working  precision ( 'macheps ' ) ,  and f (n )  is a slowly growing 

funct ion o f  n, depending on the no rm used. Wilkinson states tha t  f ( n )  < 3n if  the 
max  norm [1 II | is used. This a priori bound  on the residual implies 

R.R.  < 3nllAll" Ilxcll/llbll (1.4') 

as a corollary.  Since Ae  = A(xc - x)  = b - A x  = - r ,  (1.4) also implies as another  
corol lary 

l id -< IIA- 1ll. Ilr II = f (n)~(A)dxol l ,  (1.5) 

Hence (1.4) has the third corol lary 

R . E . _  Ilell/llxoll <-f(n)K(A), .  (1.5') 

Clearly, in order  to use (1.5') as a R.E. diagnostic, one needs an est imate of  x(A). 
R C O N D .  2) A new algor i thm called R C O N D  gives a reliable way of  est imating 

x(A) in O(n 2) operations.  The  method  involves first construct ing f rom A an ap- 
propr ia te  vector  b with entries + 1, then solving Ur~(Lrz) = b and LcUc = z, and 

finally setting R C O N D  = IIAII" [lyll/llzll. Finally, combining  (1.5') with R C O N D ,  
we obtain  the order-of -magni tude  est imate 

R.E. = O(~. R C O N D ) .  (1.6) 

Suppor t ing (1.6) is the fact tha t  all numerical  experiments  to date are compat ib le  
with the inequality R.E. _< 10, .  R C O N D .  

R C O N D  is being incorporated into L I N P A C K  as its main  er ror  diagnostic 
(for LU-decomposi t ion) .  

Singular value decomposition. T o  unders tand er ror  diagnostics in depth, and in 
par t icular  the dependence of  R.E. /R.R.  on b, one must  have clearly in mind the 
singular value decomposition (SVD) of  ,4, which we briefly recall next. a) 

The SVD factors any nonsingular  .4 as ,4 = P D Q ,  where P and Q are or thogonal  
and D is positive diagonal.  The diagonal  entries of  D, which we can suppose ar ranged 
in descending order  ~1 -> ~2 > " ' "  > ~r, > 0, are the singular values of  A. They  are 

also the s ta t ionary values of  the ratio IIAxll/lrxll, and so (equivalently) of  its square 

IlAxlI~/llxll ~ = (XT`4TAx)/(XTX). (1.7) 

I t  follows that  the ~rk 2 are the eigenvalues of  ~IrA (and o f  .4AT). 

z) A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson, Argonne Internal Report 
TM-310, July, 1977: 

a) See Contribution I[10 in lI 1], by G. H. Golub and C. Reinsch; also [10, w167 
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Again, for any vector norm [I [1,, the condition number of  A is by definition 

K,(A) = l/All," IIA-1llv 

= maxx,0 (llAxll,/llxll,)/min (IIAYlI,/IlY, II) 

= m a x  (IIAxII,. IlyII4IIAylI," [IxlI0. 0 .8)  
x,~t #:0 

In particular, for Ilxll = (Y x~)  1'2 the Euclidean norm, therefore, K,(A) = K(A) = 
o~/on. For  this and other reasons, we will use the Euclidean norm and condition 

number below unless otherwise specified. 
The singular values of  A being the stationary values of  [[Axll/llxll, the correspond- 

i n g  singular domain vectors x = ~j are the rows of Q (columns ~0j = Qre s of Qr) 
since PDQ(Qres )=  Pgjej; their images ffj = Pcrjej (the 'singular'  range vectors) 

are also orthogonal. Conversely, we have 
Proposition 1: I f  A carries an orthogonal basis of  vectors cp; into an orthogonal 

basis of  vectors ffj, then the % are a basis of  singular domain vectors of  A, and the 
~bj a basis of singular range vectors. 

2. The BMvN Distribution 

Studies of  individual linear systems can only lead to qualitative empirical con- 
clusions about the comparative efficiency and reliability of  numerical methods and 

error diagnostics. This is because their applicability to other systems is largely 
conjectural. 

Quantitative conclusions must necessarily be based on probabilistic estimates and 
statistical analyses referring to large families of  matrices. Hopefully, these can be 

related through a priori estimates to performance profiles of  methods in actual ~tests 
covering a wide range of sample matrices. And indeed, such statistical analyses have 
recently begun to replace discussions of  individual cases in the technical literature on 
the subject. 4) 

Actually, this trend was foreshadowed in a fascinating 1946 report to the U.S. 
Navy, by von Neumann, V. Bargmann, and Deane Montgomery, reprinted in 
[7, pp. 421-478]. Here an at tempt was made to predict the 'number  of  extra digits' 
needed to 'invert matrices' associated with linear systems of  orders 'n = 20, 50, 100 
or even larger'. At the end of w 13 of this report, the authors consider random matrices 
whose entries have identical independent normal random distributions, and refer 
(see [7, p. 460]) to 'a  statistical analysis' published later in the Proc. AMS 2 (1951), 
188-202. We will call the a priori distribution of random matrices so defined the 
BMvN distribution. 

The authors named above were interested in this distribution 'primarily for 
estimating Pr0babilistically the bounds of matrices and norms of vectors whose 

4) See for example J. T. Goodman and C. B. Moler, 'LINPACK working note #8,' Argonne 
AMD TM-311, July, 1977. 



Vol. 30, 1979 Isotropic Distributions of Test Matrices 151 

elements are sums of one or more rounding errors' .  However, it also has some very 
attractive, purely mathematical properties, which we will now try to summarize. 

Theorem 1. For any n, the BMvN probability measure i~s on the space o f  all 

n x n matrices .4 is invariant under the biorthogonal group .4 ~ P.4 Q, P, Q orthogonal 

n x n matrices. 

Proof." The probability density of  each column vector of  .4 is 

2~rr -~12 e - "  (2/V'~r) e ,. 
t = l  

Since this is spherically symmetric, and the independence of the random column 
vectors is preserved under orthogonal transformation,/*s is invariant under .4 ,-->- A Q. 
But/~s is obviously invariant under .4 ~ .4r, since its definition is; hence/~s is also 
invariant under orthogonal transformations .4 ~ P.4 of  the random row vectors, 
completing the proof. 

But now, the singular value decomposition selects from each equivalence c lass  
of  n x n matrices under the group A F--> P.4 Q a unique diagonal matrix D with non- 

increasing nonnegative values. Hence standard arguments about measures on compact  
groups and their products give 

Theorem 2. The most general biorthogonally invariant measure on the space GL~ 

o f  nonsingular n • n matrices is obtained by setting up a measure ftn on the space of  

sequences (dl . . . . .  d~) o f  nonincreasing nonnegative numbers dt, and forming its product 

fto • tza • tZo with two copies o f  the group measure iZo o f  the orthogonal group, on 

the space o f  matrices A = PDQ. 

Similar results hold for symmetric matrices whose diagonal and lower triangular 
entries have l iD  (independent identically distributed) normal distributions (these 

matrices, of  course, form a Jordan algebra but not a group). The set S, of  all such 
matrices is invariant under A v-->PAQ if and only if Q = p r  = p - x ;  hence the 

appropriate symmetry condition is orthogonal invariance under A F-~PAP-1, and 
not biorthogonal invariance. We have 

Theorem 3. The most general orthogonally invariant measure on the space S, o f  

n x n symmetric matrices is obtained by setting up measures tz o and tza as in Theorem 2, 

and forming their product t% x t*a on the space of  symmetric matrices PDP - 1. 

Corollary. The BMvN distribution is characterized by its biorthogonal invariance 

and the probability distribution t~ a o f  its spectrum o f  singular values % = dj; the anal- 

ogous distribution of  random symmetric matrices is characterized by its orthogonal 

invariance and the probability distribution tz'a o f  its spectrum of  eigenvalues)) 

5) We recall that the singular values of a symmetric matrix are its eigenvalues. 
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3. First Numerical Experiments 

Since von Neumann and his collaborators had already expended considerable 
effort in deducing the properties of  random matrices having the BMvN distribution 
f rom first principles, we decided to make extensive experimental tests before doing 
anything else. 

With advice from David Hoaglin about  the best choice of  random number 
generator, and extensive programming help from W. G. Ledsham, we solved Ax = b 

for general real and for symmetric indefinite random matrices ,4 having normal I ID  
entries, and entries of  b constructed in the same way. In both cases, we tested one 
thousand 20 x 20 matrices, two hundred 40 x 40 matrices, and fifty 80 x 80 

matrices. These tests were made in Nov.-Dec. ,  1974; they were performed in some 
haste, because we wanted to report our findings at the 'Gatl inburg '  VI meeting to 
be held near Munich that December. 

Specifically, we made statistical tabulations of  the R.E. made in solving A x  = A 1, 

where A = A(r was a random matrix 6) taken from a BMvN distribution and 1 = 
(1 . . . . .  1) ~". We produced random a,j using the pseudo-random number generator 

L L R A N D O M ,  a package produced at the Naval Postgraduate School by Drs. 
Learmouth and Lewis. Its basic element is a pure congruential generator with 

c, -= 7Sc~_1 (mod 2 al - 1). (3.1) 

The output is further randomized by using the seven least significant bits of  the 
integer produced by (3.1) to access a table, and then setting a~j = f (c , ) .  We used the 
initial seed 216002115. 

Our initial objective was in large part  to compare the accuracies and execution 
times of solutions of  linear systems obtained using programs from the carefully 
designed SL-MATH, IMSL, and LINSYS ~) packages. We found only minor 
differences, which we reported at the Gatlinburg VI meeting. 

Most striking was the fact that the R.E. was very small for all of  the matrices 
tested, exceeding 1000E in only one case in 1000. It  was very much less than what had 
been estimated a priori by von Neumann and his co-workers in [7, (7.16)], where 
the estimate 2000n% was given. (We tried n = 20, 40, 80, and 160.) 

Very reassuring was the good correlation (to within a factor between 0.1 and 10) 
of  the R.E. with K(,4), a) regardless of n over the range 20 < n < 160. This pretty 
much laid to rest the idea that the random rounding errors would be greatly amplified 
during the elimination process. Correlation of the R.E. with the first Hadamard  

number rlllA,II/[,4 [, where Ai is the ith column of ,4, was much less good. 

6) We use here the standard notation: ~, denotes a sample element from a probability space 
endowed with a measure /~. Besides the BMvN probability measure R" x n, we let the a~j be 

IID variables having a uniform distribution on [ -1 ,  1]. 
7) The LINSYS package was developed at the University of Victoria Computing Center, using 

Fortran versions of the Algol programs in [11, Part I]. 
a) ,r was computed using EISPACK. 
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Finally, we found that the distribution of K(A) was largely independent of n, 
and that the occurrence of very large K(A) was quite sporadic, the frequency being 
roughly proportional to 1/K(A). 

In the spring of 1976 we made a second series of  tests, this time on A x  = b, 

where b was a random vector having an 'isotropic' (i.e., spherically symmetric) 
normal distribution, produced by LLRANDOM with the seed 145365181. We deter- 
mined the R.E. by iterative refinement (using IBM quadruple precision in accumula- 
ting inner products). We found that the R.E. correlated quite well (to within a factor 
ordinarily between 0.3 and 3.0) with both the product K(A) x R.R. and with the 
IRE. As we anticipated that more careful and systematic experiments would be 
reported in [4], we did not pursue these experiments further. 

4. Theoretical Analysis 

Having satisfied ourselves that the errors were primarily associated with the 
size of K(A), we set ourselves the task of predicting 9) the distribution of K(A)--and 
more generally of  the singular values of  A-- for  a BMvN distribution of  random 
matrices. Our most important observations turned out to be fairly easy to explain. 

First, we note two results which we state as lemmas without proof. 

Lemma 1. I f  A is an m x n matr ix  with m < n, and the spectrum o f  A A  T is 

a~ . . . . .  0.~ = ;h . . . . .  Am, then the spectrum o f  A r A  is AI . . . . .  )tin, 0 . . . . .  O. 

Lemma 2. (Monotonicity).  I f  Am is the m x n matr ix  consisting o f  the f i rs t  m 

columns o f  an n x n matr ix  A,  and 0.'1 > "" �9 > 0." are the singular values o f  Am, then 

the singular values o~ > . .  �9 > 0.~, + x o f  Am + 1 satisfy 

. . . . . . .  (4 1) 0"1 ~ 0"1 ~ 0.2 ~-~ 0"2 ~ ' ' "  ~--- 0.ra ~ 0.m ~--- 0.ra+l. 

We then apply these lemmas to the Q R  factorization of  A into an orthonormal 
matrix Q and upper ('right') triangular matrix R with positive diagonal entries dm 
[8, p. 214]. Geometrically, if Sm denotes the subspace spanned by the first m columns 
A~ . . . . .  Am of A ,  then arm is the length of the component of Am orthogonal to Sm, 

while each rkm (k < m) is the component of Am in the direction of the kth component 
of  the Gram-Schmidt  orthogonalization of  the sequence of  column vectors A~ . . . . .  Ak. 

Theorem 4. The fac tors  Q and R o f  the Q R  factorization o f  a random matr ix  

A = Q R  having the BMvN distribution have independent probability distributions tLQ 

and izR. Here  tzQ is the orthogonal group measure on the space o f  orthogonal matrices, 

while izR assigns independent probability measures to the upper triangular entries o f  R. 

Proof." The BMvN distribution constructs 1~ a square matrix A in which each 
column (or row!) vector Am has an isotropic (=  spherically symmetric) normal 

9) For a priori error estimates on solutions of Ax = b for A having a BMvN distribution, 
see also H. P. Mulholland, Proc. AMS 3 (1952), 310-321. 

ao) To within the usual approximation of rounding off each 'random number' to make it 
machine representable. 



154 Garrett Birkhoff and Surender Gulati ZAMP 

distribution, independent of  the other Ae, k # m. Hence its projection onto Sm has 
an isotropic normal distribution 'circularly' invariant under orthogonal transforma- 

tions of Sin. Hence the lengths rkm (k < m) of its projections onto the first m - 1 
orthogonalized axes are independent l iD  normal variables with mean 0 and standard 
deviation 1. 

Moreover, since orthogonal components of  isotropic normal distributions are 

also independent, the length rmm = dm of the component  of  Am in Sm ~ is that of  a 
random vector with normally distributed I ID  components in S~; hence, dm is a 
positive random number with probability density proportional to r n-m e - r z  at 

dm = r, and dm z = n - m + 1, on normalized scales. 
I t  follows f rom the monotonicity lemmas that the largest singular value or1 of 

R is at least dl, while the smallest singular value cr~ is at most d,. Since K(A) = K(R), it 
follows that K(A) _> dl/dn. 

We now come to the all-important question: what is the probability that 
K(A) > M = 1/7, a preassigned constant ? Since o~ _ x/n with a very large probability 

for large n, this is the probability that o, < ~/a/n.  It  is 007) and exceeds 

Prob {d, < ~l/x/n} " (2~r/n)11%7. 

Also, the 2 x 2 submatrix at the lower right corner of  A is just 

d.]'  
where: (i) The nonzero entries are independent normal random variables, (ii) c~-1,~ 
is normal with mean 0 and S.D. 1, while (iii) d~_ ~ and d~ are positive with probability 

r2 densities proportional to r e - r2dr  and e -  /r, respectively. More specifically, it is 
the matrix 6"2 obtained by Gram-Schmidt  triangularization from the 2 x 2 matrix 
of  components of  A~_~ and A,~ orthogonal to the subspace S~_2 spanned by A~ . . . . .  

An_~. This has the same probability distribution of singular values as the 2 x 2 
random matrix whose entries are independently normally distributed with mean 0 
and standard deviation 1. Most important,  the probability that both d,~-i < ~ and 
d~ < ~ is very small, being O(~a). Hence the probability that d~-2 < ~ is 0(n-312), 

and the inverse of  a large nearly singular matrix from a BMvN distribution will 
almost certainly be nearly of  rank one. 

5. Isotropic Distributions of Ill-Conditioned Matrices 

As a test of  the robustness of  programs for solving A x  = b, the BMvN distribu- 
tion turned out to be wasteful because its random matrices are so unlikely to be 
ill-conditioned. However, Theorems 2 and 3 above make it easy to generate both 
random matrices and random symmetric matrices whose probability distributions 
have the same 'isotropic' character, yet whose matrices A are as ill-conditioned as is 
desired. One can do this for general real matrices by the following procedure. 
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Step 1. Use random number generators to construct sequences d = ( d l , . . . ,  d,) 

of  positive nonincreasing real numbers d l >  d2 > d3 > . . .  > d,, d, > 0, having 
any desired distribution. For  example, one can take d l =  1 and dk + 1 = r~dk, where 
rk is independently uniformly distributed between 0 and 1. With E ___ 10 -15, as with 
CDC single or IBM double precision, the range 101~ < K(A) = dl/d, < 1015 is most 

interesting. One can achieve this range by giving the d~ a roughly uniform logarithmic 
distribution over the range 0 > log10 d > - n ,  where n is (say) 10, 12, or 14. 

Step 2. Form independent random orthogonal matriee~ P and Q by taking two 
random matrices B and C from a BMvN distribution, and letting B = PRx and 
C = QR~ be their QR factorizations, as obtained by Householder transformations 

using the Businger-Golub procedure [11, I /8]? ~) 
Step 3. Let A = PDQ, where D is the random diagonal matrix with the diagonal 

entries dl . . . . .  d, computed in Step 1. 
To construct random symmetric matrices having an 'isotropic' distribution, one 

proceeds similarly, but only constructs B = PR1 and forms A = P D P -  1 
An attractive feature of  the above procedure is that it can be easily modified so 

as to give random samples from any biorthogonally invariant distribution of general 

real or orthogonally invariant distribution of symmetric random matrices. Of  course, 
it is quite expensive. 

To reduce the cost, one can construct clumps of 8 random orthogonal matrices 

with probability distribution /~0 x . . .  x t~0 =/~o a, as follows. First, construct 8 
random matrices Ak from the BMvN distribution, next factor each Ak = QkRk by 
a QR-transformation. Then form the eight QkDQr; they will be eight random 

symmetric matrices having independent isotropic distributions. 
As far as general real matrices are concerned, define 1(1) = 5, l(2) = 6, 1(3) = 8, 

l(4) = 2, I(5) = 7, l(6) = 1, 1(7) = 3, !(8) = 4, thus making the (k, l(k)) locations 
of  eight queens on a chessboard so that none can take any other. Although pairs of  
matrices like Q1DQ~ and Q4DQra do not have independent probability distributions, 
none is the transpose of  any other and no two have a common left- or right-factor. 
Hence it would seem to be worth testing all eight. 

For  given A = PDQ = Q~DQj, one can of course let b be an independent 
random isotropic vector. Another interesting choice is to let bl = QZel be in the 
direction of the least singular and b2 -~ Qre,  in the direction of the most singular 
range vector, to see the extreme values assumed by the ratio R.E./R.R. in these 
two cases. 

Another interesting series of  tests consists in inverting Aj. The contrast between 
the ratio R.E./R.R. for the matrix equations A X  = I (with error (A-1)c -- A - t )  
and A X  = A (with error Xc - I )  when A is ill-conditioned is interesting. So is the 
distribution of the differences ( ( A - 1 ) - a ) c _  A, as regards R.E. and R.R. In this 
connection, we note that A (when ill-conditioned) has a very different distribution of  

11) Alternatively, one can use the LINPACK subroutine SQRSL (which invokes STRSL). 
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singular values in the BMvN distribution than A -1 does. This is because A has 
(with very high probability) just one small singular value, whence A-  1 has just one 
large singular value. 

Note that biorthogonally invariant probability distributions of matrices, also 
invariant under A ~ A-1, can be constructed by random number generators which 
give the log dt IID values symmetrically distributed with mean 0. For  example, these 
could be uniformly distributed on [-If ,  Id or normally distributed with mean 

square It. 
Hadamard matrices. Finally, it would be interesting to see whether, for a given 

D, the process of random biorthogonal shuffling (by setting A = PDQ) proposed above 
gives noticeably different results than the (much cheaper) process of scrambling by 
a symmetric Hadamard matrix, i.e., setting .4 = H D H  r. For example, if n = 20, 
we can define/-/20 by the following condition: 12) 

h~j=hj~ = 1 for all i >  1 and j >  1 "~ 

such that i + j  = 4, 5, 8, 9, 10, 11, 13, 15, 20, 21, 23, 24, 27, 28, 29, 
30, 32, 34, 39, 40. 

htj = hi: = 0 otherwise. 

(5.1) 

Having constructed 1t2o, one can construct Hadamard matrices of orders 40, 80, 
and 160 by repeated application of the prescription 

H2n = H2 | Hn = I-|H~ H~/,1 (5.2) 
n ,  - H ~ J  [ 

where | stands for the Kronecker product. 

6. Third Set of Tests 

A third set of tests, based on an implementation of the scheme described in w 
was carried out and reported at length in [4]. We will here only summarize very 
briefly some of  the main conclusions from these tests. 

The ratio of the R.E./R.R. was found to be indeed dependent on b. For  b a 
random isotropic vector, the R.E. had typically the same order of magnitude as the 
R.R. in every case tried. For  b a singular range vector, the ratio depended on the 
associated singular value ~r~, qualitatively in essentially the way predicted in w 
However, whereas (R.E./R.R.)max was essentially proportional to K ~ (R.E./R.R.)min 
was only proportional to K -~ or ,c-~ 

Both the R.E. and the R.R. grew nearly linearly with n, although the R.R. 

12) S. W. Golomb and L. D. Baumert, Am. Math. Monthly 70, 12-17 (1963). 
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grew somewhat  less rapidly .  Perhaps  unfor tunate ly ,  no  a t t empt  was made  to find 

the  aj, flj, and  yj which gave a least  squares fit o f  the  da t a  to 

log R.R.  = A1 log  ,c + Bx log  n + log E + y~, 

log R.E. = A2 log K + B2 log n + log ~ + 3'2. 

Tests were made  o f  the rel iabi l i ty  o f  C O N D  as a me thod  o f  es t imat ing ,c(A), 

and  o f  the rel iabi l i ty  o f  I R E  as a way o f  es t imat ing  the R.E.  The  I R E  was an especial ly 

good  diagnost ic  when b = q0~, the mos t  s ingular  range  vector.  In  general ,  it was 

found  tha t  bo th  were rel iable up  to  a fac tor  o f  2 or  3 in most  cases, la) A new QRPiv  

scheme (first p roposed  in [4]) seemed to corre la te  with K(A) sl ightly bet ter  than  

R C O N D  (in the  tests run). Unfor tuna te ly ,  no effort  was made  in [4] to corre la te  

R C O N D  with the  R.E. 

The  opera t ion  counts  and  execut ion t imes were roughly  p ropo r t i ona l  to  0.6n 3 

for  LU, n 3 for  QR, and 9n 3 for  SVD.  The errors  o f  L U  were consis tent ly  only abou t  

ha l f  as big  as the  er rors  o f  QR. 

Final ly ,  conf i rming the s ta tement  in Forsy the  [5, w it was found  tha t  scaling 

a lmos t  never reduced  the e r ror  by more  than  25~ ,  and  in fact  somet imes increased it. 
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Abstract 

In 1946, van Neumann and his collaborators used a special distribution of random matrices 
as a model for estimating a priori the machine precision needed to solve large linear systems. 
The present paper identifies isotropy as a group-theoretic property of this distribution, shows that 
its matrices are almost never ill-conditioned, and explains how to use other isotropically distributed 
random matrices for testing the accuracy of numerical methods for solving linear systems and 
associated error diagnostics. 

13) Similar results about RCOND (which estimates the 'invertibility' 1/,c(A) of A), were reported 
in internal reports TM-310 and TM-311 (using DGECO) by J. T. Goodman and Cleve Moler 
op. cit. 
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Zusammenfassung 

Die zur L6sung linearer Gleichungssysteme benOtigte Genauigkeit wurde schon 1946 durch 
yon Neumann und seine Mitarbeiter mittels speziell verteilter Zufallsmatrizen gesch~itzt. In der 
vorliegenden Arbeit erscheint die Isotropie als gruppentheoretische Eigenschaft dieser Verteilung. 
Ferner wird gezeigt, dass die Zufallsmatrizen fast hie schlecht konditioniert sind. Schliesslich 
diskutieren die Autoren die Verwendung anderer isotrop verteilter Zufallsmatrizen zur Prtifung 
yon Genauigkeit und a-priori-Fehlerschranken bei Algorithmen zur L6sung linearer Gleichungs- 
systeme. 
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