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Introduction 

The need to estimate the slope of the flow streamlines at special points often 
arises in practical fluid mechanics problems. An example is the well-known formula 

derived by Oswatitsch [1] giving the separation streamline slope of a 2-D viscous 
flow as a function of the local streamwise gradients of wall pressure and shear stress. 
However, there also arises the need to evaluate streamline curvature,  as for example 
in the study of  G6rtler-type instability mechanisms which can occur in regions of  
local concave streamline curvature I-2]. A particular case in point is the possibility 
of spanwise-periodic disturbances near separation of  a nominally 2-D boundary 
layer flow [3] where one needs an analytical relation for the flow curvature above the 

separation streamline. In the present paper, such an expression is derived in a form 
analogous to Oswatitsch's result by a direct extension of  his approach, for either 
laminar or turbulent compressible boundary layer flows. Following this, we give an 
example of its practical application. 

Analysis 

Consider steady compressible laminar or turbulent compressible flow with 
arbitrary heat transfer and Prandtl number past an impermeable non-ablating surface 
of  given but arbitrary wall temperature. We invoke a boundary layer approximation 
by neglecting the very small ~(# du/ax) /Ox viscous term in the x-momentum equation; 
however, the turbulence model is arbitrary except for the general physical restriction 
that the turbulent eddy viscosity #~ vanish at the wall including the separation point 

[here defined as z w - #w(~u/~y)~ = 0]. 
We follow Oswatitsch [1] and further assume the separation point x s, 0 to be 

regular in the sense that it is free from singularities and hence that streamwise and 
normal flow velocity components u, v in its neighborhood ( ~  6nL in size) can be 
represented by Taylor Series expansions in x-xs  and y (an abundance of  evidence has 
accumulated to support this and the aforementioned assumption provided  the local 
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pressure gradient field is not prescribed but is rather a truly interactive one, i.e., 
coupled with the boundary layer displacement thickness distribution and unknown 
a priori [4, 5]). Then noting from the compressible continuity equation that 

and 

(av/Oy)., = (a~v/Ox ay)., = (a3v/ax ~ a y ) .  = 0,  

(a~v/ay2)w = - a(~.,/~w)/ax - ('c,,,/~,,,)(@w/ax)/p,,,, 
(Oav/Ox O y 2 ) ~  = - 02 /ax2(%/#)  - a(%/#~)/Ox(Opw/Ox)/p~ - ( % / # w )  

x Olax[(@Uax)/pw] 

(03v/Oy 3)~ = O/Ox(a2u/ay 2 )~ - (02u/Oy z)~ (@JOx)/p~ 

- 2(z~/#w) alOy [(@lOx)/p] - (02v/Oy2)w (OP/OY)w/Pw 

in the absence of mass transfer, we have 

v 
m 

u 

where 

~-~y21,, ~- + \~-~y3},, ~ + \0~-~yZ},, 2 + " '" 

+ + ( X - X s ) y + D +  . . .  

(1) 

D = (y3/6)(O3u/Oya)~ + [(x - xs)y2/2]O/Ox(O2u/Oy2)w 

+ [ ( x  - x~)2y/2] a21ax2(T~I~D 

Furthermore, from the x-momentum equation and its y-derivative evaluated at the 

wall, 

(02u/Oy 2 L = (@/Ox)/#~ - [O(# + #r)/Oy]wZw/#~ 

(03u/OY 2)w = - -  2[0(# + #r.)/Oy]w (Oau/ay 2)~/#~ 
2 2 1/#~[O/ex(~p/ay)]w. - [02(y + pz)/Oy ]wZUIx~ + 

and 

Away from the separation point (% :~ 0) approaching the surface, Eqn. (1) thus 
yields v/u ~ 0 as y ~ 0 (i.e., the flow becomes parallel to the wall), whereas ap- 
proaching the surface point Zw = 0 along the separation streamliney = (x - x~) tan 0~ 
as y ~ 0 gives the well-known result that 

tan 0~ = v /u= - 
(@w/Ox) + 2(0%/0x) cot O~ 

o r  

tan 0 s = 3 ( -  Oz,,,/Ox)s 
(@~,,/OX)s (2) 
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This result, which applies equally well to a point of reattachment, is independent of 
the compressibility, viscosity law, Op/Oy, heat transfer or state of turbulence?) It is 
reemphasized that Eqn. (2) pertains to the interacted values of the wall gradients 
involved. Moreover, for this reason, the contribution of OpJOx to Op~/Ox terms must 
be taken into account in the subsequent curvature analysis for the compressible case. 

Now the corresponding curvature of the flow just above this separation point 
can be straightforewardly derived by differentiation of Eqn. (1) and examination of 
the result near the wall. Since both experiment and Eqn. (2) show that 0~ is small 
(5-10~ as in fact it must to be consistent with the boundary layer approximation, the 
flow curvature may be accurately calculated as 

K = I R I -  1 _~ O(v /u ) /Ox  - -  [ (Ov /Ox)  - ( v / u ) O u / O x l u -  1 

(being positive for convex streamlines) where R is the corresponding local radius of 
curvature. Thus differentiating Eqn. (1) with respect to x and substituting the afore- 
mentioned velocity derivative values we obtain above any point on the surface not a 
separation point that 

yZ 
(OSv/dx dy2)~ 2- + 0(y3) 

K_~ 
(%/t~)Y + 0(Y 2) + " '" 

L Ox 2 0(y') + 

- \@2] w [(%,/Pw)Y + -0( ' -~ ;  : ' -  - 
(3a) 

~- 2L  ~ Zw/#w c3x\ Pw / J  + O(y2) + "'" (3b) 

which is seen to vanish smoothly as y --* 0 upstream or downstream of separation 
since the flow becomes parallel either to the flat surface or the straight separation 
streamline, respectively. Away from separation above the surface the streamline 
curvature increases linearly with distance4). On the other hand, if we now consider 
a small distance right above the separation point x = x~, we find instead that 

[ ~3(,rw/#w ) + y t3 (t~2u'~ l 
(a3v/Ox Oy2)~ 2 tan 0~ [.  0x 2-~x \~y2] . ,  / 

K ~- (~2u/Oy2) w Y [_(02u--~-  ~ + ( y - - ~ ( d 3 ~ ) w j  

tan0s(?P/~X)Z"-' 1 
0x p~ / 2 tan 2 0s [ c~ [~2u'~ 2 (0Su/ + 0(y) 

K - 3  y [ +#W~x~y2)wtanO~+-~wtanZO~\oyaJwJ 

(4a) 

(4b) @w/,~x 

s) It can also be shown applicable to curved as well as flat walls. 
4) Note that the last term in Eqn. (3b) is absent in an incompressible flow. 



1030 G.R.  Inger ZAMP 

[ 02Zw [-I'C~2P'~ (OP/OX)21 l 
+ tan 0~ L~x2j~  ~-~ -Jw 

[ 1 _  tan2 0~ [(-O(lal~)~(OPw/Oq--2c3(c~')l ) + 
K _ 

2 tan 2 0s 

3 y 

8pw/Ox (4c) 

Right at the separation point on the surface, this relation indicates infinite 
streamline curvature as indeed it must owing to the streamline slope jump across Xs. 
A short distance away from the surface, however, being proportional to the very 
small quantity tan 2 0~, the effect of this singularity dies out quickly leaving the 
y-independent value given by the second term on the right of Eqn. (4c) which is the 
main result of practical interest here 5). We note that while it does depend explicitly 
on the compressibility, heat transfer, Op/Oy and laminar-turbulent viscosity Jaw 
through the last term, these effects are negligible in practice unless the heat transter 
pressure gradient product or O/t~X (Op/t)y)w is very large [ > 0 (cot 2 0~)] such as might 
be the case in strongly-interactive hypersonic boundary layer separation from a 
highly cooled wall. Dropping the first term on the RHS of (4c) that merely represents 
the far field of the wall surface curvature singularity, we thus have the following final 
approximate relation for the average flow curvature above separation (or reattach- 
ment): 

(c3~ "] + tan F~ 2p (t~P/OX)Z-] 

(Op/~xL, (5) 

It is noted that the last term here is derived from a Opw/Ox contribution and hence is 
not present in purely incompressible flow; however, since its effect is ~ tan 0s, it is 
probably important only under hypersonic flow conditions. 

The foregoing analysis indicates that a short distance above the wall the flow 
streamline curvature undergoes a rapid streamwise change approaching the separa- 
tion point. The curvature at a fixed y > 0 somewhat away from x~ is according to 
Eqn. (3b) proportional to z w- z and hence increases without bound as x ~, xs with a 
rate proportional to y. However, according to Eqn. (4) this increase must stop and 
become bounded at x = x~ by a value which quickly decays rapidly in y to that given 
by Eqn. (5) (see Fig. 1). 

Appl i ca t ion  

Although strictly speaking it should be retained, (~2pw/~X2)s in many cases is 
negligibly small (see, e.g., Fig. 3) and it is sufficient to neglect all but the first numer- 

5) The work of Stewartson and Williams [4] also formally justifies neglecting y- ~ tan 2 0 s in Eqn. 4c 
for Re- 5,s < y <_ Re- 1,2 in the laminar case, since there 0 s ~ 0 (Re 1,4), Ap ~ 0 (Re- 1,4), Az~. ~ 0 (Re 12) 
and Ax ~ 0 (Re-a'a). 
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Figure 1 
Behavior of streamline curvature near separation point. 
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ator term in Eqn. (5) to get approximately 

(@/Sx)~ 3(8%/8x)~ 
[K-1I=RAv.~ ~ (82%/~X2)2 ~-- (82%/8X2)~ cot 02. (6) 

This predicts that RAV., is directly proportional to the radius of curvature of  the 
%(x) plot at separation and that it also decreases as the separation angle increases 
(i.e., in agreement with physical expectation, the curvature vanishes as 0 2 ~  0, 
Fig. 2). To apply Eqn. (6) in practice thus requires data on the streamwise pressure 
gradient and second derivative of  the streamwise wall shear distribution at the 
separation (or reattachment) point. 

Fortunately, there exists some relatively detailed experimental data at conditions 
satisfying the assumptions underlying Eqn. (6) from which these quantities can be 
estimated: Figures 3-5 illustrate the pressure, wall shear distributions and flow 
geometry measured by Sfeir [6] for a M~ o = 2.64, Re m = 1.4 x 105 laminar flow 
separating and reattaching on a small angle ramp compression corner. Let us first 
check the Oswatitsch formula (2) for the separation point streamline slope against 
these data. From Fig. 3 we readily estimate that [~3(p/po~)fig(x/L)] 2 = 1.67; however, 
the corresponding value of  (8"rw/t~x)2 is more difficult to determine accurately from 
Fig. 4, because only two points (one at x2) on the zw(x) curve near separation are 
given and it is implied that the slope varies rapidly as x ~ x 2 (to which the tan 02 
estimate from Eqn. (3) is quite sensitive). As a reasonable average value for engin- 
eering purposes, we use the slope defined by the two experimental points D and S, 

= 2 0.25 - 1/2 which gives t~( 'C/ 'Cre f ) /~(x /L  ) "~ 2.6 where "~ref Poo U. [Re|174 ] is the 
Blasius reference value (defined at x/L = 0.25) and Tw/To~ ~- Tw, AD/Too ~-- 2.17. 
Then substituting these values into Eqn. (3) yields tan 02 -~ 0.074 which agrees fairly 
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Figure 2 
Schematic illustration of separation region. 
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Figure 3 
Pressure distribution along a ramp-induced separation [6]. 
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well with the experimental value 0.107 obtained directly from the streamline geo- 
metry shown in Fig. 5. A similar calculation at the reattachment point gives com- 
parable agreement: Eqn. (3) yields tan O R - 0 . 0 9 1  compared.with the measured 
value 0.112 from Fig. 5. 

We now evaluate the corresponding .streamline curvature. Near separation there 
are sufficient data points on Fig. 4 (including the reversed flow region) to enable a 
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Wall shear stress distribution [6]. -0.10 
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Figure 5 
Flow detail within separation bubble [6]. 

reasonable circular fit to the zw(x) curvature and thus obtain 

[~27gw/~(x/L)2]s "~ 4{1 + [~('Cw/'Cref)/~(x/L)']2}a/2T, ref ~ 5"~re f 

where to be self-consistent we have used here the corresponding circle slope value 
[t3('rw/T, re f ) /~ (x /L)]  s ~ 0.40. Thus substituting into our curvature radius formula (6) 

1 / 2  2 we obtain (RAv /L ) s  ~ 0.4ReL /Moo ~- 21.2. A similar calculation at reattachment 
where the curvature of the zw(x ) curve is considerably larger yields ( R A v / L ) R  "~ 5.3. 

An immediate and interesting application of these estimates is to examine the 
possibility that spanwise-periodic disturbances (G6rtler-type vortices) may form in 
the concave streamlines above the separation and reattachment points. This can be 
done approximately by a local application of G6rtler's instability theory results for 
curved wall flows, these vortices likely occurring if the prevailing conditions ap- 
preciably exceed his instability criterion. According to G6rtler [2, 7], a concave 
boundary layer flow having an average longitudinal radius of curvature R will be 
susceptible to amplified streamwise vortex disturbances whenever the following 
criterion is met: 
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D = (0"/L)312 { ReL "] > 0.25 
O*U~_ 

v \ ~/FR-/L,] ~ (7) 

where 0* is the m o m e n t u m  thickness at the local curvature  region under  considera- 

tion6). Applying this to Sfeir's reat tachment  condit ions at xR/L = 1.375 (extra- 

polating his given value 0* = 0.07 assuming 0* ~ x 1/2 and using the foregoing esti- 

mate  o f  R/L there, we obtain 

(O*Ue/v) ~ / R  ~- 248 (Reat tachment) .  (8a) 

Since this exceeds the critical value by three orders o f  magnitude,  one might  expect 

streamwise vortex disturbances to occur  in reat taching flows. Indeed this has been 

confirmed by numerous  experiments under comparab le  conditions,  especially the 

detailed studies o f  Ginottx [9],  and in fact an approximate  theory o f  the resulting 
steady state disturbance flow has already been developed by Inger  [10, 11]. 

At  the separation point  using the foregoing values, we get the somewhat  smaller 

stability number  

[(O*Ue/v) Ow/-~]sep ~, 70.4. (8b) 

Since this still exceeds the critical value by two orders o f  magnitude,  v ) we are led to 

expect the possible presence o f  streamwise vortex instabilities at separation also, as 

indicated in Fig. 6. Indeed, some experimental evidence of  this has arisen in a recent 

9' 

• s 

u = Uo(Xs. y) + ul(y ) cos (2nz/2) + O(x - x~) 2 
v = Vo(X~. y) + vl(y ) cos (2~z/2) + .. .  
w = wl(y) sin (2nz/2) + . . .  

Figure 6 
Schematic of three-dimensional disturbance field originating at separation I-3]. 

6) Since Eqn. (7) is based on an incompressible fiat plate boundary layer profile, its application near 
separation or reattachment here is only a rough approximation because it is at present not known exactly 
how vanishing skin friction, adverse pressure gradient and compressibility all affect the right side of Eqn. 
(7). However, since this value decreases with decreasing boundary layer wall slope I-7] and increasing Mach 
number 1-8] for fixed 0", Eqn. (7) provides an upper limit and conservative stability estimate. 

7) Under other conditions where the separation angle and hence the flow curvature is too small, how- 
ever, the instability criterion (7) may not be satisfied and these vortices will not occur. 
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experimental study of M = 2.85 ramp-induced turbulent boundary layer separation 
[ 12] : a careful examination of the surface flow pattern at the separation line reveals 
evidence of a spanwise waviness with a typical wave-length at 2-4 boundary layer 
thicknesses [11]. Accordingly, a theoretical study of the problem has been initiated 
[3] for the non-parallel, vanishingly-small skin friction type of mean flow occurring 
at separation. 
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Summary 

Oswatitsch's analytical expression for the slope of a viscous flow separation or reattachment stream- 
line is shown to be consistent with detailed experimental data on a supersonic boundary layer flow past a 
compression corner. An extension of his analysis is then given which yields a comparable new relation for 
the streamline curvature just above separation in either laminar or turbulent two-dimensional compressible 
boundary layer flows. This result is applied to examine the possible occurrence of Grrt ler  streamwise 
vortices due to such curvature. 

Zusammenfassung 

Es wird gezeigt, dab die analytische Beziehung von Oswatitsch ftir den Neigungswinkel einer z~ih- 
fltissigen Strrmungsablrsung (oder das Wiederanlegen), in Ubereinstimmung ist mit detaillierten Ver- 
suchsergebnissen an einer ~berschall-Grenzschichtstrrmung l~ings einer Kompressionsecke. Dartiber 
hinaus wird eine Erweiterung dieser Theorie angegeben, welche eine vergleichbare Beziehung ftir die 
Stromlinienkriimmung im Bereich tiber dem Ablfsepunkt, sowohl ftir laminare als auch turbulente zwei- 
dimensionale Grenzschichtstrrmung gibt. Dieses Ergebnis wird zu einer Absch~tzung mrglichen Auftretens 
von Grrtlerschen Wirbeln in Strrmungsrichtung infolge dieser Krtimmung verwendet. 
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