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Thermoelastic Problem for an Isotropic Sphere with 
Temperature Dependent Properties 1) 

By JERZY NOWINSKI, Madison, Wis., USA 2) 

I n trod u c t ion  

Modern structural elements are often subjected to temperature fields of 
such intensity that  their mechanical behavior approaches that  of viscoelastic 
bodies, and a representation by  means of a classical Hookean model does not 
adequately describe their actual properties. 

In  spite of this fact, it was shown recently tha t  the elastic thermostress if 
based on temperature dependent properties of a material  corresponds to the 
upper value of stress in an inelastic problem for the incompressible viscoelastic 
Maxwell body [13 a). The results obtained for rotationally symmetrical  plane 
states of stress and strain with steady-state radial temperature gradient make 
it plausible that  also in other cases the elastic thermostress, defining the initial 
conditions of a viscoelastic thermal process, might serve as an estimate of the 
decisive thermostress in actual structural elements. 

Such a postulate will be also adopted in the sequel for metallic.elements 
under consideration. 

On the other hand, experimental data  for common steels evidence that  at 
elevated temperatures POlSSON'S ratio approaches its upper bound for iso- 
tropic materials namely 0.5 [51 . Of course, this is only approximately true and 
the respective values oscillate between 0.4 or 0,45 and 0.5. 

The assumption of the elastic incompressibility of a body at elevated tem- 
peratures, however, permits us to obtain a simple solution to the problem, in 
a closed form convenient for numerical computations. Moreover, the solution 
may  pertain to any polarly symmetrical  temperature field T = T(r), r being 
a position vector, as well as to any variation of YOUNG'S modulus E ---- E(T) ,  
shear modulus G = G(T) and coefficient of thermal expansion c~ = 0r with 
temperature.  

This assumption will be, therefore, adopted in subsequent arguments as the 
second basic postulate. 
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As far as the influence of the temperature dependent properties of a 
material  on the thermostress is concerned, it has been investigated, to the 
present writer 's knowledge, in the case of an infinite thick-walled tube and a 
circular ring, only in four paper s [ 1 ~ .  The first two papers treat  elastic in- 
compressible material,  thee last two an arbi trary but  constant Poisson ratio4). 

The scope of the present 'paper  is, confined to an extension of the previous 
solutions to the case of a solid or hollow sphere subjected to spherically sym- 
metrical temperature fields. Formulae have been derived for thermal stress 
dealing with arbi trary variation of temperature as Well as arbi trary variation 
of YOUXG% modulus, coefficient of thermal expansion and thermal conduc- 
t ivi ty  with temperature.  

Stra in  and  S t r e s s  F ie lds  

Consider an isotropic elastic sphere, with the pole of spherical coordinates 
at the center o f  the sphere,: subjected to spherically symmetrical  external 
tractions and spherically symmetrical  temperature  field T = T(r), with r as 
position vector, Assume that  YOUNGIS modulus E and coefficient of thermal 
expansion of the material  of the sphere showmarked  dependence on tempera-  
ture, and that  POISSON'S ratio v is constant and equal to 0.5. 

With usual notation, w e obtain, in the case consideredl the Hooke- 
Duhamel equations 

T(r) T(r) 

8r E(T)I (a  r - -  % )  7- O~('C) d~: ,  e - 2 E ( T )  ( %  --  (r,) + ~x(T) d T  

o o 

(1) 

whereas all other components of stress and strain tensors vanish. In fact, T(r) 
denotes the excess of temperature above the uniform ambient conditions at 
which thermostress disappears, and elastic and thermal coefficients have their 
usual values. 

With u as radial displacement we have for the only non-vanishing unit 
elongations in the radial and tangent directions, 

d u  u 
~, - - d ~ ,  ~ ~ (2) 

Since the elastic dilatation of the body is zero, by  hypothesis, equations (1) 

4) Addendum by Proo]reading: The author wishes to express his thanks to Professor CHANG, 
University of Minnesota, for drawing attention to the paper Stresses in a Metal Tube Under Both 
High Radial Temperature Variation and Internal Pressure by C. C. CHANG and W. H. Cirri, J. appl. 
Mech. 21, 101 (1954), in which a related problem has been investigated on the basis of experimental 
data. Also a recent paper by R. TROSTEL, Stationdre Wdrmespannungen mit temperaturabhdngigen 
StoHwerten, Ing.-Arehiv 26, 416 (1958), giving a general solution to the thermoelastie problem for 
temperature dependent material  properties, using the perturbation method, should be mentioned. 
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and (2) yield simply 

With a notation 

d (r 2u)=3r*q~ (3) 
dr 

T(,) 

O~ =f~ ( . )  d~. 
0 

(4) 

An integration of the differential equation (3) yields the radial displacement 

3 C~ 
u = f i - Z a l ( r )  + r ~  , (5) 

where C~ is a constant of integration to be determined later from the boundary 
conditions, and 

r 

X ~ ( r )  = / e  ~ q) de; (6) 

a is any convenient lower limit for the integral, such as the inner radius Qf a 
hollow sphere. 

Clearly now 

2 [  3 ra ] 1 
er - -  ~.a 3 Zal (r )  - -2 - qb + C1 , e .  - -  r* [3 Zal(r)  + CI~ ' (7) 

and the Second equation (1) gives 

2 E ( T )  
~ , -  % -  ~3 E3z~(~) - r ~ +  G ] -  (8) 

In addition to the foregoing equation, in the absence of body forces, we have 
the following well-known stress equation of equilibrium 

d~r 2 (~, _ %) = 0 (9) 
d~-- + T 

By virtue of these two equations a trivial integration gives finally the radial 
and hoop stresses 

G = 4 [3 k~(r) -- ~G(r) +,C1 Z~2(r)] + C2, (!0)' 

E ( T )  Z.l(r) ] _ 2 [2 ~o.(r) + E ( T )  q~] a ,  = 6 [2 %(,)  + ~ 3  

[ E(~)  ] + 2  2zo2(r)+ ~ j c l + c 2 ,  
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with the notat ion 

/ / o ~r = E(T) , r E ( T )  ~-  d O O ~ qb d O da ~o~(r) = 

~ ~ ( 1 2 )  

E(T)  
X~(r) = ~ dO; 

and C, as constant  of integration. 
Thus  we have obtained, as was announced earlier, a solution in a closed 

form and valid for any  symmetr ical  temperature  distribution as well as for any  
variat ion of T(r) and e(r). 

Let  us now investigate two characteristic cases. 

Solid Sphere 

In  this part icular  case the lower limit a of the integrals m a y  be pu t  equal 
to zero. 

For  r = 0, because of symmetry ,  wo ought  to have u = 0. This yields 
C1 = 0 in equation (5) since by  vir tue of the theorem of the mean value of an 
integral, 

1 
lira Zoo(r) = 0 (13) 
t---~ 0 ~ 

with 0 subst i tuted for the subscript  a in Z~I. A similar notat ion will be sub- 
sequent ly  used, for a = 0, in the symbols W~, ~o~ and Z~2. 

We proceed now to  show tha t  a, and a ,  also remain bounded,  for a ->- 0 
and  r --> 0, if we take  C 1 = 0. I n  fact, since, for a = 0, the integrands in }iVy(r) 
and Z~2(r) increase infinitely by  approaching the lower limit of the interval  
of integration, we have to compute  the difference of the improper  integrals 
~ ( r )  and %(r), 

D~, = 3 ~ ( r )  -- ~ ( r )  (14) 

assuming a 4= 0, and then pass to the limit b y  allowing a + 0. This yields 

_lhnDa r _ 1 E(0) ~b(0) (15) 3 
a--~0 
r---~ 0 

Now, in order t ha t  Z~2 in equat ion (10) and the last bracketed term in (11) 
remain bounded  as a --~ 0 and r + 0, it suffices to put  C1 = 0, as was asserted. 

Thus,  finally, we obtain for the stress at  the center of a solid sphere the 
bounded  expression 

4 E(0) ~(0) + C~. (16) ~,(0) = %(0) = -  3-  
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Let  us write explicitly the difference % 
in the form / 

% -- a, = 2 E(T)  ~fib 
\ 

- -  a, ,  for C 1 = 0 and a = 0, from (8) 

f 4  ~ ~2 ~ d9 

o 4 - ~  . (1_7) 
~ - ~ r  

Clearly the second bracketed term in the foregoing equation represents the 
mean unit thermal expansion of the sphere with radius r. Hence, the follow- 
ing theorem holds: In  a solid sphere with temperature dependent properties 
subjected to radial temperature gradient, the difference between the local 
hoop and radial stresses at a point r is in direct proportion to the difference 
between the local value of the thermal expansion and its mean value within 
the sphere with radius r. The factor of proportionality is double the local value 
of YOUNG'S modulus. 

Since half a difference between each two principal normal stresses at a 
point designates a principal shear stress at the point, the foregoing theorem 
provides us with direct data  for the  Tresca-Saint Venant or Huber-Mises- 
Hencky criterion of plastic yielding at the point. Furthermore, the factor of 
proportionality being equal to the modulus of elasticity, we can at once 
perceive in what degree the temperature dependent properties of a material  
influence its tendency to plastic yielding. I t  appears, at this early stage of our 
investigation, that  the assumption of a temperature-independent elastic modu- 
lus and the use of its value corresponding to the ambient conditions lead to 
an overestimation of the intensity of stress, provoking plastic yielding at 
elevated temperatures.  

The constant of integration C 2 can be now computed from the boundary 
conditions at the surface of the sphere r = b. For a tractionfree surface, for 
instance, we get 

~, = 12 [To(r ) - To(b)l - 4 ~o0(r ) - ~0o(b); , ] 
! (18) [ 3E(T) r / 

% = 12 [~o(r) - To(b)~ - 4 [%(r) - ~po(b)l + 2 l r 3 Zol(r) - E ( T )  . 

S p h e r e  w i t h  a Cen t ra l  H o l e  

Let us denote, in this particular case, the inner and outer radii of the hollow 
sphere by  a and b, respectively. Suppose, furthermore, that  in addition to a 
steady-state radial temperature gradient, the spherical container is submitted 
to an action of an internal uniform pressure p, and embedded in an elastic 
medium of Winkler type characterized by  the modulus ~. These assumptions 
clearly yield, 

a,(a)  = - p  , a,(b) = - - ~  u(b) . (19) 
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From (5) and (10) a trivial computa t ion  yields the following values of the 
cons tant  of integration : 

3~ p 
3 ~ab - Y'ab + ~-b~- Zalb 4 

C 1 =  -- , C2 = - - p ,  (20) 

Z a 2 b  ~ -  4 b ~ 

an addit ional  subscript in the nota t ion  of the functions (6) and (12) being 
required to indicate their value on the outer  surface r = b. 

For  x = 0, one deals with an instance of a sphere free from external load on 
the o u t e r  surface. 

For  ~ = oo, an instance of a container embedded in an  absolutely rigid 
medium is obtained. In  this part icular  case 

C 1 = - 3  Z~lb , (21) 
and u(b) = O. 

The  elastic med i um whi c h ,  in a general case, surrounds the container m a y  
be, of course, represented b y  a second hollow sphere, const i tut ing an outer  
layer of  a composite double layer  sphere. I t  is easy then to compute  the 
respective modulus  of the medium x. 

To this  purpose,  let us assume tha t  the medium is also temperature  sensi- 
tive, a n d  denote all quantit ies concerning the medium b y  an asterisk. We 
can adap t  all the  foregoing equations b y  subst i tut ing b for a, for the inner  
radius of the outer  sphere, and c for b, for the outer radius of tha t  sphere. 
Moreover, we h a v e  to take x = 0 and denote inner pressure p b y  x. This 
procedure  leads to the following equations:  

$, 

e c*, 
u *  = 3 ~ 4 *  d e +  r2 

b 

r 

f E*(T) a* = 12 a4 
b 

T(r) 

- - -  . ; e 2 #  * d e d a -  4 j [ E * ( T )  ~ -  ~* de 
b b 

E*(T) 
+ 4 C* C de + C~,  

b 

with r  = f~*(z) dr. 
0 

(22)  

Using notat ion similar t o  tha t  used previously one gets from (20) the 
constants  of integration, 

3 ~v L - ~o~c 4 
c*  = 4 x t , ~  , c *  = - ~ .  (23)  
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Now the condition u*(b) = 1, which expresses the true nature of the modulus 
~, as being a pressure which provokes a unit radial displacement on the inner 
surface r = b of the outer sphere, yields 

= 4 (3 T~c - ~*c + Z*2~ b2) �9 (24) 

If  the improper integrals in the last equation converge for c --~ oo, then the 
limit of the right-hand member  in (24) will represent a unit response of a 
temperature sensitive infinite elastic space produced by  an expansion of the 
(inner) sphere. I t  follows tha t  we shall be Concerned with a thermo-elastic prob- 
lem for a temperature  sensitive container embedded in an ideal temperature  
sensitive elastic medium. 

Let us now take the situation as it often occurs in actuality, namely  tha t  
of a medium at zero excess temperatur  e, T * =  0. Then  ~b* = 0, E*(0) = E*, 
and one obtains simply 

4 ~.* (25) 
~ =  3 b  ' 

which is a known result [6]. 

T e m p e r a t u r e  F i e l d  

Let us Suppose tha t  the thermal conductivity of a material  k has a marked 
dependence on local temperature.  Then the general equation of the temperature 
field, for a steady-state conduction in a system free of sources and sinks, 
becomes 

k V2T + Vk .  [TT = O, 

with [7 and [73 denoting a gradient and a Laplace operator, respectively, and 
the dot denoting the scalar product. 

I n  the polarly symmetrical  case we get in polar coordinates simply 

or after integration 

d ( k r 2 ~ r ) = O  (27) 
dr  

k dT  - K1 + K2 (2s) 

k = k 0 (1 --/3 T ) ,  (29) 

with K 1 and Ks as constants of integration. 
For most practical situations the nonuniformity of k can  be expressed 

without any substantial error by  a linear function 
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where k o is the known conductivity at the ambient temperature and fl is a 
coefficient, in general, positive for homogeneous metals. 

To be specific, let us assume the isothermal boundary conditions at the 
surfaces of the container discussed, 

r = a ,  T =  T~, r = b ,  T -  T b. (30) 

Then integration of (28) and solution of the quadratic equation in T yields, by  
virtue of (30), the following distribution of temperature : 

T - -  fl V b - ~  a [ ( ~ -  Tb) b - -  _ 1 _ 2 a _ . 

Following the procedure of [3] it is easy to show that  using TAYLOR'S formula 
for the right-hand member of equation (31) and passing to the limit, with fl --> 0, 
yields the well-known temperature distribution for uniform conductivity: 

I t  will be shown later that  for moderate temperature gradients, such as 
assumed in the following numerical exampl e involving prescribed steady 
temperature values on the surfaces of the container, no significant difference 
exists between the temperature fields for temperature dependent and in- 
dependent conductivities 5). In view of this, the simple temperature distribution 
(32) instead of the complex one (31) can sometimes be adopted. 

Numerical Example 

Let us consider a hollow sphere under steady-state radial temperature 
gradient and no surface tractions. Using our previous notation we assume that  
a = 50 [cm], b = 100 [cm], T~ = 500 [~ C], Tb = 400 [o C]. For a steel container 
we take 

= (1200 + T~ 10 -8 [~ I 
(33) 

E = [1758.2 -- 3.573 (T ~ -- 400)t [kgcm -~] �9 j 

The last expression has been computed for the interval 750 --< T ~ G 1000, 
which includes the interval 400 G T~ G 500, from the experimental data  
given in [5] for the S.A.E. 1095 steel. 

5) I t  was shown, however, in [3] for a circular tube, that  this is not  always the case if instead of 
the prescribed boundary  temperatures a heat exchange between a surface of the body and the sur- 
rounding medium is assumed. 
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Assume in (29) that 
Then equations (32) and (31) yield the following temperature fields: 

10000  
T1 = 300 + - - - ,  

T2 ~ 1428.57 -- V2~1-5,~2 (1 - 5 o ) _  862,242 (1 -- lr00-), 

which for specific values of r = 60 and 80 become 

k 0 = 0.11 [cal cm -1 s -1 ~ and fi = 0-0007 [~ 

(34) 

60 

Tl 
Difference 

T~ 
per cent 

466.67 465.51 1.16 

80 425-00 424.07 0-93 

In view of an insignificant difference between the respective values of 
temperature just obtained we shall use the simpler equation (32). By substi- 
tuting its right-hand member in the second relation (33) we get finally YooNCs 
modulus in terms of the position vector, 

35.73 = ) 1 0 ~  

Consequently, we compute ~ from (4) and then the stresses from (10) and (11). 
They are shown in Figures 1 and 2 being denoted by  (temp. dep.). Along with 

~r 
lO00 

500 

,:7 

ar (temp. dep.) 

Figure 1 

The radial stress. 

the curves related to the latter stresses two other pairs of curves are plotted in 
the figures marked by  one or two asterisks. Those marked with one asterisk 
correspond to the well-known formulae for a temperature insensitive material, 
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given, for instance, in [7]. There have been computed for POISSON'S ratio equal 
to 0-5 and for the values of 0~ and E from (33) corresponding to the arithmetic 
mean of the boundary temperatures, t h a t  is to 450~ I t  may  be seen tha t ,  at  
least in the particular case considered, the difference between the corresponding 
stress fields is meaningless as far as the accuracy usually required is concerned. 

2000 

7000 + 1 = 

a b 

-2000 

-3000 

-4000 

Figure 2 

The hoop stress. 

Hence, in this instance, we could calculate with orthodox equations for tem- 
perature independent material  using mean values of c~ and E. For the sake of 
comparison, in Figures 1 and 2 the stress field for temperature independent 
material  has also been shown assuming v = 1/3 and the values of E and 0~ cor- 
responding to the ambient conditions. Clearly, in this case the actual influence 
of the temperature on the intensity of the stress field would be considerably 
underestimated. Thus, for instance, the maximum compressive hoop stress on 
the inner surface of the sphere would be almost 27% less than that  computed 
from the more accurate equation. 

I t  should be noted that  in the foregoing numerical example the temperature  
field is of such an intensity that  it induces stress locally exceeding the proportional 
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limit of the material. Consequently, the numerical values of stress in these 
regions may serve only as an illustration of the influence of the temperature 
sensitive properties of the material on the magnitude Of thermal stress. 
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Zusammen[assung 

Es werden Wiirmespannungen infolge polarsymmetrischer station~irer Tempe- 
~aturfelder in einer isotropen Kugel  mit  temperaturabh•ngigen Stoffwerten unter- 
sucht. Das Material wird als inkompressibel vorausgesetzt, was einem oberen 
Grenzwert der viskoelastischen Spannungen in einem Maxwellschen K6rper  ent- 
spricht. Diese Annahme erlaubt, die L6sung in einer geschlossenen Form und fiir 
jede Temperaturvertei lung und Temperaturabh~ingigkeit der Materialkonstanten 
und des WXrmeausdehnungskoeffizienten aufzustellen. Es Werden allgemeine For- 
meln fiir die Spannungs- und Verschiebungsfelder in einer vollen Kugel und in einer 
kugelf6rmigen Schale gegeben und die Einwirkung der variablen Wiirmeleitzahl auf 
das Temperaturfeld untersucht.  Ein numerisches t3eispiel fiir lineare Temperatur-  
abhitngigkeit des ElastizitAtsmoduls und des Wiirrneausdehnungskoeffizienten wird 
berechnet. 
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