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Minimum Weight Design of Circular Plates Under Arbitrary Loading?)

By WirLiam PraGeR?) and RicHArRD T. SHIELDS), Providence, R.1., USA.

To Professor F. K. G. ODQVIST o#n the occasion of his 60th anniversary

1. Introduction

The direct design procedures developed by DRUCKER and SHIELD [1, 2]4) have
been used recently [3] to obtain the minimum weight design of circular plates
under rotationally symmetric pressure distributions. The sandwich plate and the
solid or homogeneous plate were considered and designs for both simply sup-
ported and built-in edge conditions were derived. As an extension of this work,
the minimum weight design is obtained in the following for a circular sandwich
plate loaded by an arbitrary distribution of pressure. The deformation modes used
to obtain the designs are the same as those used in [3] for rotationally symmetric
pressure distributions.

2. Definition of the Problem

The ideal sandwich plate is composed of a core of constant thickness H
between two identical face sheets of variable thickness %, where & < H. The core
carries shear stress only while the face sheets carry direct stresses and so provide
the bending moment across a section. The material of the face sheets is assumed
to be elastic-perfectly plastic and to obey TrEsca’s yield condition, with yield
stress o, in tension or compression. It is convenient to represent the principal
bending moments M,, M, at a generic point of the plate by a point with rectan-
gular coordinates (M,, M,) (see Figure 1). With Tresca’s yield criterion, the
stress point must then be within or on the hexagon in the figure [4], the maximum
bending moment M, being given by

My=o6,Hbk. (1)

For a point on the hexagon, plastic bending of the plate can occur. The principal
curvature rates x,, x, associated with a mode of plastic deformation can be
represented in Figure 1 by a vector with components proportional to s, x,
attached to the stress point in question. The flow rule requires the curvature rate
vector to be normal to the hexagon for points on a side, and at the corners of the
hexagon the vector must lie in the fan bounded by normals to adjacent sides. The
rate of dissipation of energy D4 per unit area of the middle surface due to plastic
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action is given by
Dy = M;x, + Myx, (2)

and is uniquely determined by the curvature rates »x,, ,.

It is required to determine the thickness % of the face sheets so that the plate
can just carry a given distribution of pressure and so that minimum weight of
material is involved. The material is assumed to be homogeneous and minimum
weight coincides with minimum volume. The minimum weight design is achieved
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Figure 1

Yield condition.

by a plate designed to collapse in a mode for which the condition

%‘i = const (3)
is satisfied over the plate [1, 2], if body forces are neglected. Condition (3) is a
condition on the rate of deflection w of the middle surface of the plate and the
thickness # does not enter into condition (3) because of the linear dependence of
D, on h. To this extent, the condition is independent of the pressure distribution
over the plate but the form of the condition depends upon the position of the
stress point on the hexagon, which in turn is influenced by the loading.

For a circular plate with conditions of simple support or built-in support at
the edge of the plate, the deflection mode w satisfying (3) is rotationally sym-
metric. With polar coordinates (v, 6), the edge of the plate being » = R, the
curvature rate s, is zero and isotropy then requires the bending moment M,
to be zero. For equilibrium, the bending moments M,, M, satisfy the equation

02 oMy 1 0*M,
[ Ay T R E R *)
where p = p(v, ) is the pressure over the plate. For definiteness, the plate is
taken to be horizontal. Positive values of M,, M, stress the lower surface of the
plate in tension and the pressure is applied to the upper surface. The shear forces
Q,, Qp are given by

oM 1 1 oM,
Qr = 7)77“‘ + 7 (Mr - MB) B QG = 006 . (5)
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3. Simply Supported Plate

When the edge » = R of the plate is simply supported, the minimum weight
design is obtained by assuming that the whole of the plate is stressed to state 4
of Figure 1. The deflection rate w (measured in the downwards direction), asso-
ciated with point 4 and satisfying (3), and the condition w =0 at » = R, is
given by [3]
| w= o (R?— %), (6)
where « is a positive constant. The bending moments M,, M, are both equal to
the maximum moment M, and substitution in the equation of equilibrium gives

02M, 1 oM, 1 0:M,
L0 =, .0 =, 7
or? + 4 ar r? 002 P (0
This equation and the condition My = 0 at » = R are sufficient to determine M,
over the plate.

For a concentrated load P at the point (g, ¢), the solution of (7) satisfying
My=0atr= Ris

i P 7y 0
= =~ _Iln|2%.->~ 8
oy H = My = 111[71 R], (8)
where 7,, v, are the distances of the point (r, §) from the point (e, ¢) and its
inverse with respect to the circle » = R, that is the point (R?/g, ¢), respectively:

R R?
73 = p*+ 72— 297rcos(f — ¢), 7§=?+72—2T1’cos(9—4p). (9)

The solution for a distributed load p(r, 6) can be obtained from the funda-
mental integral (8) by integration:

1 [ R*+ 72 o%/R% — 2 g7vcos(60 — ¢) )
“"Hh‘Tn//p(g"p)ml 0+ 72~ 2 grcos(6 — @) JQd@d‘p' (10)
0 0

4. Built-in Plate

For the plate with a built-in edge, stress point C of Figure 1 applies near the
edge of the plate and stress point 4 applies in the center of the plate. The velocity
field

w=a(%a2—72) (O<vr=a), w=2a(R—7? (@<r=R), (11)

where a = 2/3 R, satisfies the condition (3) over the plate, together with the
conditions w = O0w/0r = 0 at the clamped edge » = R and w and 0w/dr con-
tinuous at » = a [3]. The deformation mode (11) is associated with stress point 4
for 0= 7 < a and stress point C for ¢ < » < R. The moments M,, M, are there-
fore given by

M,=My=M, (0Svr<a), M,=-M,, My=0 (a<r<R). (12)

For equilibrium, it follows from equations (4) and (12) that M, must satisfy
equation (7) for 0 < v < a, and fora < r< R

e (r M) =7p. (13)
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At the junction # = a, M, is continuous so that M, = 0 at » = 4. In addition,
the shear force Q, must be continuous at » = a (in the absence of concentrated
load) and this requires | 0M /07 | to be continuous. Equation (7) and the condition
My = 0 at v = a are sufficient to determine M, for 0 < » < a. Equation (13) and
the condition M, = 0 at » = a together with the known derivative (00 ,/07),_,
are then sufficient to determine M, for a << » < R.

We first consider a concentrated load P at a point (g, ¢) within the circle
7 = a, so that ¢ < a. As in the previous section, the solution of equation (7) with
p = 0 and having the appropriate singularity at (g, ¢) and M, = 0 at v = a is

alozM():f_l[ 2] v=a, (14)
v, a
where now
4 2
13 =024+ 72— 2gvcos(0— ¢), 7§=%§-+72—2%rcos(6—<p).~ (15)

For 7= a, M, satisfies equation (13) with p = 0 and as M, = 0 at » = a, we
obtain
M, = 4(6) (1 - ;) (@a<r=<R).
The positive function f(f) entering into this equation is determined by the
condition that the magnitude of the derivative 0M,/dr is continuous at » = a.
This requires
P a® — g?

Hh=M,= —— . — 1 —

% H k T 2a a2—|—92—29acos(0—(p)(

1) @=r<R). (16

v

The design for a load p(r, 8) distributed inside the circle ¥ = @ and zero load
over the annulus a<#v= R can be obtained from the design (14), (16) by
integration:

1 iy a® 4 2 p2/a? — 2 o7 cos(0 — @)
G H h=— t (e, ¢) In T, 357008 (0 = ededp  (17)
J 4 e 0 - @

forvr=a,and fora<+< R

27 a

! a a? — gt
GGhH_—?; (1~7)(//p(9,¢) a®+ g2 — 2pacos(f — ¢) ededy. (18)

‘When there is no load inside the circle » = a, M, is harmonic for » < a and
since M, = 0.at # = q, it follows that M, is zero identically inside » = a. We
assume that the plate is loaded in the annular region by a line load & per unit
length along the arc element ¢ < 0 < ¢ 4 A6 of the circle » = g, where ¢ > a
(Figure 2). The total load on the plate is then P = & o A0. Because p = 0 in
equation (13) except for r = g, ¢ < 0 < ¢ -+ 40, and also M, = 0M,/or = 0 at
7 = a, it follows from equation (13) that M, is zero except in the truncated sector
e=r=R, 9= 0= ¢+ A6, shown shaded in Figure 2. Thus the load is carried
by a ‘cantilever’ from the pomt on the support circle » = R nearest to the region
of apphcatlon of the load. In order to determine M, in the shaded region, we
note that M, is zero at » = g and the shear force Q,, and therefore 0, /07, has a
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discontinuity of amount & across the loaded element of arc. The result is

alo=M0=ga>(1—§) (19)

inthe region g < v< R, o< 0= ¢ -+ A46.

Figure 2

Line load on arc element 4 B.

Integration of the design (19) leads to the design for a distributed load p(», 0)
which is zero inside the circle » = a:

oo H h =/P(9, 0) o (1 - 5) de (20)

for a < < R and the thickness % is zero for # < a. The upper limit of integration
in equation (20) is # because the pressure p(g, 8) at the point (g, 6) adds material
only to points (#, 8) for which o < 7.

When the pressure distribution $(7, ) is non-zero in bothv<aeanda=v=< R,
the thickness distributions given by equations (17), (18) and equation (20) are
added.
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Zusammenfassung

Das Dimensionierungsverfahren von DRUCKER und SHIELD [1, 2] wurde kiirz-
lich auf die Dimensionierung rotationssymmetrisch belasteter Kreisplatten fiir
Mindestgewicht angewandt [3], wobei sowohl gelenkig gestiitzte als auch ein-
gespannte. Sandwichplatten betrachtet wurden. In der vorliegenden Arbeit
werden diese Untersuchungen auf kreisférmige Sandwichplatten unter nicht
rotationssymmetrischer Belastung ausgedehnt. Es zeigt sich, dass auch fiir solche
Lasten der Dimensionierung fiir Mindestgewicht diejenigen Verformungszustinde
zugrunde gelegt werden kénnen, welche schon zur Lésung der entsprechenden
Aufgabe bei rotationssymmetrischer Belastung konstruiert wurden. Fir Bela-
stung einer gelenkig gestiitzten oder eingespannten Kreisplatte durch eine Ein-
zellast mit beliebigem Angriffspunkt werden explizite Dimensionierungsformeln
gewonnen, fiir beliebig verteilte Belastung werden Integraldarstellungen der
optimalen Dimensionierung gegeben.

(Received: February 4, 1959.)

A Note on Addition Theorems for Mathieu Functions

By K. SErMARK, Copenhagen, Denmark?)

It is the purpose of this note to point out the existence of an addition theorem
for Mathieu functions besides the one given by MEIXNER and SCHAFKE [1--3]%).
The latter states — in the notation of [1] — the following. We consider two elliptical
cylinder coordinate systems 4 and B:

A: x + 1 x,=ccosh(z J-1¢);

B: x{ + 1 x5 = cg cosh(zy, £ 1 ¢,),
connected by
ccosh(z £ it) = le*™™ 4 ¢y e* ¥ cosh (2, 4 7 t) .
(We cousider only real, positive values of ¢, ¢, 2, 2y, £ and ¢,; see figure.) Let

z, and z, be the elliptical coordinates — in the A-system — of the focal points
of the B-system and z,,, the largest one of z,, z,, then

o0
MD(zq; ho) mey(te; By) = D) Ay MY, (25 k) me,, (¢ 1?) (1)
§=——00
(j=1,2,30r4; p= integer% 0)
will be valid in the region

2> Zpan

(0=t=2am).
n (1) M;f)(z; h) me(t; k%) and Mg)(zo; ho) mey(ty; h) are solutions of the wave-
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