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Duct Flow in Magnetohydrodynamics 
B y  CHIEH C. CHANG a n d  THOMAS S. LUNDGREN, Minneapol i s ,  Minneso ta ,  U S A  1) 

Introduct ion  

This paper is an extension of the work of HARTMANN [2] 2) and $HERCLIFF 
[3, 4] on the steady flow of conducting fluids through ducts under transverse 
magnetic fields - the simplest class of magnetohydrodynamic problems. We 
are concerned here mainly with the boundary value problems associated with 
flow in ducts with conducting walls. 

Equat ions  and Boundary  Condit ions  

The following set of vector equations appears to give an adequate description 
of the steady state interaction between electromagnetic and hydrodynamic 
forces: 

curl B = #0 J ,  (1) 

div B = 0,  (2) 

curl E = 0,  (3) 

div E = ~,/eo, (4) 

j = a ( B +  V •  B)+@~V,  (5) 

o V " V V  = - V P  + o v I7~V + j x B + ~ E (6) 

div V = 0 .  (7) 

I t  is assumed that  the magnetic and dielectric properties of the medium are the 
same as in a vacuum; #0 and e o are the magnetic permeability and dielectric 
constant in vacuum. In (5), OH•'S law, the electrical conductivity ~ is assumed 
constant for a homogeneous medium. Equations (6) and (7) are the momentum 
and continuity equations which describe the steady motion of an incompressible 
fluid. If the system to be analyzed is composed partly of fluid and partly of 
solid or vacuum, the last two equations, (6) and (7), only have to be satisfied 
in the fluid, while the first five equations must be satisfied throughout all space. 
The description of the system is completed by specifying zero velocity at rigid 
boundaries and imposing continuity of tangential components of E and of 

1) Department of Aeronautical Engineering, University of Minnesota. 
2) Numbers in brackets refer to References, page 114. 
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normal and tangential components of B at interfaces, plus boundary conditions 
on B and E at infinity. I t  should be mentioned that  continuity of tangential 
components of B implies no surface currents. This is the case, since in non- 
magnetic materials surface currents occur only in the presence of u n s t e a d y  

magnetic fields. 
In  equations (5) and (6) the free charge 5, will be neglected. I t  will be 

retained in (4), which serves only to determine the free charge once E is known, 
This can be considered as the first step in an iterative process, the second step 
being to substitute the value of ~e calculated in the first step into (5) and (6). 

), 

t n 
Region %a=r 2 

Region 3,a=O 

i 

Figure 1 
Cross-section of duct. 

Figure 1 is a sketch of the system under study. An electrically conducting 
incompressible fluid (region 1) flows in the z-direction through a straight duct 
whose wails are of constant thickness (region 2). The electrical conductivity 
of the wall is a2. Outside of the duct (region 3) the conductivity is zero, and at 
infinity a uniform magnetic field B 0 acts in the y-direction. 

If  it is assumed that  the velocity has only a z-component, that  all physical 
quantities (except pressure) are independent of z, and that  there is no net flow 
of current in the z-direction, then it can be shown that  B x = 0, B v = B o, and 
i z =  E~ = 0. 

Using the results of the previous paragraph, the vector equations from (1) 
to (7) can be reduced to two second order linear partial differential equations, 
namely, the z-component of the momentum equation 

op B o OB z 

and the z-component of the curl of OHM'S law, 

OVz 
V2B~ + a #0 B0 ~ y  = 0. (9) 
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In  the first of these Op/c)z is a constant ,  since from (6) Vp is independent  of z. 
In  the fluid, region 1, both  (8) and (9) are valid, while outside of the fluid, 
regions 2 and 3, only (9) is true with I 4 = 0. In  addition, since region 3 is non- 
conducting, the current must  be zero there. This fact and (1) imply  tha t  B~ is 
constant.  Therefore, since B~ goes to zero at infinity, B~ must  be identically 
zero in region 3. 

Across the boundaries of the several regions, B z and the tangential  compo- 
nent  of electric field must  be continuous. Using OI~M's law, the condition on 
the electric field can be written 

= 0  

where 7', is the current  in the direction of the tangent  to the interface. (A 
square bracket  around a quan t i ty  means the discontinuity in this quanti ty.)  
This is t rue since the veloci ty vanishes at  the boundary,  causing the V • B 
term in OHM'S law to vanish. Observe now tha t  the x- and y-components  of 
(1) are 

OB~ OB~ 
#o J x -  Oy ' #o i y -  O, 

so B z can be considered as a ' s t r eam funct ion '  for #0J  -- the current flows 
along the lines B~ = constant .  This shows tha t  

#o it OB~ 
C)!4 ' 

where n is the outward normal. Using this result, cont inui ty  of E t becomes 

0B~] [a -1 = O. ~ - j  

Before summing up the results of the last few paragraphs,  let new dimen- 
sionless variables be introduced by  

O: '  

Y 

V = - 

B = -- 

G 
(a2/v e) (oploz) ' 

Bz 

M = B o a \ ~ !  , 

(lo) 
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where a is a characteristic dimension of the duct  and M is the H a r t m a n n  
number.  Wi th  this new notat ion and using subscripts 1 and 2 to denote  the 
region, the problem is to solve 

172V 1 + M 031 = --i (11) 
0~ 

M 0V1 V2B1 + ~ -  ~- O, (12) 

in region 1, and 
V2B2 = 0 (13) 

in region 2. The boundary  conditions are : B 2 = 0 on C 2, the boundary  between 
2 and 3; and V 1 = 0 ,  B 1 = B2, if20B1/On ~ ~ 0B2/0n on C1, the boundary  
between 1 and 2. 

This problem is difficult since it involves two domains and two sets of 
boundary  conditions. In  special cases it can be simplified. If  the duct  wall is 
a perfect insulator (~2 = 0), then B 2 = 0 so tha t  it is only necessary to solve 
(11) and (12) with V 1 = 0  and B 1 = 0  on C1. If  the duct  wall is a perfect 
conductor  (~2 = oc) the boundary  conditions become: V 1 = 0 and OB1/c)n = 0 
on C 1. There is another l imiting case discovered by  SHERCLI~r [4~, for which 
the problem reduces to solving (11) and (12) in region 1 with boundary  condi- 
tions given on C1. Suppose the thickness of the duct  wall (h/a in the new nota-  
tion) is much smaller than  unity.  To a good approximat ion the harmonic 
function B~ is locally linear, tha t  is, it varies linearly across the duct  wall.This 
can be seen clearly by  considering the membrane  analogy for solutions of 
LAPLAC~'S equation. Then OB2/On = -- a B1/h on C 1. The boundary  conditions 
become V 1 = O, OB1/On + B1/9 = O, where ~v = a2 h/al a. I t  should be noted 
tha t  the cases as = 0 and ~ = oo are included in the last boundary  condition 
with ~v = 0 and ~v = oo respectively. 

Parallel  Sided Duct 

There is one situation in which the approximate  boundary  condition be- 
comes exact. This is the case of flow in a rectangular  duct  when the walls 
parallel to the applied magnetic field are at infinity. In  this problem the har- 
monic function B2 is independent  of ~, and hence must  be a linear function of ~. 

Wi th  the dimensionless variables defined in the previous section, the pro- 
blem is to solve 

d2V d B _  d2B M d v  
d ~  + M d~ 1, d~ ~ + ~ = O, 

with boundary  conditions V = 0, dB/d~l 4- B/cp = 0 when r] = -4- I respectively. 
Here, half the duct  height has been taken as the characterist ic length, a. The 
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solution of the above equations is easily found to be 

V _  1 ~ 0 + t  ( c o s h M u  ) 
M M ~ o + t a n h M  1 - -  coshM ' (14) 

B - ~ 1 9 + 1 s inhM ~ (15) 
M + M M q ~ + t a n h M  coshM " 

I-{ARTlVIANN [2] gave this solution for the case ~ = 0. For  given ~, the velocity, 
which is parabol ic  for M = 0, becomes f la t ter  in the center as M increases. 
When  M is ve ry  large it tends to be uniform except  in a bounda ry  layer  of 
thickness the order of 1/M. Asymptot ical ly ,  

V ~ - ~  1 9 + 1  
M M 9 + 1 (16) 

This shows tha t  V ~ 1/M for non-conduct ing walls while V ~ 1/M ~ for per- 
fectly conduct ing walls : increasing the wall conduct iv i ty  decreases the velocity.  

Another  quan t i ty  of interest  is M dB/du, the rat io  of Lorentz  force to the 
magni tude  of the pressure gradient.  This is also proport ional  to the current  
density. B y  an easy calculation, 

M dB _ 1 +  M ~ + 1 c o s h M ~ l  . 
d U M g + t a n h M  c o s h M  

This is p lo t ted  in Figure  2 for M = 3, ~0 = 1, h = 0.5 a, to give a typical  
example.  The  value of this quan t i ty  in the wall, 

a ( M -- tanh M ) 

-7.0 

1.0 

/ 

-0.5 0 0.5 1.0 

F igure  ~ 

The  c u r r e n t  d i s t r i b u t i o n  across  hal f  of a para l le l  s ided d u c t  for  M = 3, ~0 = 1, h = 0.5 a.  
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is also plotted. From this figure it is seen that  near the center of the duct the 
current flows to the left. This gives a Lorentz force which tends to help the 
viscous forces balance the pressure gradient. Near the wall the current flows to 
the right giving a Lorentz force which opposes the viscous forces, so that  the 
viscous forces have to be larger in order that  the pressure gradient be balanced. 
For large M 

dB ~.~1 M ~  

except in a boundary layer of thickness the order of I / M ,  and in the wall. This 
shows that  for large M, the Lorentz force completely balances the pressure 
gradient except in a thin boundary layer along the wall. 

Stated differently, the current distribution tends to be uniform to the left 
and of a magnitude such as to make the Lorentz force balance the pressure 
gradient. Since the total  current flow must  be zero, part  of the return current 
flows in the boundary layer and part  in the wall. When the wall conductivity 
is larger a greater proportion of the return current flows in the wall, taking the 
path  of least resistance. This shows that  for fixed M (large), less current flows 
in the boundary layer when the wall conductivity is high, indicating that  the 
Lorentz force opposing the viscous forces is less. Therefore the viscous forces 
must be smaller in order that  the pressure gradient be balanced. Now if the 
viscous forces near the wall are smaller, the second derivatives of the velocity 
will be smaller; hence the velocity of the core will be smaller. This shows why 
the velocity becomes smaller when the wall conductivity increases. 

Consider the dimensionless mass flow 

1 

Q = / v : z ~  = 
- - I  

Mass flow per unit width 
(:/v) (- op/oz) 

9 + 1 M -- t a u h  M 
M S M ~ + t a n h M  " 

The reciprocal of Q is essentially the pressure gradient required to maintain a 
given mass flow. In Figure 3 

Q(M = O) 1 M S M 9 + tanhll~r 
Q 3 9 +  1 M - - t a n h M  

(17) 

is plotted versus M for various values of 9. This can be interpreted as the ratio 
of the pressure gradient to the pressure gradient required to maintain a non- 
magnetic flow with the same mass flow. Notice that  for a given mass flow a 
much larger pressure gradient is required to maintain flow through a perfectly 
conducting duct than through a non-conducting duct. 
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Figure 3 
The pressure gradient versus M for various values of ~0 in a parallel sided duct. 
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Perfectly Conducting Rectangular Duct 

In  this  section, the  flow th rough  a finite rec tangula r  duc t  wi th  perfec t ly  
conduct ing  walls is considered.  Regre t t ab ly ,  we have  been unable  to solve the  
p rob lem for a r b i t r a r y  wall  conduct iv i ty .  

The  problem to be solved is 

V2V + M OB 1, V2B + M OV 
07 -- 07 = 0 

in a rectangle  of wid th  2 l and  height  2, wi th  V = 0 on all the  walls, OB/O$ = 0 
on the  ver t ica l  walls, and  OB/OH = 0 on the hor izon ta l  walls. The expansions  

oo oo oo 

v = ~ v j  cos~ 7 ,  B ~ ~" bj sin ~ ~, 1 = • ~j cos~j ~, 
J 0 j=o j-1 

where flj = (f + 1/2)Jz, satisfies the  b o u n d a r y  condi t ions on the  hor izonta l  
walls and  allows the different ia l  equat ions  to be wr i t t en  as o rd ina ry  dif ferent ia l  
equat ions  for vj and  b~ --  

dZb~ d ~  ~ . + M ~ b j = _ ~  5 - - - - ~ b j  i ~ j  0 d~ 2 , d ~  2 - -  v j  = . 

Solutions of these which sa t is fy  the  b o u n d a r y  condi t ions  on the ver t ica l  walls are 

vj -- fli + a3 ( M~ 1 - -  r2~ sinhr231c~ sinh~ + r~j sinhr~j l c~ ~ ) (18) 
r2~. coshrz~ l sinhr2j l + r ~  coshr~j l sinhr~- l 
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and 

b~ 

where 

a 5 [ M . r25 sinhr25 l coshrlj  ~ - r~  sinhr~5 1 coshr25 ~ 
~ + ~  ~ + *  �9 r~  coshrx5 l Slnhrz~ l ,- r~. coshr2~ l s inhr~ l] 

/ " l j  = (f12 + i M f l j ) l ]2 ,  ~'2j = (fl~ -- i M flj)l/2 

(19) 

are complex, r~j and r2j may  be separated into their  real and imaginary parts, 
namely, 

and 

where 

rx~ = aj + i 7j 

r2j = 0 9 -  i yj , 

~J = (@)1[2 [flj +" (f12 + M2)l/2jl]2, ,yj = ( ~ ) 1 [ 2  [ _  [3j + (flj .+ M2)1[2] 112 . 

After  some algebra to express vj and bj in terms of the real quantit ies %. and 
7j the final result becomes 

V = 2  2 ( -1) j  c~ { ~zsEs(})- ~ Fs(~) } 
j~o ~5 ~7 + M~ 1 -- ~sSi~2~sZ-- ~ r s i  ' (20) 

B = 2 2( -1)5  sinfi5 ~ {M c 9 Fj (~)+ yj E5(~ ) } (21) 
i=o f15 fl~+ M2 ~ + ~ j s i n ~ 2 % ' l - - Y s s i n 2 ~ j l  ' 

where 

E~(~) = ~-1 [cosyj (l - ~) sinho~j (l + ~) + cosy~ (l + ~:) sinha~ (l - ~)~ , 

1 [sinT~ (1 -- ~) coshaj (l + ~) + siny~ (1 + ~) cosh%. (l -- ~:)]. 
.Fj(~) = T 

The calculation of mass flow per unit  pressure gradient  is more easily 
accomplished by  integrating the complex form of the velocity. The result is 

o~ 
Q = s z  Z 1 { fl~. cosh 2 ~j l - cos 2 ~ l | 

(22) l (fl~ + M2) 1/2 c 9 sinh2 c 9 l Y5 sin2 ;"5 ?-~ " 

Q ( M  = O)/Q(M) is p lot ted versus M in Figure 4 for a square duct. The corre- 
sponding result for non-conducting walls, SHERCLIFF [3], is included for com- 
parison. 
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P r e s s u r e  g r a d i e n t  v e r s u s  M for  9 = 0 a n d  9 = 0 %  s q u a r e  duc t .  
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Flow in Arbitrary S y m m e t r i c a l  Duct  for Large M 

I t  has been seen for rectangular ducts that  the velocity distribution for 
large M consists of a uniform core with a boundary layer near the walls in 
which the velocity changes rapidly. The purpose of the present section is to 
investigate how the cross-section form and wall conductivity affect the velocity 
distribution in the core. This question has been answered for non-conducting 
walls by  SHERCLI~F [3] and for circular ducts with walls of smM1 conductivity 
by SHERCLIFF [4]. 

Let the duct be as indicated in Figure 1, except symmetrical about the 
x-axis. Let the upper surface be described by  ~7 = Y(~) the lower surface by  
~] = -Y(~) .  The problem is to solve 

V2V + M c)B ~ = - 1, (23) 

OV 
V2B + M ~ = 0 (24) 

with V = 0 and OB/On + B/qo = 0 at the wall. LetZ1 = M (V + B),Z2 = M ( V - / 3 ) .  
Adding and subtracting (23) and (24) gives 

V~Z1 + M OZl _ M ,  (25) 
0.1 

V2Z2 - M OZ~ _ M (26) 
0.1 

Singular perturbation theory, LEVlNSON [1], says that  at interior points and 
at points on the upper surface 

Z 1 = Z I I +  O ~  , 
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where Z~i is the solution of 
OZu - -  1 
OV 

which takes the given boundary values on the upper surface. There is a bound- 
ary layer near the lower surface and ends. Specifically, this is true when Z~ 
is given on the boundary. I n  the present problem the value of Z 1 on the bound- 
ary is unknown but  the above result should still be true, since if the exact 
solution of (23) and (24) were known the values which Z1 takes on the boundary 
could be calculated and the problem formulated as a first boundary value 
problem. The analysis of Z~ is similar, with Z 2 tending to the solution OZ~ d&l = 1 
which assumes the boundary values on the lower surface. This reasoning gives 
asymptotic  solutions 

Zli  = Y(~) -- ~ ~- Zl(~, Y(~)), (27) 

z2,  : ~ + Y(~)  + G( t , ,  - Y ( ~ : ) ) ,  (28) 

where ZI(~, Y(~)) and Z~(~, -Y(~) )  are the values which the exact solutions 
of (25) and (26) assume on the boundaries. Since Z 1 = M ( V  -~- B ) ,  Z 2 ~ M ( V - B )  
and V is zero on the boundaries, it must  be the case that  

ZI(~, Y(~)) = M B ( $ ,  Y(~)) ,  (29) 

Z2(~, - Y ( ~ ) )  = - M B ( ~ ,  - Y ( ~ ) ) .  

But by the symmetry  of the boundaries, B is an odd function of ~, therefore 

Z2(~, --Y(~:)) = M B(~, Y(~:)). (30) 

Also, the velocity and induced field in the interior tend to 

E - zl i  + z~i v(,) (31) 2 M  - B ( ~ , Y ( ~ ) ) +  M ' 

G - z ~  - G~  _ ,7 (32) 
2 M  M "  

In order to find B(~, Y(~)) it is necessary to have a relation between 
quantities across the boundary layer. By integrating V2B + M OV/O~ = 0 over 
a small cylinder which extends through the boundary layer, and using GREEN'S 
third identity, one finds 

CB OB~ 
On On + M ( V -  V~.) cos (n, ~) = O, (33) 
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where n is the outward normal.  This result is equivalent to imposing cont inui ty  
of tangential  components  of the electric field across the boundary  layer. Now 
using V = 0 and O B / O n  + B/q)  = 0 on the boundaries, it is found tha t  

B OB~ 
9 On 

M i cos (1r 7) (34) 

on tile boundary.  Observe tha t  

whence 

OBi OBi COS (n, 8) 4- OBi 0~ - ~ -  ~ cos  (n, V) = - M - ~  cos  (n, 7) (35) 

B - IM-* - (M B(8, V(8)) + Y(8))3 cos(~, 7) (36) ~0 

on the boundary.  
In  part icular  this is true on the upper  surface where B = B(8, Y(8)) and 

cos (n, 7) = (1 + Y ' ~ ) - ~ .  Substi tut ing these into (36) and solving fo rB  (8, Y(8)) 
gives 

M - l -  y 
B(8, Y(8)) = M + ~o-* (1 + y,2)1/= �9 (37) 

Wi th  (37) and (31), V i is solved - 

G = ~  1 + M ,  (1 + Y'~)-l~j" (38) 

This checks with (16) for the case Y ~ 1. Note, when the walls are non-con- 
ducting (~v = 0) tha t  V i = Y ( 8 ) / M  as shown b y  SHERCLI~S [31. I n  this case the 
velocity distr ibution has the same shape as the cross-section of the duct. In  
fact this result is also true for non-symmetr ical  ducts with non-conduct ing 
walls, tha t  is, if the upper  surface is 7 = Y1(8) and the lower surface is 
7 = --Y2(8) then V~ = (Y1(8) + Y~(8))/2 M. On the other hand  for perfectly 
conduct ing walls (9 = o~), V~ = 1/M ~ which shows the velocity to be uniform 
in the core. Also, in this case, the dimensional velocity V, is independent  of 
viscosity - V z = - (Op/Oz)/(cr B~).  

For  a circular cross-section, Y = (1 - 89)u 2, a small calculation shows 

M 1 + M 9 (1 -- ~2)11~ �9 

This differs from SHERCLIFF [4] in the occurence of the factor 1 + 9;  SHERCLIFF 
restricted 9 to be small. The volume flow through  the circular duct  is given by  
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1 

Q = . / 2  Y(~) V~(~) d~ 
-1 

1 
= 4 / 1 + q  ) 1 - -~  2 

M t + M ~ ( 1 - ~ ) V  ~d~ 
0 

=/2 
= 4  1+~/_ cos"0 d O  

1 + M 9 cos 0 
0 

1 + ~ [ =/4 1 =/2 1 2 
=4-~--LM ~ (Mg) ~ + (M~) 3 (M9)3 l + M ~ 0  

• tan_ 1 ( 1 -  M~)W~/ ( 1 - -  M9~]1/2 
I + M  I + M g ] J  " 

(39) 

Note that the expression for Q, (39), does not have a singularity at M qo = 0, 
the inverse powers are absorbed by the last term on the right. In fact when 
M ~ is small 

1 + 9  (2  3~ 8 ( M ~ ) 2 + . . . )  " 
Q = 4 ~  3 ~6 M g + ~  - 

In Figure 5 (Q/~) [4 M/(1 + 9)] is plotted versus M q). Q/x is the average (dimen- 
sionless) velocity. In Figure 6 VdV.v is plotted versus ~ with M ~ as parameter. 
The latter figure shows the effect of wall conductivity on the shape of the 

O.7 

0.8 

~5 

0.4 

O.3 

I 02 

~ i i i lo 
M F . .  

Figure  5 

4 M Vat/(1 +9)) versus  M for c i rcular  duet ,  large M. 
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velocity profile for the case of a circular duct. I t  should be noted in this case 
that  the shape depends only on the product M % 

7.2 

6 
10 ~8 ~6 ~ 0.2 

Figure 6 

52 d, ae 08 z0 
( = 

Velocity distr ibut ion in a circular duct  with M (p as pa ramete r .  

T h e  E f f e c t  o f  t h e  F r e e  C h a r g e  o n  t h e  E l e c t r i c  F i e l d  

In the introduction we stated that  the free charge would be neglected in 
OHM's law and in the momentum equation, but  would be retained in (4). We 
have seen that  B~ and ~ can be determined without using (4), therefore E can 
be determined from OHM'S law leaving (4) for the determination of Qr This is 
done simply by  taking the divergence of (5), with the result 

o e = - - e  0 d i v ( V x  B) .  (40) 

We shall now check to see that  9, was negligible in (5) and (6) for the class 
of problems which we have considered. We note that  in this case (40) becomes 

0v~ (41) ~ =  e~ B~ O x  " 

For large M it is apparent that  9e will be largest in the boundary layer. To be 
more specific it will be largest near that  part  of the boundary which is parallel 
to the applied magnetic field. SHERCLI~I~ [31 has shown that  the boundary layer 

has thickness of the order of a/l/M on walls parallel to the applied magnetic 
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field. This allows us to es t imate  OVz/c)x b y  Vz ~ ]/M-/a at  this point  (Vz a v is 
the average  or core velocity) which makes  

~o~ = 0(% B 0 V ~  ~ M - ) .  (42) 

We note tha t  in equations (5) and (6) the terms with ~ will be small compared  
to a V • B and i • B respect ively provided the inequal i ty  Oga B o ~ 1 is 
satisfied. Wi th  (42) this inequal i ty  can be put  in the form 

t~ ~ ~ ~ R~ (43) 

where c is the speed of light, 2 = #0 ~ v and R~ ~ a c/v is a ' Reyno lds '  numbe r  
based on the speed of light. As an example  consider the case of me rcu ry  where 
2 ~ 10 -7, M ~ 100 (the exper imenta l  upper  limit) and R~ = 0(1015) (with 
a = 1 cm). In  this case (43) becomes V~ ~ Jc  ~ 107 which is obviously always 
satisfied. 

I t  should not be concluded from the previous pa ragraph  tha t  the effect of 
~, is complete ly  negligible, for it has a dominan t  effect on the electric field. The  
free charge in the bounda ry  causes the electric field to make  a large increase 
on passing through this layer. This is best  i l lustrated by  a concrete example .  
Consider a long rec tangular  duct  with non-conduct ing walls. Excep t  in the 
bounda ry  layer  near  the ends the solution is essentially tha t  given b y  equat ions  
(14) and (15), with ~0 -~ 0. Using this solution we can calculate E f rom equat ion 
(5), t ha t  is 

E,~ -- 1 c) B z 
a/~o Oy + Vz Bo,  (44) 

Ev 1 OB~ 
a #o Ox " 

From (14) and (15) we get 

_ a  0I){1 1 } 
E ~ =  l/v~a~ a 0z M t a n h M  ' (45) 

I t  is seen tha t  E x is constant.  One might  suppose tha t  E ,  is constant  all the 
way  to the end of the duct, taking a j ump  through the surface of the wall. This 
is not the case, since for nonconduct ing walls B z is zero at  the wall, therefore 
OBz/Oy is zero on the vertical  wall, and equat ion (44) then shows tha t  E ,  = 0 
on the vert ical  wall. We conclude tha t  E x varies from zero at the wall to the 

value given b y  (45) as we go through a bounda ry  layer  of thickness a/l/M.. 
This is due to the free charge in this bounda ry  layer. (There is some question 
as to whether  the free charge causes the var ia t ion  in electric field or whether  
the var ia t ion in electric field causes the flee charge.) 
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Conclus ion  

In the flow of conducting fluids through ducts, in general, the domain of 
the equations describing the flow is not the same as the domain of the fluid. I t  
was found that the problem reduced to two sets of equations, one set, (11) and 
(12), in the fluid, and one set, (13), in the wall, with boundary conditions 
specified on the outer boundary of the wall and across the inner boundary 
of the wall. The known special cases (SHERCLIFF [3, 4]) where this problem 
reduces to an ordinary boundary value problem with boundary conditions given 
at the boundary of the fluid, follow as limiting cases of the above formu- 
lations. These are 9 + 0, ~ + oo and h + 0. 

In the bulk of the paper the flow through rectangular ducts was considered. 
The essential conclusion is that  increasing the wall conductivity tends to 
decrease the average velocity if the pressure gradient is the same in the two 
cases. Stated differently, when the wall conductivity is increased, the pressure 
gradient must be increased in order to maintain the same mass flow. 

The flow through arbitrarily shaped symmetrical ducts was considered for 
large M and arbitrary wall conductivity. I t  was found that when qv + oo the 
velocity tends to be uniform except in a thin boundary layer along the wall. 

In the final section the effect of the neglected free charge was considered. 
We found that free charge tends to accumulate near walls which are parallel to 
the applied field, but not enough to effect the velocity distribution. 
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Zusammen/assung 

In dieser Arbeit wird die Str6mung einer elektrisch-leitenden Fliissigkeit durch 
ein gerades Rohr mit einem gleichf6rmigen, querlaufenden magnetischen Feld 
betrachtet. Das Problem wird unter Beriicksichtigung des elektromagnetischen 
Feldes sowohl illnerhalb als ausserhalb der Fliissigkeit formuliert. Besondere Auf- 
merksamkeit wird auf die Ableitung der Randbedingungen gerichtet. Es wird 
klargemacht, dass, wenn die Wiinde des Rohres endliche Leitf~thigkeit haben, das 
Problem, abgesehen yon Einzelf~tllen, kein gewShnliches Randwertproblem dar- 
stellt. Eine L6sung wird fiir die Str6mung durch ein rechteckiges Rohr mit unend- 
lich fernen, dem iiusseren Feld parallelen WXnden bei beliebiger Wandleitf~higkeit 
gefunden, ebenso fiir die Str6mung durch ein endliches rechteckiges Rohr mit ideal- 
leitenden W~Lnden. Es gelingt, die asymptotische Geschwindigkeitsverteilung bei 
grosser Hartmannscher Zahl ffir ein diinnwandiges symmetrisches Rohr bei belie- 
biger Wandleitf~higkeit anzugeben. 
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